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Background: Takayasu’s Arteritis (TA) is a chronic inflammatory disease that affects aorta
and its main branches at their origin. Genetic, pathological and functional studies have
shown that CD8 and Gamma delta (γ/δ) T-lymphocytes are involved in inflammatory
processes in affected regions of arteries causing vascular damage. The molecular function
of these lymphocytes remains unclear and currently no epigenetic studies are available in
TA. We primarily performed genome wide methylation analysis in CD8 T cells and γδ T cells
of patients with TA and compared with healthy controls.

Methods:We recruited 12 subjects in each group namely TA patient and healthy controls.
Blood samples were collected after obtaining informed written consent. CD8 T cells and γδ
T cells were separated from whole blood. DNA extracted from these cells and were
subjected to bisulfite treatment. Finally, bisulfite treated DNA was loaded in Infinium
Methylation EPIC array. Bioinformatics analysis was used to identify differential
methylation regions which were then mapped to genes.

Results: Interleukin (IL)-32 and Lymphotoxin-A were genes significantly hypomethylated
in CD8 T-cells. Anti-inflammatory cytokine genes, IL-10, IL-1RN and IL-27 were
hypomethylated in γδ T cells of TA patients as compared to healthy controls. Gene
enrichment analysis using Gene Ontology (GO) database and Kyoto Encyclopaedia of
Genes and Genomes (KEGG) identified that genes involved in T-cell receptor signalling
pathways were hypomethylated in CD8 T-cells and hypermethylated in γδ T cells of TA
patients.

Conclusion: CD8 T-cells might play a major role in immunopathogenesis of inflammation
in TA, whereas γδ T cells may play a regulatory role.
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• This maiden genome-wide DNA-methylation study in TA
revealed hypomethylation of genes, IL-32 and LTA in
CD8+T-cells

• Anti-inflammatory cytokine genes IL-10, IL-1RN and IL-27
were hypomethylated in γδ+ T-cells of TA patients

• Genes involved in T-cell receptor signalling pathways were
hypomethylated in CD8 T-cells of TA patients

INTRODUCTION

Takayasu’s Arteritis (TA) is an idiopathic chronic
inflammatory disease that affects the aorta and its main
branches at origin. TA is predominantly seen in women of
reproductive age group and the onset is before the age of 40 in
majority of cases. Aetiology of the TA is unknown.
Pathophysiology of TA involves infiltration of leukocytes in
vascular tissues involving all layers of large arteries. It is
characterized by adventitial thickening, focal leukocyte
infiltration of tunica media and intimal hyperplasia.

CD8 T-cells are in excess both in peripheral blood and
inflamed vessels of patients with TA compared to giant cell
arteritis (GCA) (Kurata et al., 2019; Matsumoto et al., 2019).
In fact, even after treatment with biologic disease-modifying
antirheumatic drugs (DMARDs), CD8 T-cells were not
lowered in TA. This is in contrast to Th1, Th17, and Tfh cells,
all of which are shown to be reduced in number after such
therapy. High levels of CD8 T-cells are also reported to be
associated with relapse in TA (Matsumoto et al., 2019). Both
HLA-DR expressing CD8 and CD4+ T cells were increased in
peripheral blood of patients with TA (Nityanand et al., 1997).
Several other studies have shown that CD8+ T cells are involved in
pathogenesis of TA by secreting specific cytokines and
chemokines (Uppal and Verma, 2003; Régnier et al., 2020).

γ/δ T cells represent 1-5% of peripheral blood T cells. Seko et al.
found that γ/δ T cells contribute around 30% of leukocytes
infiltrating aortic tissues of TA (Seko et al., 1996). Aortic tissues
responding to unknown stimulus express 65 kDa heat-shock
protein, which in turn induce expression of MHC- I–related
chain A (MICA) on the surface of vascular smooth muscle cell
(VSMC).MICA onVSMC is recognized byNKG2D receptors in γ/δ
T cells and CD8+ T cells, which secrete cell granules containing
perforin and interferon resulting in initiation of vascular
inflammation (Arnaud et al., 2011). Though the above
mentioned published data demonstrated involvement of CD8
T cells and γ/δ T cells in TA, their pathogenic roles are not yet
fully understood. The current study aimed to explore genome wide
DNA methylation changes in CD8 T cells and γδ T cells of patients
with TA in comparison with healthy individuals as controls.

METHODS

Patients and Controls
Twelve patients satisfying ACR 1990 criteria for TA were
recruited from Rheumatology clinics of Christian Medical
College, Vellore (Arend et al., 1990). Age and sex matched
healthy subjects also recruited as controls for the study.
Participants were recruited between September 2015 and
January 2016 after obtaining written informed consent. The

TABLE 1 | Clinical details of patients with TA.

Parameter n = 12

Gender (Male: Female) 2:10
Median age in years (range) 26 (18–39)
Median duration of symptoms in months (range) 18 (0–48)
Angiographic types n(%)
Type I 1 (8.3%)
Type IIb 1 (8.3%)
Type III 1 (8.3%)
Type IV 1 (8.3%)
Type V 8 (66.6%)
Median ESR in mm/1st hour (range) 42.8 (6–75)
Median CRP mg/dl (range) 31.6 (3–87)
Median ITAS 2010 (range) 8.6 (0–17)
Median ITAS -CRP(range) 10.4 (2–20)
Median DEI.Tak (range) 9.5 (4–13)
Treatment details N (%)
Treatment naïve 8 (66.7%)
Glucocorticoids 2 (16.7%)
Defaulters of treatment 2 (16.7%)
Biological DMARDs Nil

FIGURE 1 | Differentially methylated CpG sites in CD8 T cells and γδ
T cells with p-values < 0.05.
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study followed the tenets of the Declaration of Helsinki and was
approved by the Institutional review board of Christian Medical
College, Vellore.

Cell Separation, DNA Extraction, and
Bisulfite Conversion
Twenty ml of whole blood were collected from each participant in
anticoagulated vacutainer tubes. Peripheral blood mononuclear
cells (PBMCs) were isolated fromwhole blood by density gradient
centrifugation using Ficoll-PaqueTM Plus (Catalogue no.
1033378, GE Healthcare). CD8 and γδ T cells were separated
from PBMC using magnetic labelling based separation methods.
CD8 microbeads (Catalogue no. 130-045-201, Miltenyi Biotec,
CA, USA) was used for separation of CD8 T cells by negative
selection method, followed by use of Anti-TCR γδ microbead kit
(catalog no. 130-050-701, Miltenyi Biotec, CA, USA) for
separation of γδ T cells. DNA was extracted from these cells
using the DNeasy Blood and Tissue Kit (Qiagen, Valencia, CA)
according to the manufacturer’s protocols. DNA samples were
stored at −80°C until processing of methylation profiling
was done.

DNA Methylation Profiling
Genomic DNA samples of both CD8 and γδ T cells from each
participant were subjected to bisulfite treatment using the EZ
DNA Methylation-Gold Kit (Zymo Research, Orange, CA).
Infinium Methylation EPIC arrays (Illumina, San Diego, CA)
were used to assess the genome-wide DNA methylation levels.
This chip array allows for the interrogation of over 850,000
methylation sites within the entire genome covering CpG
islands, genes, and enhancers, DNase hypersensitive sites and
miRNA promoter regions. All array handling, sample
hybridization, and array scanning were performed at a
commercial service provider lab (M/s. Medgenome labs Pvt
Ltd., Bengaluru, India). The service provider was blinded to
the source of the samples. Raw idat and sample annotation
files were received from a service provider for bioinformatics
analysis.

Bioinformatics Analysis for Methylation
Data
Data from methylation chip array were analysed in R software
ChAMP package (Morris et al., 2014). Raw idat files and sample

FIGURE 2 | Significantly hypomethylated genes in CD8 T-cells of patients with TA. Each dot indicates each CpG probe measured within this gene. A Wilcoxon
matched paired test was used to compare between the groups against each CpG probe.
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annotation were uploaded in ChAMP using champ.import
function. Default filter function was used to remove low
quality probes. This includes removal of each probe having
p-value above 0.01, non-CpG probes, all SNP-related probes
and all probes located on chromosome X or Y. Normalisation
of data was done for adjustment of bias in the type-II probe
(Supplementary Figure S1 for before and after normalisation of
probes). Samples were run in chip array on different batches. For
removal of the batch effect, correction was performed in ChAMP
package. Differential methylation probes (DMP) and Differential
methylation region (DMR) analysis were performed between TA
and healthy controls. DMR analysis were performed separately in
the DMRcate package from the Bioconductor platform in R, as
this function within the ChAMP pipeline was not functional
(Peters et al., 2015). Beta (β) value is the ratio of methylated
intensity and the overall intensity values. Normalised Beta values
of each probe were extracted from ChAMP pipeline and loaded in
DMRcate package to identify quantitative alteration in DNA
methylation levels between cases and controls.

Gene enrichment analysis were performed for genes
significant in DMR using cluster Profiler package in R with
p-value cutoff of <0.05(Yu et al., 2012). Significant genes from
DMR were used after converting gene symbols to entrez gene id
in the online tool DAVID (https://david.ncifcrf.gov). Gene
Ontology (GO) enrichment analysis was performed to identify
over-represented GO terms with combined domains of biological
processes, molecular function and cellular components. KEGG
(Kyoto Encyclopaedia of Genes and Genomes) pathway gene set

enrichment (GSE) analysis was performed by employing a
hypergeometric test within cluster Profiler package. Significant
gene enrichment were visualised by network and pathway based
plots using enrichplot and pathview packages respectively in R
Bioconductor tool.

RESULTS

TA Patient and Control Characteristics
Demographic and clinical details of TA patients are provided in
Table 1. Median age of healthy controls was 23 (15-48) years and
Female: male ratio was 10:2. Both age and sex ratio were matched
for cases and controls.

Differential Methylated CpG Sites in TA
Total 850 K probes were available in the chip array. After quality
control and filtering of probes nearly 700 K probes were available
for analysis for both CD8 T cells and γδ T cells to examine
differential methylation CpG probes between TA and healthy
control. Number of significantly hypermethylated and
hypomethylated CpG sites for CD8 T cells and γδ T cells are
depicted in Figure 1.

Differential Methylated Regions in TA
Nearly 34000 regions were differentially methylated in CD8
T cells between TA and controls which comprised 221665
CpG sites (probes) with a threshold FDR <0.05, including

FIGURE 3 | Significantly hypomethylated genes in γδ T cells of patients with TA. Each dot indicates each CpG probe measured within this gene. A Wilcoxon
matched paired test was used to compare between the groups against each CpG probe.
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27243 hypermethylated regions and 7104 hypomethylated
regions. In γδ T cells, 24088 regions were differentially
methylated comprising of 115427 CpG sites, which included
10834 hypermethylated regions and 13255 hypomethylated
regions. Top 20 genes containing hypermethylated and
hypomethylated regions for CD8 T cells and γδ T cells were
listed in Supplementary Tables S1, S2 respectively.

Hypomethylated regions are associated with increased gene
expression, especially in pro-inflammatory cytokine genes, which
are of interest in inflammatory diseases. In CD8 T-cells,
Interleukin-32 (IL-32) and Lymphotoxin -Alpha (LTA) were
significantly hypomethylated genes in our TA patients
compared to healthy controls (Figure 2). TNF-α, IL-10 and
IL-27 genes were significantly hypomethylated in γδ T cells of
our TA patients (Figure 3).

We, therefore, observed differential methylation of regions
between CD8 and γδ T cells in patients with TA. LTA and IL-32
were significantly hypomethylated in CD8 T-cells, whereas these
genes were hypermethylated in γδ T cells on TA patients
(Figure 4). This shows cell specific epigenetic changes in
patients with TA. Cell specific methylation pattern is better
visualised in heatmap plot (Figure 5). BCL6 and IL21R are
also hypomethylated in CD8 T-cells but hypermethylated in
γδ T cells. Inversely, CCRL2 and CIITA genes are
hypomethylated in γδ T-cells while hypermethylated in
CD8 T-cells in TA patients.

Our study also revealed hypomethylation of genes involved in
transcription factors namely, TBX21 and EOMES in CD8 T cells
and γδ T cells (Figure 5), However, significant hypomethylation
for TBX21 was found only in CD8 T cells and the same for

FIGURE 4 | Tukey plot showing significantly differentially methylated regions (CpG sites) in promoter region of IL-32 (chr 16: 3114847–3115809) and LTA (chr 6:
31539539- 31541349) genes in CD8 T cells and γδ T cells of TA as well as healthy controls. Both genes were hypomethylated in CD8 T cells and hypermethylated in γδ
T cells of TA as compared to healthy controls.
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EOMES was documented only in γδ T cells of our patients with
TA. Genes of proteins involved in T-cell receptor (TCR)
signalling and perforin-1 were hypomethylated in CD8 T cells
at higher levels than γδ T cells. In contrast, genes of anti-
inflammatory cytokines, IL-10, IL-1RN, IL27 and transcription
factor STAT5A were hypomethylated at lower levels in CD8
T cells compared to γδ T cells of patients with TA (Figure 5).

DMR Associated Functional Pathways in TA
Having established sets of genes from DMR, we identified
function pathways using GO resources and KEGG database. A
list of significant pathways in the GO and KEGG database for
CD8 T cells and γδ T cells were mentioned in Supplementary
Tables S3, S4 respectively.

Gene ontology (GO) analyses in CD8 T cells revealed
neutrophil mediated immunity, neutrophil activation,
neutrophil degranulation, and lymphocyte degranulation
pathways were hypermethylated in TA, whereas ribosome
structure, viral transcription and viral gene expression were
hypomethylated (Supplementary Figure S2). These findings
were confirmed in KEGG enrichment analysis that genes
involved in ribosome and T-cell receptor signalling were
hypomethylated (Supplementary Figure S2) in CD8 T cells of
our TA patients.

GO analyses in γδ T cells of TA showed opposite patterns
compared to CD8 T-cells. Myeloid cell activation, neutrophil
activation, neutrophil degranulation, lymphocyte degranulation

were hypomethylated and TCR signalling pathway, antigen-
receptor mediated signalling, T-cell activation, T-cell
differentiation and adaptive immune response pathways were
hypermethylated (Supplementary Figure S3). Again, this
findings was confirmed in KEGG GSE analysis that TCR
signalling pathway, Th17 differentiation and antigen
processing and presentation were hypermethylated in γδ
T cells of patients with TA (Supplementary Figure S3).

Genes involved in statistically significant pathways identified
by KEGG analysis for both CD8 T cells and γδ T cells were
visualised in network plot (Figure 6). Hypomethylated and
hypermethylated genes involved in TCR signalling were
visualised in pathway plot (Supplementary Figure S4).

DISCUSSION

To our knowledge, this is the first study describing the methylation
changes in CD8 T cells and γδ T cells of patients with TA in
comparison with healthy controls. Our study showed IL-32 and LTA
genes were significantly hypomethylated inCD8T-cells frompatients
with TA. Also TNF-α, IL-10 and IL-27 genes were significantly
hypomethylated in γδ T cells of TA patients. Another important
finding is that genes involved in T-cell receptor signalling were
hypomethylated in CD8-T cells from patients with TA.

In our study, the promoter region of IL-32 gene is significantly
hypomethylated in patients with TA compared to healthy controls.

FIGURE 5 | Heatmap plot showing hypomethylated genes in CD8 T cells and γδ T cells of TA patients as compared with healthy controls. BCL6 and IL21R were
hypomethylated genes in only CD8 T-cells (marked in pink colour box). CCRL2 and CIITA genes were hypomethylated in only γδ T-cells (marked in light green
colour box).

Frontiers in Cell and Developmental Biology | www.frontiersin.org June 2022 | Volume 10 | Article 8434136

Kabeerdoss et al. Methylation Studies in Takayasu Arteritis

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


Increased IL-32 expression and serum levels has been reported in
patients of GCA and Anti-Neutrophilic Cytoplasmic Autoantibody
(ANCA) associated vasculitis(Ciccia et al., 2011; Bae et al., 2012;
Krajewska Wojciechowska et al., 2019). In GCA, IL-32 expression is
found in inflammed vessels and it co-localises with Th1 lymphocytes
(Ciccia et al., 2011). IL-32 expressed by CD8 T-cells was reported to
be associated with history of Polymyalgia Rheumatica (PMR) and
abnormal neutrophil count in patients with GCA (De Smit et al.,
2018). IL-32 induces dendritic cells to secrete the chemokine
RANTES (also known as CCL5), which in turn recruits activated
T-cells expressing CCR5 (Figure 5) to inflammatory sites and
thereby causes vascular dysfunction (Son et al., 2014; Mikolajczyk
et al., 2016). Again, in our study CCR5 is also hypomethylated in
CD8 T-cells of TA. This shows IL-32 might contribute to activation
and recruitment of CD8 T-cells in TA.

In the present study, another important cytokine gene LTA
encoding lymphotoxin-A, previously known as TNF-beta is
significantly hypomethylated in CD8 T cells of patients with
TA. An earlier study in GCA showed lymphotoxin expression
localised with formation of tertiary lymphoid organs (TLOs) in

inflamed arteries (Ciccia et al., 2017). LTA gene is shown to be
hypomethylated in CD4 T-lymphocytes of patients with primary
Sjögren’s syndrome (pSS) (Altorok et al., 2014). Again, TLOs
were the source of autoreactive lymphocytes in inflamed regions
of salivary glands of pSS (Asam et al., 2021). Can this suggest that
LTA secreted by CD8 T-cells may be involved in formation of
TLOs in inflamed arteries of patients with TA?

In Bechet’s disease, another vasculitis involving large vessels in
vast majority of them, γδ T cells are shown to secrete TNF-α and
CXCL8 causing activation signal and recruitment of neutrophils
and monocytes to sites of infection and inflammation (Hasan
et al., 2015). This is similar to the findings in our study showing
hypomethylation of TNF-α and CXCL8 genes in γδ T cells of TA.
In addition, anti-inflammatory cytokines IL-10, IL-1RN and
IL-27 genes were also hypomethylated. This is again similar to
previous findings in patients with BD that reported γδ T cells
predominantly as regulatory in nature and secrete lower levels of
inflammatory cytokines (Parlakgul et al., 2013).

Seko et al. showed that aortic tissues express 65-kD heat-shock
protein (HSP-65), which was recognised by infiltrating killer

FIGURE 6 | (A). Hypomethylated genes in CD8 T cells and (B). Hypermethylated Genes in γδ T cells by KEGG pathways.
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lymphocytes resulting in secretion of perforin, which led to
vascular cell injury of Takayasu’s arteritis (Seko et al., 1994).
Chauhan et al. demonstrated this cytotoxic function of
lymphocytes to be mediated by interaction of Fas and FasL as
well as with the help of secretion of IFN-γ (Chauhan et al., 2006;
Chauhan et al., 2007). Our findings concur with the findings of
that study as perforin-1(PRF1), Fas and IFN-γ genes were
significantly hypomethylated in CD8 T-cells, but not in γδ
T cells of TA (Figure 5). In addition, we didn’t find any
hypomethylation of HSP65 gene; rather it was noted in genes
of HSPA1A,HSPA1L, both expressing 70-kd heat-shock protein
(data not shown). Thus CD8 T-cells might be more cytotoxic in
nature and involved in vascular cell injury in patients of TA.

On the other hand, Transcription factor T-bet encoded by
gene TBX21 is required for differentiation of effector CD8 T-cells
producing INF-γ following encounter with self-antigens (Jackson
et al., 2014). But, Eomes expression in γδ T cells leads to
differentiation of Th1-like lymphocytes producing IFN-γ (Lino
et al., 2017). Thus hypomethylation of TBX21 and EOMES in
CD8 T-cells and γδ T cells might be attributed to IFN-γ secreting
Th1 like subsets in patients with TA; however, it is difficult to
conclude this point at this stage and further confirmation by
future studies may be needed. CTLA4 and IL-21R were also
hypomethylated genes in patients with TA, which are markers
of regulatory and follicular T-cells subsets. This shows that
different subsets exist amongst CD8 lymphocytes in TA.

Gene enrichment analysis in CD8 T-cells of TA patients showed
hypomethylation of genes involved in T-cell receptor signalling.
McKinney et al. demonstrated that TCR signalling is most
pronounced in effector-memory (TEM) subset of CD8 T-cells in
patients with ANCA vasculitis (McKinney et al., 2010). LCK and
PRF-1 genes were significantly hypomethylated in CD8 T-cells,
whereas these genes were hypermethylated in γδ T cells of TA in
this study. LCK is a tyrosine kinase essential for downstream signalling
of activated T-lymphocytes. In CD8 T-cells, absence of LCK results in
reduced perforin mediate killing, thereby affect its cytotoxic function
(Milstein et al., 2011). This shows that activated CD8 T-cells of
patients with TA have higher cytotoxic ability as compared to
healthy controls.

In the current study, genes involved in TCR signalling pathway
and Th17 differentiation were hypermethylated in γδ T cells of TA.
Evidence from literature suggest that γδ T cells can produce IL-17 in
response to IL-1β and IL-23. Activation of TCR in γδ T cells leads to
differentiation of IL-17 producing cells (Akitsu and Iwakura, 2018).
This suggests that γδ T cells might not be the source of IL-17 in
patients with TA as reported earlier (Misra et al., 2016).

This study is not without limitations. We didn’t check purity of
CD8 T cells and γδT cells after separation of these cells fromPBMC.
However, as per the brochure of the magnetic separation kit used in
our study, it is expected to achieve greater than 97% purity. Another
important limitation of our study: we didn’t perform validation
assays such as combined bisulfite restriction analyses or
pyrosequencing to confirm the findings of the present study.

Strength of our study is the novelty of being the first ever
report on genome wide methylation profiling in CD8 T cells and
γδ T cells in patients with TA. Measurement of the expression

levels of IL-32 and LTA in CD8 T-cells as well as TNF-α, IL-10
and IL-27 in γδ T cells from patients with TA using flow
cytometry analysis may be used in future studies, to explore if
these cytokines can be used as diagnostic or prognostic
biomarkers.

CONCLUSION

Our study showed that IL-32 and LTA were significantly
hypomethylated in CD8 T-cells and anti-inflammatory cytokine
genes IL-10, IL-27 and IL-1RN were significantly hypomethylated in
γδ T cells of TA. Genes involved in TCR signalling pathway and
ribosomewere also significantly hypomethylated in CD8T-cells. Genes
involved in TCR signalling pathway and Th17 differentiation, on the
contrary, were hypermethylated in γδ T cells from patients with TA.
Overall evidence from this study, and in the light of the published
literature, emphasises that CD8 T-cells are likely to be more crucially
involved in pathogenesis of TA, rather than γδ T cells.
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