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Abstract

Radiofrequency ablation (RFA) has been widely used as an alternative treatment modality

for liver tumors. Monitoring the temperature distribution in the tissue during RFA is required

to assess the thermal dosage. Ultrasound temperature imaging based on the detection of

echo time shifts has received the most attention in the past decade. The coefficient k, con-

necting the temperature change and the echo time shift, is a medium-dependent parameter

used to describe the confounding effects of changes in the speed of sound and thermal

expansion as temperature increases. The current algorithm of temperature estimate based

on echo time shift detection typically uses a constant k, resulting in estimation errors when

ablation temperatures are higher than 50˚C. This study proposes an adaptive-k algorithm

that enables the automatic adjustment of the coefficient k during ultrasound temperature

monitoring of RFA. To verify the proposed algorithm, RFA experiments on in vitro porcine

liver samples (total n = 15) were performed using ablation powers of 10, 15, and 20 W. Dur-

ing RFA, a clinical ultrasound system equipped with a 7.5-MHz linear transducer was used

to collect backscattered signals for ultrasound temperature imaging using the constant- and

adaptive-k algorithms. Concurrently, an infrared imaging system and thermocouples were

used to measure surface temperature distribution of the sample and internal ablation tem-

peratures for comparisons with ultrasound estimates. Experimental results demonstrated

that the proposed adaptive-k method improved the performance in visualizing the tempera-

ture distribution. In particular, the estimation errors were also reduced even when the tem-

perature of the tissue is higher than 50˚C. The proposed adaptive-k ultrasound temperature

imaging strategy has potential to serve as a thermal dosage evaluation tool for monitoring

high-temperature RFA.
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Introduction

Liver cancer is a common cause of cancer mortality [1]. Hepatocellular carcinoma (HCC)

accounts for 85%–90% of primary liver cancers [2]. Surgical resection and liver transplants are

currently considered mainstream HCC treatments; however, not every patient is suitable for

undergoing these treatments due to clinical considerations. In such a situation, minimally

invasive radiofrequency ablation (RFA) is used as the primary alternative modality for clinical

HCC treatment [3–6]. In RFA, a radiofrequency (RF) electrode is inserted into the target

tumor; subsequently, the electrode delivers a strong alternating current that produces heat and

increases the temperature of the tissue, resulting in protein denaturation and coagulation

necrosis [7–8].

During clinical RFA, the insertion of the RF electrode into the tumor is widely guided by

computed tomography (CT) and ultrasound B-mode imaging. Compared with CT, ultrasound

has the advantages of flexibility, relative availability, low cost, and real-time feedback capability

[9–10]. Note that RFA-induced high temperature typically results in the formation of gas bub-

bles in the ablation zone. Gas bubbles contribute a significant acoustic impedance mismatch,

providing additional ultrasound backscattered components to alter the speckle pattern and

strengthen the brightness of ultrasound B-mode imaging. Thus, B-scan and some parametric

imaging techniques can be used to observe these bubbles to evaluate the ablation zone and its

size [11]. Thanks to the advances in data analysis methods, ultrasonography has gradually

become popular and attractive in monitoring RFA.

Besides the information of gas bubbles, a precise assessment of the RFA outcome depends

on the evaluation of the thermal dosage in the tissue. In practical applications, estimating tem-

perature changes in the ablation zone is highly required. Physically, the temperature increase

not only results in the thermal expansion of the tissue but also affects its scattering properties,

thereby altering the acoustic parameters of ultrasound propagation, such as speed of sound

(SOS) [12–15], acoustic attenuation [16–17], and the backscattered energy of reflected echoes

[18–20]. In particular, as the temperature increases in tissues, the thermal expansion and

changes in SOS result in echo time shift. In the past decade, using the echo time shift for ultra-

sound temperature imaging has received the most attention, and it has been successfully

employed to visualize temperature variation during RFA under the assumption that the coeffi-

cient k—a parameter used to describe the effects of changes in the SOS and tissue thermal

expansions—is a time-invariant constant [21–23]. Note that this assumption may not stand

when the tissue temperature exceeds 50˚C. It has been shown that the coefficient k remains

nearly constant from 37˚C to around 50˚C [24]. A constant k represents that the dependency

of SOS on temperature follows a linear relationship. However, at temperatures above about

50˚C, the effect of thermal expansion should be considered, and the nonlinear dependence of

the SOS on temperature makes uncertainty of temperature estimation much higher [25]. Con-

sidering that the ablation temperature of RFA used clinically is close to the boiling point, using

a constant k to estimate the temperature during RFA may not be applicable and possibly result

in bias in echo time shift estimation.

To improve the performance of echo time shift detection using the constant k in monitor-

ing RFA, this study developed ultrasound temperature imaging algorithm based on an adap-

tive estimation of k. Here, the term “adaptive” indicates that the coefficient k can be adaptively

adjusted during RFA in an automated manner. In the next section, we introduce the theory

underlying the echo-shift ultrasound temperature estimation and then explain how we

designed the adaptive-k algorithm. The temperatures of liver samples in vitro used for RFA

with different powers were estimated using ultrasound temperature imaging based on the con-

stant- and adaptive-k methods, and measured by infrared camera and thermocouples for

RFA monitoring by adaptive ultrasound temperature imaging
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comparisons. The results demonstrated that the adaptive-k echo-shift temperature imaging

monitored RFA favorably, even when the temperature was higher than 50˚C.

Materials and methods

Ultrasound temperature imaging using the adaptive k

Increasing the temperature in the tissue changes the SOS and thermal expansion, which results

in an echo time shift (i.e., signal time delay) [12–13]. The relationship between the echo time

shift and temperature can be described as [14]

dTðzÞ ¼
c0ðzÞ

2

1

aðzÞ � bðzÞ

� �
@

@z
ðdtðzÞÞ; ð1Þ

Where δT(z) = T(z)–T0 represents the temperature change at depth z; T0 is the initial tempera-

ture; δt(z) represents the echo time shift; α(z) is the coefficient of the tissue’s thermal expan-

sion; β(z) is the thermal coefficient of the SOS; and c0(z) is the depth-dependent initial SOS.

(Eq 1) can be rewritten as

dTðzÞ ¼
c0ðzÞ

2
kðzÞ

@

@z
ðdtðzÞÞ; ð2Þ

where the coefficient kðzÞ ¼ 1

aðzÞ� bðzÞ is a medium-dependent parameter used to describe the

confounding effects of changes in the SOS and thermal expansion when the temperature is

increased. (Eq 2) can be simplified by assuming that k is a constant when the tissue tempera-

ture is less than 50˚C [26–27]:

TðzÞ ¼
c0

2
k
@

@z
ðdtðzÞÞ þ T0: ð3Þ

If the temperature at the tip of the RF electrode is known, the coefficient k corresponding to

the ablation center in the tissue at each time point can be estimated using the echo time shift

and the tissue temperature, as given by

kðzÞ ¼
2dTðzÞ

c0

�
@

@z
ðdtðzÞÞ: ð4Þ

However, using the single value of the coefficient k at the electrode tip cannot satisfy the cal-

culation of ultrasound temperature imaging. Instead, a spatial distribution of local coefficients

k (i.e., a two-dimensional k map) at each time point is required. For this reason, the adaptive-

k-based ultrasound temperature estimation algorithm is proposed and the details are described

below.

(i). At first, the initial k coefficient of the tissue was determined. Prior to RFA, the raw

image data rðx; yÞjt¼t0 at the initial temperature T0 are collected. Assuming that the tis-

sue is a homogeneous medium at thermal equilibrium, the k-value map kðx; yÞjt¼t0 is a

two-dimensional (2D) data matrix (the value of each pixel is the initial k coefficient) and

the temperature image Tðx; yÞjt¼t0 is a 2D map with pixel values corresponding to T0.

(ii). During RFA at the time point t = t1, the cumulative echo time shift map dtðx; yÞjt¼t1 is

obtained from one-dimensional (1D) cross-correlation between rðx; yÞjt¼t1 and

rðx; yÞjt¼t0 . Assuming that there is no significant difference between the coefficients k at

two adjacent time points, based on (Eq 3), the k-value map kðx; yÞjt¼t0 is multiplied by

differentiating dtðx; yÞjt¼t1 along the axial direction to obtain the temperature image

RFA monitoring by adaptive ultrasound temperature imaging
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Tðx; yÞjt¼t1 . Concurrently, kðx; yÞjt¼t1 is obtained using dtðx; yÞjt¼t1 and Tðx; yÞjt¼t1 in

(Eq 4).

(iii). Then, at time point t = t2, step (ii) is conducted to obtain dtðx; yÞjt¼t2 , and Tðx; yÞjt¼t2 is

obtained using dtðx; yÞjt¼t2 and kðx; yÞjt¼t1 in accordance with (Eq 3). The k-value map

kðx; yÞjt¼t2 is then obtained using d tðx; yÞjt¼t2 and Tðx; yÞjt¼t2 by using (Eq 4).

(iv). Step (iii) is repeated to obtain the temperature images at each time point by

Tðx; yÞjt¼ti
¼

c0

2

� �
ðkðx; yÞjt¼ti� 1Þ

@

@y
d tðx; yÞjt¼ti

� �

þ Tðx; yÞjt¼t0
ð5Þ

Experimental setup and procedures

Fig 1 illustrates the experimental setup, which consisted of three systems: an ultrasound system

(Model 3000, Terason, Burlington, MA, USA), a RFA system (Model VIVA RF generator,

Starmed Co. Ltd., Goyang, Gyeonggi, South Korea), and a thermometer system comprising an

infrared camera (DL770A, SUNRITE, Technology, Taipei, Taiwan) and thermocouples (TES-

1384, TES Electrical Electronic Corp, Taipei, Taiwan). The ultrasound system equipped with a

7.5-MHz linear array transducer (Model 10L5, Terason) was used to acquire raw image back-

scattered data during RFA. The RFA system comprising a cool-tip RF electrode of length 1.5

cm (Model 17-20V15-40, Starmed Co. Ltd), an RF generator, a peristaltic pump, cables, and

other accessories was used to ablate the tissues. The RF electrode had a built-in thermocouple

that provided real-time feedback for the temperature at the tip of the electrode. The infrared

camera was used to observe the surface temperature distribution of the tissue sample, and

additional two thermocouples were inserted into the tissue to measure the temperatures at the

ablation center and the lateral position (5 mm away from the electrode).

In this study, porcine livers were used for in vitro validations of the proposed method. The

coefficient k depends on tissue type and fat content [27]. According to the previous study, the

coefficient k of porcine livers is 207.67˚C [28], which was used as the initial value in the pro-

posed algorithm. Subsequently, three groups of experiments were performed using RFA pow-

ers of 10, 15, and 20 W, respectively. In each group, five porcine livers obtained from local

markets were used as in vitro tissue samples (total n = 15). Each liver sample was embedded in

an agar phantom (Fig 2). One side of the phantom faced the infrared camera so that the infra-

red radiation emitted from the cross-section of the liver sample was directly detected by the

infrared camera. In this arrangement, only half of the RF electrode (corresponding to a length

of 8 mm) was inserted into the tissue, allowing the heat induced by the RF electrode to distrib-

ute in the cross-section of the tissue. Recall that the emissivity is 1 for a black body and is

smaller than 1 for a gray body. A liver sample may be similar to a black body radiator because

its emissivity is larger than 0.9 [23]. According to the calibration report provided by the manu-

facturer, the accuracy of the infrared camera is ±2˚C.

During RFA with different powers, the infrared imaging system was used to monitor the

surface temperature map corresponding to the cross-section of the tissue. The ultrasound

transducer was placed as close as possible to the cross-section of the tissue sample to acquire

ultrasound backscattered data at a sampling rate of 30 MHz. Ultrasound B-mode images were

constructed using the absolute value of Hilbert transform of backscattered signals at a dynamic

range of 40 dB. Temperature imaging was made using the proposed algorithmic procedure.

The time intervals between each data acquisition were 0.5 and 5 seconds for ultrasound imag-

ing and temperature measurements (infrared images and thermocouples), respectively. The

RFA monitoring by adaptive ultrasound temperature imaging
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gate length and overlap ratio used for 1D cross-correlation were 0.5 mm and 50%, respectively.

An eighth-order low-pass Butterworth filter with a normalized cutoff frequency of 0.33 was

used to reduce the number of ripples in the temperature estimates [14]. Finally, the tempera-

ture images obtained without and with the use of the adaptive-k method were compared with

the infrared images. The temperatures as a function of time obtained from ultrasound temper-

ature images, infrared images, and thermocouples were also compared for estimation error

analysis.

Results

Figs 3–5 show the B-mode, infrared, and temperature images of the liver sample obtained

without and with the use of the adaptive-k method when different RFA powers (10, 15, and

20 W) were used. The yellow cross marks and red circles in the B-mode images indicate the

locations of the RF electrode and thermocouples, respectively. Note that the RFA system

Fig 1. Illustration of the experimental setup. Ultrasound system was used to acquire backscattered signals from tissues for temperature

imaging during RFA. The infrared camera was used to observe the 2D surface temperature distribution of the tissue sample, and

thermocouples were inserted into the tissue to measure the internal ablation temperatures.

https://doi.org/10.1371/journal.pone.0182457.g001

RFA monitoring by adaptive ultrasound temperature imaging
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automatically pauses when the tissue impedance is high enough to result in open circuit

between the tissue and the ground. Typically, higher powers shorten the duration of RFA to

have earlier end time points. At a power of 10 W, the conventional temperature images,

obtained using constant-k, have distorted patterns and are inconsistent with the infrared

images. By comparison, the proposed adaptive-k temperature imaging at different time points

resulted in improved visualization of the temperature distribution (Fig 3). The superiority of

adaptive-k temperature imaging over the constant-k method in describing the temperature

distribution also can be found at powers of 15 and 20 W, although artifacts and location shift

of temperature map did appear (Figs 4 and 5).

To confirm the above observations, the lateral temperature profiles obtained from the

infrared images (red dashed lines) and temperature images (green lines: constant-k; dotted

blue lines: adaptive-k) at different RFA powers were compared in Fig 6. The black squares

represent the temperatures measured by the thermocouples inserted into the liver sample.

The constant-k method was found to be inaccurate at describing the profiles of temperatures

higher than 50˚C. However, the lateral temperature profiles obtained using adaptive-k tem-

perature imaging agreed favorably with those obtained using infrared imaging; in particular,

the corresponding temperature values were close to those measured by the thermocouples

even at temperatures higher than 50˚C, as shown in Fig 7. It should be noted that the tempera-

ture values obtained using infrared imaging were lower than those measured using the ther-

mocouple. This is because infrared imaging just shows the surface temperature of tissue

samples for validations of temperature distribution and profile in adaptive-k temperature

imaging. In order to further evaluate the estimation errors of the constant- and adaptive-k
methods in temperature imaging, the temperature values measured from the thermocouple

were used as the ground truth for comparisons, as shown in Fig 8. Under using the power of

10 W, compared with the estimation errors of the constant-k method varying between 2%

and 10%, those of the adaptive-k method were approximately 2% during RFA. At the powers

of 15 and 20 W, conventional temperature imaging produced errors larger than 50%, whereas

adaptive-k temperature imaging reduced the estimation errors to smaller than 6% and 25%,

respectively. The proposed adaptive-k method is capable of providing more precise tempera-

ture imaging at higher temperatures than constant-k ultrasound temperature estimation

method.

Fig 2. In the experimental design, only half of the RF electrode was inserted into the tissue, making heat transfer along with the

cross-section of the tissue for monitoring temperature distribution by infrared imaging. (a) schematic diagram; (b) practical

measurement arrangement.

https://doi.org/10.1371/journal.pone.0182457.g002

RFA monitoring by adaptive ultrasound temperature imaging
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Discussion

This study proposed an adaptive-k algorithm for ultrasound temperature imaging based on

echo time shift detection and explored its feasibility in monitoring changes in the temperature

in tissues during RFA. The conventional algorithm, which uses a constant k coefficient,

Fig 3. Typical images of the liver sample acquired at different time points during RFA of 10 W. (a) B-mode images; (b) infrared

images; (c) temperature images constructed using constant k; (d) temperature images estimated using adaptive k. The yellow cross marks

and red circles in the B-mode images indicate the locations of the RF electrode and thermocouples, respectively. The symbol “Tmax” is the

maximum temperature in the temperature images.

https://doi.org/10.1371/journal.pone.0182457.g003

RFA monitoring by adaptive ultrasound temperature imaging
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provided satisfying temperature estimation at temperatures lower than 50˚C [23]. The limita-

tion of the conventional temperature image constructed using the constant k has been dis-

cussed previously [14, 23, 29–30]. Compared with thermal expansion, changes in SOS

dominate the variation in the echo arrival time of the RF signals acquired during the ablation

Fig 4. Typical images of the liver sample acquired at different time points during RFA of 15 W. (a) B-mode images; (b) infrared

images; (c) temperature images constructed using constant k; (d) temperature images estimated using adaptive k. The yellow cross marks

and red circles in the B-mode images indicate the locations of the RF electrode and thermocouples, respectively. The symbol “Tmax” is the

maximum temperature in the temperature images.

https://doi.org/10.1371/journal.pone.0182457.g004

RFA monitoring by adaptive ultrasound temperature imaging
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process [31]. However, thermal expansion effects still contribute to errors in temperature

maps. At temperatures higher than 50˚C, thermal expansion can contribute to physical dis-

placements to the same degree as apparent displacements contributed by SOS variations [32].

The present study demonstrated that using a dynamic k coefficient is an effective strategy for

reducing measurement errors during temperature imaging, and this strategy provides esti-

mates that are comparable to those measurements obtained using infrared imaging and

embedded thermocouples. In particular, the proposed adaptive-k method was found to be fea-

sible for a wide range of temperatures, including those higher than 50˚C. Thus, it is more

Fig 5. Typical images of the liver sample acquired at different time points during RFA of 20 W. (a) B-mode images; (b) infrared

images; (c) temperature images constructed using constant k; (d) temperature images estimated using adaptive k. The yellow cross marks

and red circles in the B-mode images indicate the locations of the RF electrode and thermocouples, respectively. The symbol “Tmax” is the

maximum temperature in the temperature images.

https://doi.org/10.1371/journal.pone.0182457.g005

RFA monitoring by adaptive ultrasound temperature imaging
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applicable for monitoring RFA than constant-k methods. Note that feedback [14] and model-

based [24] adaptive methods have been used in echo-shift ultrasound temperature estimation

for focused ultrasound hyperthermia with a temperature rise of no more than 10˚C. To the

best of our knowledge, this study is the first to introduce the adaptive-k echo-shift ultrasound

temperature imaging for monitoring high-temperature RFA.

Although the proposed adaptive-k algorithm reduces the measurement errors of ultrasound

temperature imaging in monitoring RFA, some problems are observed and need to be over-

come further. As shown in Fig 3, the locations of the maximum value in adaptive-k tempera-

ture images well correspond to that of the RF electrode when the RFA power was 10 W. With

increasing the RFA power, the location of the temperature peak in adaptive-k temperature

images was gradually far away from that of the RF electrode (Figs 4 and 5). The above phenom-

enon was also found in the conventional temperature image using the constant k. A specific

mechanism used to explain the location bias of heating center in temperature imaging is hard

to conclude. However, we believe that two effects that degrade ultrasound temperature

Fig 6. Comparisons of the lateral temperature profiles obtained using thermocouples, infrared, and ultrasound temperature

imaging based on the constant- and adaptive-k methods. Black squares represent temperatures measured by thermocouples. Red

lines represent the lateral profiles in the infrared image; green solid and dotted blue lines mean the lateral profiles of temperature imaging

using constant k and adaptive k, respectively.

https://doi.org/10.1371/journal.pone.0182457.g006

RFA monitoring by adaptive ultrasound temperature imaging
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Fig 7. Temperatures measured by thermocouples and ultrasound temperature imaging as a function

of ablation time during RFA of different powers. Red dotted curves represent the temperature of the RF

electrode (the ablation center) measured by the thermocouple. Green dotted curves show the fitting curves of

the red dotted data. Blue and black lines mean the temperature estimated using constant- and adaptive-k.

Purple dotted curves represent the temperature changes in the infrared images.

https://doi.org/10.1371/journal.pone.0182457.g007

RFA monitoring by adaptive ultrasound temperature imaging
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Fig 8. The estimation errors obtained using the constant- and adaptive-k methods in ultrasound temperature imaging of RFA at

different powers. Compared with the conventional method using constant k, the proposed adaptive-k temperature imaging reduced the

estimation errors to improve the accuracy of temperature estimate. Note that RFA system paused when the tissue impedance is high

enough to result in open circuit between the tissue and the ground. Typically, higher powers shorten the ablation duration of RFA.

https://doi.org/10.1371/journal.pone.0182457.g008

RFA monitoring by adaptive ultrasound temperature imaging
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estimation methods may play roles to some degree. First, high powers provide near-boiling-

point ablation to destroy tissues, and thus gas bubbles are induced to act as strong acoustic

scatterers that alter the waveforms of backscattered signals [33] and increase the backscattered

energy to alter local signal patterns or features [34]. Second, thermal expansion and irrevers-

ible tissue necrosis generated under high temperature changes SOS and tissue geometry,

resulting in some artifacts in the temperature maps [35]. As shown in the B-mode images in

Figs 4 and 5, tissues samples under RFA appeared to have image brightness enhancement and

distortion in shape.

In the future, the proposed adaptive-k ultrasound temperature imaging can be combined

with clinical ultrasound systems to evaluate the real-time thermal dosage during RFA. The pro-

posed adaptive-k echo time shift detection algorithm is totally compatible with pulse-echo ultra-

sound systems because it utilizes RF signals for analysis. A previous study developed a real-time

ultrasound temperature imaging system based on a commercial scanner and revealed that the

computational kernel for real-time signal processing relies on the use of a multicore graphics

processing unit [29]. While developing our real-time temperature imaging system, we also

noted that a major obstacle to in vivo ultrasound temperature estimation is the effect of tissue

motion. Some strategies have been previously proposed to address this issue [32,36]. Respira-

tory motion effects may be minimized by using high frame rate imaging or obtaining a temper-

ature image within 2 to 3 seconds while subjects hold their breath. Using electrocardiography

signals as the trigger to collect images or employing motion compensation using spatial interpo-

lation and linear least-square fitting are also useful for reducing motion artifacts during temper-

ature imaging. However, the existing methods of motion compensation still have limitations

under more complex conditions, such as the involvement of rotation or other forms of defor-

mation (e.g., lateral compression, warping) [37]. Implementation of real-time temperature

imaging is challenging but is worthy of further investigation for future clinical applications.

Conclusion

This study proposed an adaptive approach based on echo time shift detection that enabled the

automatic adjustment of the coefficient k during ultrasound temperature monitoring of RFA.

The results demonstrated that the proposed adaptive-k method improved the performance in

visualizing temperature distributions, reducing the errors of temperature estimate when the

ablation temperature of the tissue is higher than 50˚C. The proposed strategy has potential to

serve as a thermal dosage evaluation tool for monitoring high-temperature RFA.

Supporting information

S1 Data. Data of the estimation errors obtained using the constant- and adaptive-k meth-

ods in temperature imaging.
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