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Abstract: Low-temperature electronics operating in below zero temperatures or even below the
lower limit of the common −65 to 125 ◦C temperature range are essential in medical diagnostics, in
space exploration and aviation, in processing and storage of food and mainly in scientific research,
like superconducting materials engineering and their applications—superconducting magnets,
superconducting energy storage, and magnetic levitation systems. Such electronic devices demand
special approach to the materials used in passive elements and sensors. The main goal of this work
was the implementation of a fully transparent, flexible cryogenic temperature sensor with graphene
structures as sensing element. Electrodes were made of transparent ITO (Indium Tin Oxide) or
ITO/Ag/ITO conductive layers by laser ablation and finally encapsulated in a polymer coating.
A helium closed-cycle cryostat has been used in measurements of the electrical properties of these
graphene-based temperature sensors under cryogenic conditions. The sensors were repeatedly cooled
from room temperature to cryogenic temperature. Graphene structures were characterized using
Raman spectroscopy. The observation of the resistance changes as a function of temperature indicates
the potential use of graphene layers in the construction of temperature sensors. The temperature
characteristics of the analyzed graphene sensors exhibit no clear anomalies or strong non-linearity in
the entire studied temperature range (as compared to the typical carbon sensor).
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1. Introduction

The application of transparent conductive films and multilayer films for resistance temperature
detectors in cryogenic systems was discussed for the first time in [1]. Graphene is one of the most
promising materials for a diversity of modern technological applications due to its excellent electrical,
optical, thermal, mechanical, electrochemical and structural characteristics [2–4]. The exceptionally
high electrical conductivity of graphene combined with its transparency, flexibility and mechanical
strength, make it suitable for microelectronic devices (Field Effect Transistors—FETs), photonics and
optoelectronic systems, passive electronic elements and for sensing applications [3,5–7]. We propose for
the first time a sensor with a graphene layer as sensitive element designed for cryogenic temperature
measurement. The electrodes of the sensor are shaped using transparent conductor film on a polymer
substrate using laser direct patterning, so the whole device is transparent and flexible. Encapsulation
with a polymer transparent cover protects the sensor against any damage. The as-fabricated sensors
have a low thermal capacity due to their construction. Changes in resistance of the sensors using
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HSMG® (High Strength Metallurgical Graphene) graphene layers are measurable and significant.
The sensors’ sensitivity in the range of cryogenic temperatures (particularly below 50 K) is much higher
than the sensitivity of comparable resistive (metallic) temperature sensors (RTD). Temperature sensors
made of the graphene film transferred on the polymeric substrate have significantly better flexibility and
resistance to thermal stresses in comparison to bulk graphite sensors. Application of thin conductive
polymeric films (ITO—Indium Tin Oxide and AgHTTM) allowed us to obtain the sensors with electrodes
characterized by high optical transparency and therefore may be applicable in low-temperature optical
studies (UV—Ultraviolet).

The crucial features for flexible, transparent temperature sensors are their electrical conductivity,
thermal properties, and the optical transmittance of the materials used. These properties of graphene
and transparent conducting oxides films are briefly discussed below.

The electrical conductivity of large-surface graphene sheets is a very complex issue, resulting from
the characteristics of their carrier transport. The electronic properties of graphene are mostly considered
and investigated from the viewpoint of its use as a material that could replace silicon in microelectronic
devices controlled by electric fields (MOSFETs). The experimentally measured minimum conductivity
in graphene (
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can create a long-range scattering potential leading to important charge-carrier limitations (rises of
resistivity) [10,11]. Discussion of the inelastic scattering from the phonons could be limited practically
to the longitudinal acoustic phonons. The contribution of phonon scattering to total resistivity (on the
order of some kΩ) of graphene samples is of the order of 100 Ω at 300 K [12,13]. In graphene samples
of larger dimensions, e.g., in graphene nanoribbons with small widths of some tens of nanometers and
lengths of some tens of micrometers, lateral confinement of the charge carriers causes the creation of
an energy gap tuned by the appropriate choice of ribbon width [14,15]. There are also other causes
of charge scattering, such as folding of the graphene sheets, phonons in the graphene or interfacial
phonons between the graphene and the supporting substrate. Large-area graphene sheets are a 2D
polycrystalline material consisting of domain and grains [7]. The grain boundary, depending of its
structure, can manifest whole reflection or high transparency toward charge carrier transport [16].
In devices using as functional element large area graphene sheetd (e.g., sensors) contact/graphene
interface phenomena should be taken into account. An additional charge inhomogeneity occurs in
the vicinity of the contact but could extend hundreds of nanometers from the contact. Studies have
proven that the contact resistance (Ti/Au-graphene) includes a component independent of the gate
voltage of a value of about 800 Ω·µm, which is insensitive to temperature changes [17]. The contact
resistance (700 ± 500 Ω·µm) was found to be independent of the metal work function (for Ti, Ag, Co,
Cr, Fe, Ni, Pd) [18].

The thermal conductivity κ of graphene is extremely high and exceeds 5000 W/mK at room
temperature [19]. These outstanding thermal properties seem to be very attractive for microelectronic
and sensor applications. The predominant contribution to the high thermal conductivity of single layer
graphene corresponds to acoustic phonons with a mean free path of 500–1000 nm, while the contribution
of electrons is negligible [20–22]. Because of the long phonons’ mean free path the thermal properties are
dependent on the sample size and grain size and orientation. Defects and impurities as well as stresses
in the graphene structure reduce the thermal conductivity [23,24]. The thermal properties of graphene
are strongly affected by the influence of the supporting material [21]. The thermal conductivity of about
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600 W/mK for single layer graphene supported on a SiO2 membrane proved to be much less than that
of suspended graphene (3000–5000 W/mK, although it should be noted that the κ value of supported
graphene was still greater than that of metals (Cu, Ag—κ > 400 W/mK). The phonons’ mean free path
in supported graphene, predicted theoretically and estimated from measurements, is about 100 nm [21].
The interactions between graphene layers and substrate surfaces could be different for the various
metals and dielectrics used as substrate materials and the method of graphene synthesis, so different
scales of reduction of thermal conductivity could be observed [25].

An optical transmittance of single layer graphene equal to 97.7% was theoretically derived,
assuming a constant high-frequency conductivity for Dirac fermions through the visible range of the
spectrum, and proved experimentally [5,26]. This transparency is quite constant for wavelengths from
300 to 2500 nm, with a small decrease at about 270 nm [3,27]. The optical transparency for few layer
graphene is reduced about 2.3% for every layer.

The above brief considerations suggest that, especially in applications that use graphene sheets of
large size (of the order of millimeters), the dependence of the electrical, thermal and optical properties
on methods for graphene synthesis, sample size, grain structure, purity, homogeneity and substrate
type must be taken into account.

Although graphene has attracted greatest interest as a material for active microelectronic devices
(graphene FETs), its exceptionally high electrical conductivity and furthermore its transparency,
flexibility and mechanical strength, make it also suitable for passive electronic elements. Recently
the requirements of modern optoelectronic technologies, such as photovoltaic technology, flat panel
displays, OLEDs (Organic Light-Emitting Diodes) and optoelectronic devices, have caused the rapid
development of new conductive transparent materials in the form of thin layers [28–32]. Of great
importance for practical applications are conductive oxides transparent layers, usually indium tin oxide
(ITO). The increasing price of indium and the lack of stretchability of ITO has inspired research for
replacing ITO with other transparent conductive materials, such as ZnO, carbon nanotubes (CNTs) [33],
conducting polymers like poly(3,4-ethylenedioxythiophene) polystyrene sulfonate—PEDOT:PSS [34],
thin transparent metal films [35] and multilayer systems that consist of two outer layers of oxides (ZnO,
ITO) and a thin metallic film (Ag, Cu, Au) between them, e.g., ITO/Ag/ITO multilayers. The main
purpose of many of these studies was producing these multilayers on transparent electrodes for organic
solar cells or OLEDs [36,37], transparent UWB (Ultra-WideBand) antennas [38,39] and also as EMI
(ElectroMagnetic Interference) shielding materials [40].

Recently, several innovative temperature sensors based on graphene have been developed, thus
providing an alternative to conventional rigid ceramics. Mono- or bi-layer graphene nanofabricated
on a silicon substrate has been used as a thermally sensitive element, however no flexibility has been
achieved in such a system. Al-Mumen et al. [41] studied the temperature sensing behavior of mono-,
bi- and few layer graphene exfoliated from graphite. The resistance temperature coefficient (TCR)
was determined, which was about −0.007 K−1 for the bi-layer graphene, about −0.003 K−1 for the
monolayer graphene, and about −0.0015 K−1 for the few-layer graphene, respectively. The bilayer
graphene had the highest negative TCR, measured as the temperature changed between RT and 80 ◦C.
Kong et al. [42] fabricated a mechanically stable graphene electrode by its direct micropatterning
onto a flexible polymer. The negative temperature coefficient (NTC) of the graphene electrode was
similar to that of conventional NTC materials, however its response time was faster by an order of
magnitude. Trung et al. [43] proposed a flexible and very sensitive sensor based on reduced graphene
oxide transferred onto a transparent polymer substrate. Yang et al. [44] invented a wearable sensor by
incorporation of graphene nanowalls into PDMS which value of resistance temperature coefficient
exceeded by threefold the values typical for conventional sensors. Yan et al. [45] demonstrated
stretchable graphene thermistors with intrinsic high stretchability that were fabricated through
a lithographic filtration method based on conductive AgNW electrodes and a resistive graphene
detection channel. The devices were stretched up to 50% and could maintain their functionality
even in highly stretched states. Bendi et al. [46] reported a self-powered thermistor which utilizes
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the formation of p-i-n junctions on a graphene monolayer using ferroelectric polymer PVDF-TrFE
(poly[(vinylidenefluoride-co-trifluoroethylene)]) that generates current changes when subjected to
thermal stimulation (40–110 ◦C) under no external perturbation.

These excellent properties indicate graphene is a candidate for the preparation of the transparent,
flexible electrodes, e.g., instead of ITO [47]. Many interesting nanodevices and structures using
electrodes of graphene have been proposed, as organic FETs [47], flexible transparent piezoelectric
energy harvesters [48] or transparent resistive memory [49]. Double layers consisting of graphene
sheets and ITO layers were applied as source-drain electrodes in a thin film transistor (InGaZnO) [50]
and a n GaN light emitting diode [51]. Quite recently a multilayer structure consisting of a graphene
layer formed on Cu foil and doped with Au nanoparticles (anode) and with Ag-nanowires (cathode)
were used to creating a through transparent quantum dot light-emitting diode [52]. Inks based on
graphene obtained from the reduction of graphene oxide (GO) and suspended in liquids enabled
fabrication of flexible sensors, for example, a transparent acoustic actuator [53] and a sensor for the
simultaneous measurement of pressure and temperature [54]. In the construction of the organic
electrochemical transistors electrodes were doped with graphene flakes prepared by ultrasonic
exfoliation from graphite [55].

2. Materials and Methods

2.1. Formation of Transparent Electrodes by Laser Ablation

To create electrodes for cryogenic temperature sensors two different conductive films were used,
namely commonly used ITO and ITO/Ag/ITO film (AgHT™) with surface resistance of 15 Ω/sq and
4 Ω/sq, respectively. AgHT™ is a highly conductive film on a polyester substrate which is significant
in shielding against EMI/RFI (ElectroMagnetic Interference/ Radio-Frequency Interference) and also
infrared heat rejection. Its good electrical conductivity, high optical transparency and flexibility
determine applications of this material in membrane switches, photovoltaic structures, displays,
and passive elements of flexible and transparent electronics. The ITO film on PEN (Poly(ethylene
2,6-naphthalate) substrate had a thickness of 125 nm and an ITO/Ag/ITO film thickness of 150 nm.

Laser Direct Writing (LDW) methods for nanometer films are used in the manufacture of flexible
electronic circuits and sensors on the sub-millimeter scale. It is well known that laser processing of
thin layers of nanometer thickness can be performed using laser beams of short wavelength and short
pulse duration. Thin functional layers (ITO, AgHT, carbon nanotube layers) on transparent substrate
materials (polyester, PET) have similar ablation threshold fluences, therefore damage of the substrate
layers during laser processing should be avoided. Processing of most materials demands applying of
UV laser beams with femto- or picosecond pulses to ensure the best effects. Patterning of ITO thin
films was performed using laser beam pulses of ultraviolet to infrared wavelength of picosecond,
femtosecond or nanosecond duration [56–60]. Laser direct writing was applied to electrode patterning
for flat panel displays [61], fabricating a miniature transparent gas flow meter [62], electrode isolation
in ITO layer on substrates used in the mobile phones [63], a pentacene thin film transistor (TFT) with
source and drain electrodes patterned in ITO [64], and producing matrix array of OLEDs [65].

The main goal of our former research was to establish the possibility of using a single mode
fiber laser in micromachining considering the quality of the obtained structures and their smallest
dimensions while maintaining acceptable quality [66]. We have shown that the LDW method by
nanosecond laser ablation ensures good conditions for prototyping structures with very high pattern
fidelity. Among other uses contacts for prototyping of OLED structures [66] and samples of two types
of conductive path have been prepared. The first had a meandering shape and was used in resistivity
measurements and the second had the shape of a cross and was used in Hall effect measurements
(Figure 1) [1].

The optical transparency was not changed, although some thermal effects were observed after
laser treatment. In case of the ITO/Ag/ITO layer even improvement of the optical transmission
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after laser micromachining was noted. Previous studies have shown that structures patterned in
AgHT conductive film can be useful for sensors in cryogenic systems and passive elements in flexible
electronics [1]. A redENERGY G3 SM 20W single mode fiber laser (SPI Lasers UK Ltd., Southampton,
UK), which guaranties high quality of the beam (M2 < 1.3) was used to manufacture the electrodes for
cryogenic temperature sensor with graphene sensitive layer. The laser beam was scanned by a 2-Axis
Scan Head (Xtreme, Nutfield Technology. Inc., Hudson, NH, USA) equipped with a 100 mm F-theta
lens and was controlled by the SB-1P Waverunner software (Xtreme, Nutfield Technology. Inc., Hudson,
NH, USA). The optimal parameters for creating electrodes were as follows: pulse energy—120 µJ;
pulse duration—25 ns; pulse repetition frequency—72 kHz; scanning velocity—800 mm/s and for
ITO film: pulse energy—145 µJ; pulse duration—25 ns; pulse repetition frequency—80 kHz; scanning
velocity—1500 mm/s.
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structure for examination of electrical properties of ITO on PEN. 
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changes, are continuous and repetitive in the analyzed range. This means that the conductive layer is 
continuous in a wide range of temperature, and the substrate is not permanently deformed or 
damaged. 
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2.2. Synthesis and Transfer of Graphene Film 

Figure 1. Examples of structures prepared by laser ablation: (a) electrodes for cryogenic sensors made
in ITO layer on PEN substrate; (b) micro-heater in ITO/Ag/ITO layer with silver leads; (c) test structure
for examination of electrical properties of ITO on PEN.

The characteristics electrode resistance changes with temperature in the range of 12–300 K are
shown in Figure 2. Studies have proven that changes of substrate resistance, due to temperature
changes, are continuous and repetitive in the analyzed range. This means that the conductive layer is
continuous in a wide range of temperature, and the substrate is not permanently deformed or damaged.
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2.2. Synthesis and Transfer of Graphene Film

The high strength metallurgical graphene (HSMG®) sheets were synthesized in an industrially scaled
thermochemical facility based on the process described in previous papers [67–69]. The copper/nickel
composite substrate was heated in an argon atmosphere at a pressure of 100 kPa. After this step the
chamber was evacuated to a pressure of 2 Pa and a mixture of acetylene, hydrogen and ethylene
(ratio 2:1:2), at a partial pressure of 3 kPa, has been simultaneously introduced with argon for 1 min.
Finally, the substrate with graphene was cooled stepwise to RT in an argon atmosphere at a pressure
of 100 kPa.

The modified transfer procedure of HSMG® graphene for temperature sensors and reference
samples preparations was used. The procedure is based on the commonly used method of graphene
transfer from metallic substrates onto Poly(methyl methacrylate)—PMMA foil, which is described in
details in our previous paper [70]. Methods utilizing a thin film of PMMA as a graphene supporting
material and their variations are the most frequently used methods for transfer of 2D materials (graphene)
onto any substrate. Wrinkles and cracks were observed on the graphene after the transfer process.
An extensive explanation for the formation of these defects is presented in our previous work [70].

The production method of HSMG® allowed manufacturing of a single layer of graphene.
The intentional and controlled modifications of the synthesis process lead to a graphene-like material
(G-LM) with a slightly lower value of resistance/square.

Analysis of the graphene transferred onto reference samples was carried out using an inVia Raman
spectroscope (Renishaw, New Mills, UK). All acquisitions of Raman spectra for graphene structure
were performed with using an Ar+ laser at a laser excitation wavelength λ = 532 nm, exposure time was
10 s; signal was averaged from three times repeated exposition per spot. The maximum laser output
power was 29.3 mW but the test was carried out at only 10% of the output power. Raman scattering
was observed for the 1200–3100 cm−1 wavenumber range. The acquisition settings listed above did
not cause any changes on the surface, like damage by local heating. Data processing was performed
using the PeakFit software (Systat Software Inc., London, UK). Gauss–Lorentz curves were used for
spectra deconvolution. Data obtained from the deconvolution for example: peak positions, intensities,
half-widths were used for the calculation of characteristic peak ratios of graphene structures which
were used in further analysis are provided in following tables (Tables 1 and 2).

Table 1. Names of Raman peaks identified in the studied graphene structures with their specific frequencies.

Peak Name
HSMG® G-LM

ω [cm−1]

D 1341.1 1338.3
G 1583.8 1577.6
D’ - 1615.4
2D 2678.8 2687.3

Table 2. FWHM (full width at half maximum) values and ratios of typical peaks calculated on the basis
of Raman spectra deconvolution.

Peak Name
HSMG® G-LM

FWHM [cm−1] IG/I2D I2D/IG FWHM [cm−1] IG/I2D I2D/IG

D 36

0.2 4.1

96

3.1 0.3
G 29 45
D’ - 29
2D 45 136
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2.3. Encapsulation of TCO/HSMG® or G-LM Samples

The construction of the graphene cryogenic temperature sensor should eliminate or reduce the
sensitivity of the sensor to stimuli other than the temperature. Particularly important is the ability to
control the influence of gases on the electrical properties of graphene. This means that the graphene
should be insulated from the influence of gas (vacuum inside) or the sensor should be filled with gas in
a controlled way (gas inside). Moreover, the structure should provide a simple method of implementing
the electrical connections. The reduction of heat exchange with the room temperature environment and
heat capacity of the cooled part are just as important in cryogenic systems. The presented transfer of
graphene film on a polyester substrate with highly conductive electrodes provided for a small sensor
thermal capacity and reduced the heat transfer through the electrodes. The LDW method enabled
patterning of electrodes in various shapes, while maintaining the transparency of the electrodes and the
substrate. The transparency of the sensor is a unique feature of the presented encapsulation technology.
In addition, the small cross section of the thin film electrodes effectively reduces the heat transfer to the
cryogenic. Features of the applied substrate and the method of electrode patterning favored the use of
a protective thin transparent polymer foil (about 10 µm). The protective film coated on graphene and
partially on the electrodes isolates these elements electrically and chemically from the environment
(Figure 3).

Integration of the polymer film onto the substrate is the result of a thermal activation adhesive.
Proper preparation of the protective layer made it connect only to the substrate and does not affect the
graphene film. The encapsulation process did not adversely affect the electrical and optical properties
of the sensors. The encapsulation process may be performed either under vacuum or in a gas. This is
important because thus can be used to change the parameters of the temperature sensor by doping the gas.
The sensors retain the transparency and flexibility of conventional polymers after encapsulation process.
The proposed encapsulation of the samples provides various options for electrical connections between
the sensor and measurement systems. Two types of electrical joints were applied: 1st—a pressed contact
as in butt joints, where a thin silver foil (35 µm) has been used and 2nd—an adhesive contact, where
the electrically conductive silver-epoxy Elpox AX 15s (Amepox Microelectronics Ltd., Lodz, Poland)
has been applied. No effects of the various types of contacts on sensor properties were observed.
The proposed technology of encapsulation ensures the possibility of forming fully transparent sensors
with different size and shapes (Figure 4).
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Additionally, it is possible to realize many different sensors at once using the same structure (e.g.,
an array temperature sensor, temperature sensor and a gas sensor). A graphene monolayer (HSMG®)
and graphene-like material (G-LM) were used in the construction of sensors. The total resistance of the
manufactured sensor is the sum of the resistance of electrodes Re, the resistance of graphene-electrode
interfaces Ri and the resistance of the graphene layer Rg (HSMG® or G-LM) (Figure 5).
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The temperature affects the all listed resistances to a different extent. Therefore, proper selection of
materials for electrode construction is particularly important. In the proposed solution, the substrates
with electrodes were made of ITO/Ag/ITO AgHT (4 Ω/sq) and ITO (15–100 Ω/sq). The resistance
value of the graphene layer is relatively high (>20 kΩ/sq). A significant difference of the resistance
of the graphene layer and the resistance of the substrate, resulting from the different thickness of
graphene monolayer and electrodes (~120 nm), minimizes the participation of the electrode resistance
and the interface between the graphene and electrodes in the total resistance of the sensor.

2.4. Instrumentation and Experimental Procedure

All tests and measurements of electrical properties of graphene cryogenic temperature sensors
were performed in a helium closed-cycle DE-210 cryostat (Advanced Research Systems, Inc.,
Macungie, PA, USA). The sensors were cyclically cooled from room temperature (295 K) to cryogenic
temperature (20 K) at a rate of about 0.1 K/s. The tested graphene sensors and reference temperature
probes were placed directly on the surface of the massive copper heat exchanger (a copper block
80 mm × 80 mm × 10 mm). The encapsulation of the sensor provided the electrical and chemical
isolation of the sensor from the environment and other elements of the cryogenic system. In order to
eliminate the temperature gradient along the sensor the entire surface of the sensor was fixed to the
heat exchanger (including electrodes). The exchanger was mounted directly on the cold finger of the
cryocooler (second stage of the cryocooler) (Figure 6).
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The temperature of heat exchanger was measured and controlled by a precise Lakeshore 331
temperature controller and the reference sensors (silicon diodes DT-670-SD, Lakeshore Cryotronics Inc.,
Westerville, OH, USA). The glass-epoxy laminate G10 (MG Chemicals, Burlington, ON, Canada) was
used for preparing the fastening and support elements. The observation of the temperature effect
on resistivity of the graphene sensors was the main research work. Resistivity measurements were
performed using a Keysight 34420A Micro-Ohm Meter (4-probe method, Keysight Technologies,
Santa Rosa, CA, USA). The resistivity of sensors before and after encapsulation has been measured
in wide range of temperature (20–295 K). This allowed observing any influence of the encapsulation
process on electrical parameters of graphene.

3. Results and Discussion

3.1. Raman Spectroscopy

Spectra for the studied graphene structures are presented on Figure 7.
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The spectrum of HSMG® graphene consists of characteristic G and 2D peaks. The intensity ratios
IG/I2D or I2D/IG are 0.2 and 4, respectively. According to the studies of Das and Ferrari it can be
noted that these values correspond to a single layer of graphene [71,72]. The additional D peak which
can be observed should not appear for perfect graphene (without defects), so the presence of the D
peak indicates carbon atom disorders or defects such as edges, dislocations, cracks or vacancies [73].
Taking the above into consideration, we can conclude the HSMG® is defected, single-layer graphene.

The spectrum shape of G-LM graphene looks like a spectrum of graphene oxide (GO) or reduced
graphene oxide (rGO) with a distinctive arrangement and shape of the G and D peaks [73–75]. In most
papers on GO/rGO, the spectra have a completely different shape of the 2D peak, which intensity is
low and the shape is blurred. Deconvolution of the 2D peak for GO allows one to extract an additional
D + G peak [73–76]. It should be noted that the manufacturing process for HSMG® graphene and
post-processing procedures preclude the formation of graphene oxide. In G-LM graphene spectra a 2D
symmetrical peak can be observed. The 2D peak for G-LM graphene is broadened in comparison to
the peak for HSMG® graphene. On analysis of the Raman spectrum an additional D’ peak can be also
observed. The D’ peak, like the D peak, indicates a defect and a low ordered carbon structure [77].
Das in his paper shows the evolution of the Raman spectrum as the number of graphene layers
increases from single layer graphene to the characteristic spectrum for graphite with a ratio IG/I2D

equal to 3.1 [72]. The mentioned value is the same in case of G-LM but it should be noted that 2D
peak shape is completely different compared to graphite. For Raman spectroscopy analysis the ratio
of peak intensity is very important but the shape of the 2D peak should also be taken into account.
A similar Raman spectrum to that of G-LM was described by Pimenta and defined as a nanographitic
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structure. However, the peak 2D is narrow compared to the G-LM 2D peak and it has an intensity
almost equal to the G peak intensity [77]. Taking into account the above considerations we can say
that we are dealing with a disordered, multi-layer graphene-like material structure.

3.2. Temperature Dependence of the Resistance

The results of studies on the effects of temperature on the resistance of samples made of HSMG®

and G-LM showed a significant dependence of resistance on temperature in the range of 20–195 K
characterized by a continuous, nearly linear decrease of the resistance (negative temperature coefficient
of resistance). The process of encapsulation for samples with HSMG® and G-LM caused the relatively
small, permanent increase in the resistance of the sensor (Figures 8 and 9).
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The increase in resistance of the graphene-electrode interface is the most likely cause of this effect.
The connection resulting from, inter alia, the occurrence of weak intermolecular van der Waals forces
may undergo a slight degradation. It should be noted, however, that a change in the resistance value
after the encapsulation does not affect the nature of the temperature dependence of the resistance
(Figures 8 and 9). This means that the process does not degrade the active layer of the sensor. In the
case of the sensor made of the HSMG® layer the observed change in resistance of the sensor is on the
order of 16% (Figure 8). In the case of G-LM sensors a much stronger dependence, on the order of 150%,
was observed (Figure 9). The nature of the changes of resistance is less linear than for HSMG® sensors.
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It should be noted that, for temperatures of less than 150 K, a growth rate of the resistance change was
observed, which translates directly into increased sensitivity of the sensor in this temperature range.

4. Conclusions

The observation of the effect of temperature on the electrical characteristics of graphene indicates
the potential use of graphene layers in the construction of temperature sensors. The temperature
characteristics of the analyzed graphene sensors exhibit no clear anomalies or strong non-linearity in
the entire studied temperature range (as compared to the typical carbon sensor). The as-fabricated
sensors have a low thermal capacity due to their construction. Changes in resistance of sensors
using HSMG® and G-LM layers are measurable and significant. The sensors’ sensitivity in the
range of cryogenic temperatures (particularly below 50 K) is much higher than the sensitivity of
comparable resistive (metallic) temperature sensors (RTD). Measurements carried out at temperatures
below approximately 20 K showed the increase of dynamics of the sensors’ resistance changes with
temperature. It should be noted that the measured changes of electrical resistance as a temperature
function in the case of the sensor based on a monolayer graphene are significantly less than for a sensor
prepared using a defected graphene-like material. The explanation of this phenomenon requires
further study. Temperature sensors made of the graphene film transferred on a polymeric substrate
have significantly better flexibility and resistance to thermal stresses in comparison to bulk graphite
sensors. The application of thin conductive polymeric films (ITO and AgHTTM) allowed obtaining
sensors with electrodes characterized by high optical transparency. These sensors may be applicable
in low-temperature optical studies (UV). In cases where transparency is not particularly required,
Kapton tape with Au electrodes can be used because of its good electrical and thermal properties in
cryogenic temperatures. Future studies of sensors placed in a controlled atmosphere (gas/vacuum in
the capsule) are planned.
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