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Abstract: Cellulose was premodified by short-chain fatty acid anhydrides, such as acetic anhydride
(CA), propionic anhydride (CP), and butyric anhydride (CB), followed by grafting of polyoxyethylene
(2) hexadecyl ether (E2C16) using toluene-2,4-diisocyanate as a coupling agent. The feeding molar
ratio of E2C16 and the anhydroglucose unit (AGU) was fixed at 4:1, and then a series of CA-g-E2C16,
CP-g-E2C16, and CB-g-E2C16 copolymers were successfully prepared. The structures and properties
of the copolymers were characterized using FTIR (fourier transform infrared spectra), 1H-NMR
(Proton nuclear magnetic resonance), DSC (Differential scanning calorimeter), POM (polarized light
microscopy), TGA (thermogravimetric analysis) and WAXD (wide-angle X-ray diffraction). It was
shown that with the anhydride/AGU ratio increasing, the degree of substitution (DS) value of E2C16

showed a trend of up first and then down. With the carbon chain length increasing, the DS value
of E2C16 continuously increases. The phase transition temperature and thermal enthalpy of the
copolymers increased with an increasing DS value of E2C16. When the ratio of CB/AGU was 1.5:1,
the DS of E2C16 was up to the maximum value of 1.02, and the corresponding melting enthalpy and
crystallization enthalpy were 32 J/g and 30 J/g, respectively. The copolymers showed solid–solid
phase change behavior. The heat resistant temperature of cellulose-based solid–solid phase change
materials was always higher than 270 ◦C. After the grafting reaction, the crystallinity of E2C16

decreased, while the crystal type was still hexagonal.

Keywords: cellulose; fatty acid anhydride; polyoxyethylene (2) hexadecyl ether; solid–solid
phase change

1. Introduction

Cellulose is a type of polysaccharide composed of repetitive D-glucose units linked through
β(1→4) glycosidic bonds [1]. There are three active –OH groups in each D-glucose unit, and these can
easily form strong intramolecular and intermolecular hydrogen bonds, resulting in smaller distances
between molecules and rigid chains. As a result, cellulose is insoluble in common organic solvents
and unable to be melt-processed before reaching its decomposition temperature [2,3]. Through
modification [4–9], hydrogen bonding was weakened to a certain extent, while a grafted side chain
increased molecular distance, which could further improve the solubility of cellulose. Furthermore, the
increased molecular distance is helpful for the grafting reaction [10]. When the degree of substitution
reaches a critical point, the cellulose derivatives will be melt-processable.
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Vaca-Garcia et al. [11] found that a grafted side chain could weaken the interaction between the
molecular chains of cellulose, so that cellulose esters soften and flow at comparatively low temperatures.
However, if the side chain is too long (C > 6), the long molecular chains account for most of the free
volume, resulting in motion of the cellulose ester backbone becoming difficult. That is to say, a flexible
long-chain has lost the advantage of lowering the melting point of the cellulose ester. However, if a
bulky group (such as benzene) was introduced into the cellulose back-bone, there will be more free
volume, and as a result, the thermal flow temperature of cellulose ester will be depressed.

Xiao et al. [12] prepared cellulose esters containing phosphorus, cellulose diphenyl phosphate
(C-Dp), and cellulose acetate (CA)–diphenyl phosphate mixed esters (C-A–Dp). C-A–Dp showed
clear glass transition behavior. All the products possessed excellent solubility in common organic
solvents (e.g., CHCl3, acetone, ethyl acetate), and transparent films of cellulose esters were obtained
by solution casting. Furthermore, these cellulose mixed esters exhibited thermoplastic behavior
and could be processed by a traditional melt processing method. Luan et al. [13] conducted cellulose
esterification in a homogeneous system, where acetic anhydride (CA) and 1-allyl-3-methylimidazolium
chloride (AmimCl) were used as the grafting comonomer and solvent, respectively, followed by the
ring-opening grafting of L-lactide. As a result, a series of cellulose acetate-g-polylactic acid (CA-g-PLA)
copolymers were obtained. The CA-g-PLA copolymers had glass transition temperatures (Tg) in the
range of 60–130 ◦C and exhibited thermoplastic behavior.

In this study, fatty acid anhydride, CA, propionic anhydride (CP), and butyric anhydride (CB)
were selected as esterification agents for cellulose, followed by the grafting of polyoxyethylene (2)
hexadecyl ether (E2C16) using toluene-2,4-diisocyanate as a coupling agent and the feeding molar
ratio of E2C16/AGU fixed at 4:1, and then CA-g-E2C16, CP-g-E2C16, and CB-g-E2C16 copolymers were
obtained. The effect of carbon chain length and usage amount of fatty acid anhydrides on structures
and properties of cellulose-based solid–solid phase change materials were investigated in detail.

2. Experimental

2.1. Materials

Microcrystalline cellulose (MC, DP (Degree of polymerization) = 220) was purchased from Beijing
Fengli Jingqiu Commerce and Trade Co. (Beijing, China); AmimCl was purchased from Shanghai
Chengjie Chemical Co. (Shanghai, China); N,N-Dimethylformamide (DMF), dibutyltin dilaurate
(DBTDL), acetic anhydride (AA), and pyridine were purchased from Tianjin Guangfu Technology
Development Co. (Tianjin, China); propionic anhydride (PA) was purchased from TCI Chemical
Reagent Co. (Shanghai, China); butyric anhydride (BA) was purchased from Aladdin Chemical
Reagent Co. (Shanghai, China); Toluene 2,4-diisocyanate (TDI) was purchased from Tianjin Fuchen
Chemical Reagent Factory. (Tianjin, China); E2C16 was purchased from Aldrich Chemical Reagent Co.
(Shanghai, China); All reagents were used without further purification.

2.2. Cellulose Esterification

MC was dissolved completely in AmimCl at 80 ◦C. Then, the desired amounts of fatty acid
anhydrides and pyridine were added into cellulose solution. The esterification was conducted for 2 h
at 90 ◦C.

2.3. Preparation of Prepolymer

The desired amounts of TDI and E2C16 (molar ratio 1.1:1) were dissolved in DMF separately.
E2C16 solution was added dropwise into the TDI solution with continuous stirring at 25 ◦C for
15 min, and then the reaction continued for 60 min. The prepolymer solution was obtained when the
reaction finished.
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2.4. Preparation of Cellulose-Based Copolymers

The prepolymer solution and DBTDL (0.1 wt % of TDI) were added to cellulose ester solution.
The mixture was stirred at 90 ◦C for 6 h. When the grafting reaction was complete, the reaction mixture
was precipitated in distilled water for 12 h. Then, the crude product was filtered and soaked in acetone
for another 48 h to dissolve ungrafted prepolymer in precipitation. After that, the product was filtered,
dried, and weighed.

The synthesis procedure of CA-g-E2C16, CP-g-E2C16, and CB-g-E2C16 copolymers are shown in
Scheme 1, sample numbers and raw material feeding ratios are listed in Table 1.
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Scheme 1. Synthesis mechanism of CA-g-E2C16, CP-g-E2C16, and CB-g-E2C16 copolymers.
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Table 1. Sample number and raw material feeding ratios.

Sample No. CA:AGU
(mol:mol)

CP:AGU
(mol:mol)

CB:AGU
(mol:mol)

Pyridine:AGU
(mol:mol)

E2C16:AGU
(mol:mol)

S-B - - - 2.5:1 4:1
A1 0.5:1 - - 2.5:1 4:1
A2 1.0:1 - - 2.5:1 4:1
A3 1.5:1 - - 2.5:1 4:1
A4 2.0:1 - - 2.5:1 4:1
P1 - 0.5:1 - 2.5:1 4:1
P2 - 1.0:1 - 2.5:1 4:1
P3 - 1.5:1 - 2.5:1 4:1
P4 - 2.0:1 - 2.5:1 4:1
B1 - - 0.5:1 2.5:1 4:1
B2 - - 1.0:1 2.5:1 4:1
B3 - - 1.5:1 2.5:1 4:1
B4 - - 2.0:1 2.5:1 4:1

S-B; A, P, and B are just sample numbers. S-B: Cellulose-g-E2C16 copolymer (no acid anhydride added);
A: CA-g-E2C16 copolymer; P: CP-g-E2C16 copolymer; B: CB-g-E2C16 copolymer.

2.5. Characterization

2.5.1. FTIR

Fourier transform infrared spectra (FTIR) were collected using a Bruker Tensor-37 Fourier
(Germany) transform infrared spectrometer. The dried samples were tested by the KBr disc technique,
and infrared spectra were recorded in the range of 4000–400 cm−1.

2.5.2. 1H-NMR

Proton nuclear magnetic resonance (1H-NMR) spectroscopy was performed using an Avance
AV-300 MHz nuclear magnetic resonance spectrometer. The solvent was dimethyl sulfoxide-d6.

The degree of substitution (DS) of fatty acid group and E2C16 could be calculated by
1H-NMR results.

DS1 of an acetyl group could be calculated by Equation (1) as follows:

DS1 =
7
3
· ICH3

IAGU
(1)

where IAGU is the integral intensity of the hydrogen atoms in the AGU and C6 (7H, σ = 3.0~5.5) and
ICH3 is the integral intensity of the –CH3 group (3H, δ = 1.7~2.2) in an acetyl group.

DS1 of a propionyl group could be also calculated by Equation (1), where ICH3 is the integral
intensity of the –CH3 group (3H, δ = 1.1) in a propionyl group.

DS1 of a butyryl group could be calculated by Equation (2) as follows:

DS1 =
7
2
· ICH2

IAGU
(2)

where ICH2 is the integral intensity of the –CH2– group (2H, δ = 1.6) in a butyryl group.
DS2 of E2C16 could be calculated by Equation (3) as follows:

DS2 =
7
3
·

Iphenyl

IAGU
(3)

where Iphenyl is the integral intensity of benzene (3H, δ = 7.0~7.4) in TDI.
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2.5.3. DSC

Differential scanning calorimetry (DSC) was performed using a NETZSCH DSC 200 F3 (Germany).
The samples were heated from 20 ◦C to 250 ◦C at 30 ◦C/min to eliminate the thermal history. Then,
the samples were cooled to −20 ◦C and heated from −20 ◦C to 250 ◦C at 10 ◦C/min. All heating and
cooling processes were performed under a nitrogen atmosphere. The thermal data were read from the
second heating run and the first cooling run.

2.5.4. POM

The type of phase change was carried out with hot-stage polarized light microscopy using a
BX51TRF. Samples were firstly heated to 100 ◦C and then cooled down to room temperature (20 ◦C)
in order to remove the thermal history. Subsequently, they were heated to 100 ◦C at a heating rate of
10 ◦C/min to observe the thermal behaviors.

2.5.5. TG

Thermogravimetric analysis (TGA) was carried out in a NETZSCH STA 449F3 from 40 ◦C to
800 ◦C at a heating rate of 10 ◦C/min under a nitrogen atmosphere.

2.5.6. WAXD

Wide-angle X-ray diffraction (WAXD) was recorded on a D/MAX-2500 under conditions of
150 mA and 40 kV at 0 ◦C. The X-ray source is an 18-kW rotating anode X-ray generator equipped
with a Cu target. The incident X-ray beam was monochromated by a pyrolytic graphite, and the data
were measured in a range of 2θ = 4◦~40◦, λ = 1.54 Å.

3. Results and Discussion

3.1. FTIR

Figure 1 displays the FTIR spectra of cellulose, E2C16, CA-g-E2C16 (A3), CP-g-E2C16 (P3), and
CB-g-E2C16 (B3) copolymers. In the spectrum of cellulose, the wide peak at approximately 3200 cm−1 is
assigned to the absorption band of the hydroxyl groups on the AGU, whose intensity was significantly
reduced in the spectra of copolymers. In the spectrum of E2C16, the peaks at 2852 cm−1 and 2920 cm−1

are assigned to the characteristic absorption bands of the ethylene glycol repeat units and the saturated
alkane group of E2C16, respectively, which also appeared in the spectra of CA-g-E2C16 (A3), CP-g-E2C16

(P3), and CB-g-E2C16 (B3) copolymers. In the spectrum of copolymers, 1385 cm−1 is assigned to the
absorption band of C–H, 1230 cm−1 is assigned to the absorption band of C–O, and 1750 cm−1 is
assigned to the absorption band of C=O. It is demonstrated that fatty acid groups (acetyl group,
propionyl group, and butyryl group) were successfully linked onto the cellulose backbone. We can
observe the characteristic absorption band of the conjugated C=C double bond of the benzene ring in
TDI at 1603 cm−1 and the amide bands [14] at 1700 cm−1 and 1545 cm−1 in the spectra of copolymers,
which indicated that the E2C16 was successfully grafted onto the cellulose backbone through TDI.
Based on the analysis above, it could be declared that CA-g-E2C16, CP-g-E2C16, and CB-g-E2C16

copolymers were successfully synthesized.
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Figure 1. FTIR spectra of cellulose, E2C16, CA-g-E2C16 (A3), CP-g-E2C16 (P3), and CB-g-E2C16

(B3) copolymers.

3.2. 1H-NMR

Figure 2 shows the 1H-NMR spectrum of CA-g-E2C16 (sample A3, a), CP-g-E2C16 (sample P3, b),
and CB-g-E2C16 (sample B3, c) copolymers. The peaks at δ = 1.7~2.2 were assigned to the signals of the
methyl protons of acetyl group, the peak at δ = 1.1 was assigned to the signal of the methyl protons of
propionyl group, the peak at δ = 2.4 was assigned to the signal of the methylene protons of propionyl
group, the peak at δ = 0.9 was assigned to the signal of the methyl protons of butyryl group, the peaks
at δ = 1.6 and δ = 2.3 were assigned to the signals of the methylene protons of butyryl group [15], and
the peaks at σ = 3.0~5.5 were assigned to the signals of the protons in the glucose unit ring and C6. It
is also demonstrated that fatty acid groups were successfully linked onto the cellulose backbone. The
peak at σ = 0.85 was assigned to the signal of the methyl protons of the alkyl chain in E2C16, the peaks
at σ = 1.1~1.7 were assigned to the signals of the methylene protons of the alkyl chain in E2C16, the
peak at σ = 3.4 was assigned to the signal of the methylene protons adjacent to the ether bond of the
alkyl chain in E2C16, the peaks at σ = 3.5~3.8 were assigned to the signals of the protons of the ethylene
glycol repeat units of E2C16, and the peaks at σ = 7.0~7.4 were assigned to the signals of the protons in
the benzene ring of TDI. Based on the analysis above, it is evident that CA-g-E2C16, CP-g-E2C16, and
CB-g-E2C16 copolymers were successfully synthesized.

The DS values of CA-g-E2C16, CP-g-E2C16, and CB-g-E2C16 copolymers are shown in Table 2.
When the ratio of acid anhydride/AGU increased from 0.5:1 to 1.5:1, both DS1 and DS2 increased
significantly. When the ratio of acid anhydride/AGU increased to 2:1, DS1 continued to increase while
DS2 dropped. When the ratio of acid anhydride/AGU increased within a certain range, DS1 and the
distance between cellulose molecules increased due to the anhydride side group. This is helpful for
the grafting reaction of E2C16, so DS2 increased, as expected. However, when the feeding ratio of
anhydride/AGU was higher than 1.5 mol %, DS1 continued to increase, the number of free hydroxyl
groups in AGU decreased, and the intermolecular steric hindrance became stronger, leading to a lower
DS2 value.
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Table 2. Degree of substitution (DS) values of different samples.

Sample No. AA:AGU
(mol:mol)

PA:AGU
(mol:mol)

BA:AGU
(mol:mol)

E2C16:AGU
(mol:mol) DS1

a DS2
b

S-B - - - 4:1 - 1.01
A1 0.5:1 - - 4:1 0.35 0.59
A2 1.0:1 - - 4:1 0.58 0.75
A3 1.5:1 - - 4:1 0.75 0.86
A4 2.0:1 - - 4:1 1.09 0.52
P1 - 0.5:1 - 4:1 0.36 0.62
P2 - 1.0:1 - 4:1 0.55 0.80
P3 - 1.5:1 - 4:1 0.79 0.97
P4 - 2.0:1 - 4:1 1.00 0.88
B1 - - 0.5:1 4:1 0.35 0.79
B2 - - 1.0:1 4:1 0.54 0.93
B3 - - 1.5:1 4:1 0.75 1.02
B4 - - 2.0:1 4:1 1.04 0.91

a: DS value of short-chain fatty acyl group; b: DS value of E2C16.

The calculated results showed that DS2 becomes larger with increasing carbon atom number of
acid anhydride because the distance between cellulose molecules increases and the free volume region
increases. However, the DS1 value of cellulose-based copolymers were roughly equal. This is because
with the carbon atom number increasing, the effect of increasing distance between cellulose molecules
becomes stronger, which is helpful for the grafting reaction of E2C16. We can conclude that the effect of
increasing cellulose molecule spacing is in the order of BC > PC > AC. When the ratio of BC/AGU was
1.5:1, DS2 of E2C16 in all three types of copolymers reached the maximum value of 1.02.

3.3. DSC

Figures 3 and 4 and Table 3 show the thermal transition behavior of E2C16, CA-g-E2C16,
CP-g-E2C16, and CB-g-E2C16 copolymers with different DS values. Pure E2C16 possessed distinct
phase transition peaks with large latent heats (∆Hm = 104 J/g; ∆Hc = 95 J/g), proving it is a type
of phase-change material with good thermal storage capacity. For CA-g-E2C16, CP-g-E2C16, and
CB-g-E2C16 copolymers, E2C16 is the working phase change material (PCM), while the cellulosic
backbone acts as the supporting skeleton for fixing the E2C16 chains and contributes nothing to the
enthalpy. Therefore, the thermal behavior of cellulose-based copolymers is in line with the changing
trend of DS, as mentioned above.

The enthalpy is a linear relationship with the crystalline d-spacing [10,16]. As shown in Table 3,
when the feeding ratio of fatty acid anhydride/AGU increased from 0.5:1 to 2.0:1, the value of DS1

continuously increased, while the DS2 reached a maximum value at 1.5:1 of fatty acid anhydride/AGU.
It is ascribed to the steric hindrance effect derived from fatty acid anhydride. The reactivity of free
radical polymerization is strongly affected by the steric hindrance of side chains, which rises with
increase of the DS of side chains. Therefore, with an increasing fatty acid anhydride/AGU ratio, phase
change enthalpy (∆H), Tmo and Tdo of the copolymers all exhibited a similar trend of first increasing
and then decreasing, and they also reached a maximum value at 1.5:1 of fatty acid anhydride/AGU.
Similarly, when the acid anhydride content was the same, the phase change enthalpy of the copolymers
also increased with increasing the number of fatty acid anhydride carbon atoms, which is in line with
the changing trend of DS2. For the CB-g-E2C16 copolymer, when the feeding ratio of BC/AGU was
1.5:1, DS2 in all copolymers reached the maximum value of 1.02, while ∆Hm and ∆Hc also showed the
maximum values of 32 J/g and 30 J/g, respectively. In addition, compared with pure E2C16, the phase
transition peaks of the copolymers shifted slightly to a lower temperature due to the increase in the
side-chain crystal imperfection.
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Table 3. Thermal transitions of E2C16, cellulose-g-E2C16 (S-B), CA-g-E2C16, CP-g-E2C16, and
CB-g-E2C16 copolymers.

Sample
No.

DS1 DS2
WE2C16

a

(wt %)

Heating Cooling

Tmo
b

(◦C)
Tmp

c

(◦C)
∆Hm
(J/g)

∆Hm* d

(J/g)
Tco

e

(◦C)
Tcp

f

(◦C)
∆Hc
(J/g)

E2C16 - - 100 27.6 34.4 104 104 29.2 23.9 95
A1 0.35 0.59 41 5.4 10.4 13 43 15.3 -0.6 13
A2 0.58 0.75 44 6.3 16.5 16 46 16.8 2.8 15
A3 0.75 0.86 45 8.0 18.6 17 47 17.6 3.5 20
A4 1.09 0.52 36 4.5 9.8 11 38 15.0 -1.0 12
P1 0.36 0.62 41 2.8 11.7 12 43 12.8 0.7 13
P2 0.55 0.80 44 9.7 18.3 18 46 14.1 2.7 17
P3 0.79 0.97 46 13.7 23.9 27 48 20.8 9.8 28
P4 1.00 0.88 44 13.2 23.2 21 46 19.4 7.2 21
B1 0.35 0.79 45 5.8 14.0 16 46 18.9 3.3 17
B2 0.54 0.93 46 11.0 21.7 24 48 21.4 9.3 24
B3 0.75 1.02 46 14.2 26.1 32 48 23.3 11.1 30
B4 1.04 0.91 43 13.7 25.0 24 45 21.0 9.5 23

a: the mass percent of E2C16 in copolymer; b: the onset temperature of the melting peak; c: the peak temperature of
the melting peak; d: the ∆Hm of PCMs if in the condition of blending; e: the onset temperature of the crystallization
peak; f: the peak temperature of the crystallization peak.

As shown in Figure 4, with increasing number of fatty acid anhydride carbon atoms, Tm and Tc of
the copolymers follow the order CA-g-E2C16 < CP-g-E2C16 < CB-g-E2C16. Furthermore, the peak area
follows the same order. This means that increasing the length of the carbon chain helps in improving
the thermal storage capability.

Compared with ∆Hm* based on E2C16 content in the blends, ∆Hm based on E2C16 content
in the graft copolymers had a higher value. The movement of grafted E2C16 chains is confined
so that they cannot freely arrange to crystallize, causing the imperfection of the E2C16 crystals to
increase and resulting in a decrease in enthalpy. This also demonstrates that the products were
cellulose-based copolymers.
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3.4. POM

Figure 5 shows POM photos of CA-g-E2C16 (A3), CP-g-E2C16 (P3), and CB-g-E2C16 (B3)
copolymers heated in the temperature range of 20~80 ◦C. As listed in Table 3, the melting onset
temperatures of A3, P3, and B3 are 8.0 ◦C, 13.7 ◦C, and 14.2 ◦C, respectively. For CA-g-E2C16 (A3),
when the environmental temperature rose from 20 ◦C to 50 ◦C, the E2C16 side chain of the copolymer
experienced melting, and its phase changed from crystalline to amorphous morphology. However, its
macroscopic state did not change from the solid state. When the temperature continued to rise to 80
◦C, the macroscopic state of the copolymer still was not changed. This is because the melted E2C16

side chain is confined by the cellulosic backbone, and it cannot flow freely; therefore, the CA-g-E2C16

copolymer stayed in a solid state, on the whole. CP-g-E2C16 (P3) and CB-g-E2C16 (B3) copolymers
also showed the same phenomenon. This demonstrated that the phase change type of the synthesized
copolymers is solid–solid phase change; that is to say, CA-g-E2C16, CP-g-E2C16, and CB-g-E2C16

copolymers are a type of solid–solid phase material (SSPCM).Polymers 2018, 10, x FOR PEER REVIEW  11 of 16 
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Figure 5. Polarized light microscopy (POM) photos of (a) CA-g-E2C16 (A3), (b) CP-g-E2C16 (P3), and
(c) CB-g-E2C16 (B3) copolymers at different temperatures.

3.5. TGA

The thermal stability of cellulose, E2C16, CA-g-E2C16, CP-g-E2C16, and CB-g-E2C16 copolymers
were investigated by TG. It can be observed from Figure 6 and Table 4 that all the copolymers are not
degradable and that almost no mass loss occurs before 280 ◦C. The onset decomposition of cellulose
occurs at 319 ◦C [16]. The thermal stability of CA-g-E2C16, CP-g-E2C16, and CB-g-E2C16 copolymers
dropped to 294 ◦C, 288 ◦C, and 289 ◦C, respectively. The lower thermal stability mainly is a result of
the introduction of the fatty acid anhydride and E2C16, which significantly decrease the crystallinity
of cellulose [17]. Furthermore, the presence of grafted side chains on the cellulose backbone was
confirmed. It is worthy to note that the Tdo of CA-g-E2C16, CP-g-E2C16, and CB-g-E2C16 copolymers
were still much higher than that of the raw E2C16 due to the confinement derived from the cellulose
backbone, and were almost independent of the DS value. Compared with pure E2C16, the thermal
stabilities of the cellulose-g-E2C16 copolymers were improved by approximately 42~50 ◦C. It is also
shown that the thermal stability was improved gradually with the increase of DS. It was concluded
that CA-g-E2C16, CP-g-E2C16, and CB-g-E2C16 copolymers can be applied as a type of SSPCM and
show thermal stability in a high-temperature environment.
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Table 4. Thermal stabilities of cellulose, E2C16, CA-g-E2C16, CP-g-E2C16, and CB-g-E2C16 copolymers.

Sample No. DS1 DS2 Tdo (◦C) Tdp (◦C) Mass Loss (%)

Cellulose - - 319 335 85.4
E2C16 - - 246 295 98.0

A1 0.35 0.59 294 331 92.0
A2 0.58 0.75 295 328 89.9
A3 0.75 0.86 295 324 91.3
A4 1.09 0.52 296 325 90.8
P1 0.36 0.62 296 333 90.1
P2 0.55 0.80 295 330 89.4
P3 0.79 0.97 294 325 91.4
P4 1.00 0.88 288 321 91.2
B1 0.35 0.79 296 329 91.2
B2 0.54 0.93 289 317 90.1
B3 0.75 1.02 293 328 91.7
B4 1.04 0.91 290 326 91.1

3.6. WAXD

Figure 7 shows the WAXD patterns of cellulose, E2C16, CA-g-E2C16, CP-g-E2C16, and CB-g-E2C16

copolymers that were obtained to investigate the change in the crystal type of E2C16 before and after
grafting. There are three diffraction peaks in the WAXD pattern of cellulose, whose locations are 14.8◦,
16.4◦, and 22.6◦, and the d-spacings are 0.60 nm, 0.54 nm, and 0.39 nm, respectively. E2C16 shows
two sharp peaks centered at 21.2◦ and a small peak centered at 23.7◦, with d-spacings of 0.42 nm
and 0.38 nm, and the crystal type of E2C16 is hexagonal [18]. It is reported that the characteristic
diffraction peaks (110) and (020) of cellulose II are locate at 19.9◦ and 22.1◦ [19]. It can be seen that
CA-g-E2C16 copolymers show diffraction peaks centered at 20.7◦ (d-spacing = 0.43 nm) and 21.6◦

(d-spacing = 0.41 nm), which were close to the characteristic diffraction peaks of cellulose II (2θ = 19.9◦)
and E2C16 (2θ = 21.2◦), respectively. However, the intensity of the three types of cellulose-based
copolymers were all weaker than that of E2C16 and cellulose itself, as expected. It is demonstrated that
the transformation from cellulose I to cellulose II also occurred after the dissolution and regeneration
in AmimCl. The analysis above indicated that the crystalline form of the grafted E2C16 side chain
onto the cellulose backbone is not affected by the cellulose molecule. Moreover, CP-g-E2C16 (P3) and
CB-g-E2C16 (B3) copolymers also showed the same phenomenon. Figure 8 shows contradistinctive
WAXD patterns of CA-g-E2C16, CP-g-E2C16, and CB-g-E2C16 copolymers. It can be seen that the
diffraction peak locations of these three copolymers are consistent, which indicated that a formed short
side chain had no effect on the crystal type of E2C16.Polymers 2018, 10, 0 14 of 16
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4. Conclusions

Cellulose was esterified using short-chain fatty acid anhydrides (acetic anhydride, propionic
anhydride, and butyric anhydride), followed by grafting of polyoxyethylene (2) hexadecyl ether (E2C16)
using toluene-2,4-diisocyanate as a coupling agent and with the feeding molar ratio of E2C16/AGU
fixed at 4:1, and then a series of CA-g-E2C16, CP-g-E2C16, and CB-g-E2C16 copolymers were successfully
obtained. It is shown that with the anhydride/AGU ratio increasing, the DS value of E2C16 was first
increased and then decreased. With the carbon chain length increasing, the DS value of E2C16 showed
a trend of increasing continuously. The phase transition temperature and enthalpy of the copolymers
increased with increasing DS value of E2C16. When the ratio of butyric anhydride/AGU was 1.5:1,
the DS of E2C16 was up to the maximum value of 1.02, and the corresponding melting enthalpy and
crystallization enthalpy were 32 J/g and 30 J/g, respectively. All copolymers showed solid–solid phase
change behaviors. The heat resistant temperature of cellulose-based solid–solid phase change materials
is always higher than 270 ◦C. After the grafting reaction, the crystallinity of E2C16 is decreased, but the
crystal type is still hexagonal.
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