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Schizophrenia is a chronic, debilitating disorder with diverse symptomatology, including
disorganized cognition and behavior. Despite considerable research effort, we have
only a limited understanding of the underlying brain dysfunction. In this article, we
review the potential role of oscillatory circuits in the disorder with a particular focus
on the hippocampus, a region that encodes sequential information across time and
space, as well as the frontal cortex. Several mechanistic explanations of schizophrenia
propose that a loss of oscillatory synchrony between and within these brain regions may
underlie some of the symptoms of the disorder. We describe how these oscillations are
affected in several animal models of schizophrenia, including models of genetic risk,
maternal immune activation (MIA) models, and models of NMDA receptor hypofunction.
We then critically discuss the evidence for disorganized oscillatory activity in these
models, with a focus on gamma, sharp wave ripple, and theta activity, including the
role of cross-frequency coupling as a synchronizing mechanism. Finally, we focus on
phase precession, which is an oscillatory phenomenon whereby individual hippocampal
place cells systematically advance their firing phase against the background theta
oscillation. Phase precession is important because it allows sequential experience to be
compressed into a single 120 ms theta cycle (known as a ‘theta sequence’). This time
window is appropriate for the induction of synaptic plasticity. We describe how disruption
of phase precession could disorganize sequential processing, and thereby disrupt the
ordered storage of information. A similar dysfunction in schizophrenia may contribute
to cognitive symptoms, including deficits in episodic memory, working memory, and
future planning.

Keywords: oscillations, schizophrenia, hippocampus, prefrontal cortex, synchrony, theta, gamma, phase
precession

INTRODUCTION

Schizophrenia is a complex neurological disorder that affects approximately one percent of the
population worldwide (Jablensky, 2000; McGrath et al., 2008), and is a leading contributor of
the global disease burden (Lopez et al., 2006). It is characterized by a heterogenous constellation
of aetiological risk factors, pathophysiological mechanisms, and symptoms. These include
positive symptoms, such as hallucinations and delusions, negative symptoms, such as flattened
affect and avolition, and broad cognitive disturbances including episodic and working memory,
attention, and executive function (Insel, 2010; Barch and Ceaser, 2012; Fusar-Poli et al., 2012;
Cannon, 2015). Although the positive and negative symptoms of the disorder have historically
received more attention, a growing number of studies investigating cognitive dysfunction
in schizophrenia have provided evidence that these impairments are not only a critical factor in
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predicting poor functional outcomes (Green, 1996), but that they
also precede the onset of positive symptoms by almost a decade
(Kahn and Keefe, 2013). These findings have prompted some
to argue that schizophrenia should be recognized as primarily a
cognitive disorder and that the development of new diagnostic
tools and treatments has been hampered by the continued
focus on psychotic symptoms at the expense of the underlying
cognitive disturbances that generally precede them (Elvevag and
Goldberg, 2000; Lesh et al., 2011; Kahn and Keefe, 2013).

One feature of schizophrenia is an inability to organize the
elements of cognition into a cohesive whole (Javitt, 2009; Fornito
and Bullmore, 2015; Friston et al., 2016). In line with this
proposal, a growing number of studies have begun to focus on
the disorganization of cognitive processes (König et al., 2001;
Olypher et al., 2006; Minor and Lysaker, 2014). In particular,
complex cognitive operations such as episodic memory and
executive function require the dynamic integration of diverse
information streams, including both top-down information
about beliefs and expectations based on prior experience, as
well as lower-level sensory, emotional, and motor information
(Engel et al., 2001; Jardri and Denève, 2013). How distributed
networks manage the appropriate integration, segregation and
sequential ordering of such information remains an open
question, although it has become increasingly clear that phase
coding mechanisms, in which the temporal spiking of single cells
is organized relative to synchronous oscillatory activity occurring
at the network level, is likely to play a critical role (Gray et al.,
1989; Lisman and Buzsáki, 2008; Buzsáki, 2010).

There is now a large body of literature demonstrating
that disturbed oscillatory activity in schizophrenia is often
correlated with broad cognitive impairments (Spencer et al.,
2004; Schmiedt et al., 2005; Cho et al., 2006; Light et al., 2006;
Basar-Eroglu et al., 2007; Haenschel et al., 2009; Uhlhaas and
Singer, 2010; Kirihara et al., 2012; Senkowski and Gallinat,
2015; Barr et al., 2017; Adams et al., 2020). Post-mortem
studies from individuals with schizophrenia have also provided
vital information about basic-level disturbances that occur in
schizophrenia, including specific disruptions at the site of N-
methyl-D-aspartate (NMDA) receptors (Catts et al., 2016), as
well as several GABA disturbances, particularly in regards to
glutamic acid decarboxylase 67 (GAD67) and parvalbumin
(PV+) expression (Akbarian and Huang, 2006; Fung et al.,
2010; Gonzalez-Burgos et al., 2015; Kaar et al., 2019). These
findings have led to promising hypotheses that schizophrenia
may result from an imbalance of excitation/inhibition in key
regions associated with schizophrenia pathology, including the
prefrontal cortex (PFC) and the hippocampus (Lewis et al., 2005;
Uhlhaas, 2013; Starc et al., 2017). However, direct evidence of
how the structural, cellular, and molecular disturbances that
are frequently observed in schizophrenia are causally linked
to cognitive dysfunction has been more difficult to obtain
(Wright et al., 2000; Heckers and Konradi, 2002; Harrison,
2004; Moghaddam and Javitt, 2012; Haijma et al., 2013; Van
Den Heuvel and Fornito, 2014; Forsyth and Lewis, 2017). This
is known as the problem of the ‘‘missing middle,’’ in which
the mesoscopic network processes that bridge the gap between
microscopic disturbances and macroscopic behavioral outcomes

have remained relatively opaque (Laughlin et al., 2000; Kao et al.,
2017).

Bridging this gap is difficult with human subjects, as
current non-invasive imaging tools do not provide adequate
resolution to determine how basic level disturbances occurring
at the cellular level manifest into disorganized network activity
and consequent cognitive impairments. The refocusing of
research on cognitive disturbances has thus provided an
important opening for research involving animal models of
schizophrenia, as cognitive disturbances can be more readily
measured in animals, unlike the more subjective symptoms
of psychosis. Animal models of schizophrenia also provide
better access to biological and network mechanisms, as well
as providing the opportunity for more targeted manipulations.
Such models are, therefore, likely to provide a crucial step
in bridging the missing ‘‘middle,’’ as well as providing
important information about both primary etiological causes and
developmental trajectories.

This review will critically outline the current state of
studies that have investigated disorganized oscillatory activity
in animal models of schizophrenia, with a specific focus on the
hippocampus. The first section will provide the rationale for
investigating disorganized oscillatory activity in schizophrenia,
as well as a brief overview of the findings and limitations
of such studies in humans (for a more detailed review of
disturbed oscillatory activity in individuals with schizophrenia,
readers are referred to the review by Uhlhaas and Singer, 2010).
The main body of the review will then focus on evidence
accumulating from animal models of the disorder, including
models of genetic risk, maternal immune activation (MIA), and
models of NMDA receptor (NMDAR) hypofunction. We will
present a critical analysis of these findings in relation to gamma
and theta frequency oscillations, sharp-wave ripples (SPW-Rs),
and theta phase precession, including the functional implications
of disorganized oscillatory activity for cognitive processes that
have been associated with these phenomena.

EEG AND MEG STUDIES IN INDIVIDUALS
WITH SCHIZOPHRENIA

According to the dysconnection hypothesis, the core symptoms
of schizophrenia proceed from the functional disintegration
of specialized systems within the brain, including both the
intrinsic connections within a local cell assembly and long-
range connectivity between distinct brain regions (Friston,
1998; Friston et al., 2016). Robust evidence of functional
dysconnectivity in schizophrenia has been provided by a
range of non-invasive techniques such as functional magnetic
resonance imaging (fMRI), magnetoencephalography (MEG),
and electroencephalography (König et al., 2001; Liang et al., 2006;
Hinkley et al., 2010; Pettersson-Yeo et al., 2011; Fornito et al.,
2012; Di Lorenzo et al., 2015). In particular, MEG and EEG
imaging techniques have provided valuable information about
the amplitude, frequency, and coherence of rhythmic network
activity at high temporal resolutions. These techniques have
routinely demonstrated abnormal activity in both schizophrenia
patients and their first-degree relatives in the theta (∼2–10 Hz),
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beta (∼12–30 Hz), and gamma (∼30–90 Hz) frequency bands.
These findings suggest that disorganized activity in these bands
could be a potential endophenotype of the disorder (Uhlhaas
and Singer, 2010; Williams and Boksa, 2010; Moran and Hong,
2011; Kirihara et al., 2012; Berger et al., 2016; Adams et al.,
2020). Changes in oscillatory activity may either reflect or
underlie a failure of coordinated network synchrony within and
across several brain regions, consistent with the proposals that
schizophrenia is predominantly a disorder of distributed neural
dynamics rather than localized deficits (von der Malsburg et al.,
2010; Uhlhaas and Singer, 2015).

Although these previous studies have provided critical
evidence that oscillatory activity across several frequency bands is
disorganized in schizophrenia, the non-invasive MEG and EEG
techniques that are used in these studies are inherently limited
in several respects. For example, the spatial resolution of these
techniques is relatively low, and despite numerous technological
advances that have improved the quality of source localization,
the issue of field spread means that precise spatial localization
of signal sources must be interpreted cautiously (Schoffelen and
Gross, 2009). This issue is particularly important in regards to
oscillatory activity that is generated in deeper brain regions,
such as the hippocampus, where signals are more prone to
distortion. Such issues are not fully resolved using invasive
recording techniques, but a comparison of simultaneously
obtained invasive and non-invasive EEG recordings in humans
has demonstrated that the signal quality of invasive EEG
recordings is∼20–100 times better than non-invasive recordings
(Ball et al., 2009).

Recent findings in animal models have also demonstrated
that the precise temporal spiking of single cells in relation
to background local field potential (LFP) oscillations is likely
to be functionally important for both low-level plasticity-
related processes and for high-level cognition that depends
on sequential processing mechanisms (Buzsáki, 2015; Buzsáki
and Tingley, 2018; Drieu and Zugaro, 2019). While these
synchronizing phenomena appear to occur in humans (Liu et al.,
2019; Qasim et al., 2020) they cannot readily be investigated
with non-invasive techniques. Thus, although MEG and EEG
studies provide important correlational evidence that disturbed
network synchrony is likely associated with poor performance
across a range of cognitive domains, direct evidence that
these phenomena are causally linked is difficult to obtain
with these techniques alone. Similar difficulties are apparent
in regards to the cellular and molecular basis of oscillatory
disorganization. Although a number of basic-level studies have
begun to uncover the biological mechanisms of coordinated
oscillatory activity (Buzsáki and Draguhn, 2004; Buzsáki and
Wang, 2012; Colgin, 2013; Buzsáki, 2015; Drieu and Zugaro,
2019), it remains unclear how the complex aetiological and
developmental processes associated with schizophrenia manifest
into disorganized oscillatory activity at critical stages of disease
progression. Animal models of schizophrenia provide a unique
opportunity to resolve some of these issues, and given that the
scaling and hierarchical organization of oscillatory activity is
evolutionarily preserved across several species (Buzsáki et al.,
2013), animal models may be able to provide important

translational data across all levels of micro- meso and
macroscopic dysfunction.

ANIMAL MODELS OF SCHIZOPHRENIA

Over the past few decades, several animal models of
schizophrenia-risk have been developed, including genetic,
developmental, lesion, and drug-induced models (Jones et al.,
2011; Rapoport et al., 2012; Brown and Meyer, 2018; Lee and
Zhou, 2019). This diversity reflects the heterogenous range
of aetiological factors and pathophysiological mechanisms
linked to schizophrenia. The specific disruptions associated
with each model provide valuable information about the
fundamental biological mechanisms of schizophrenia and allow
for investigations of both the acute and longitudinal effects of
known risk factors in isolation, and with greater control over the
confounding effects of environment and medication. However,
these advantages come at a cost, providing a simplified account
of schizophrenia pathophysiology that is unlikely to capture the
full complexity of the disorder. For example, current evidence
suggests that schizophrenia does not emerge from a single
genetic, biological or environmental cause, but rather through
the complex interplay of these factors, including epigenetic
mechanisms that converge on shared pathways of molecular
dysfunction (Fatemi and Folsom, 2009; Horváth and Mirnics,
2015). One of the challenges of working with animal models is,
therefore, to integrate the findings from these diverse models
into a broader understanding of schizophrenia pathology.

Several recent reviews have begun to identify some of the
common network disturbances observed in pre-clinical models,
although most of these reviews have focused predominantly on
the gamma frequency band (Uhlhaas and Singer, 2015), and
models of NMDAR hypofunction have been more extensively
reviewed than models of genetic and environmental risk
factors (Jadi et al., 2016; Cadinu et al., 2018; Krajcovic et al.,
2019; Bianciardi and Uhlhaas, 2021). The following section
will briefly outline three types of animal models that have
been used to investigate network disturbances associated with
schizophrenia—models of NMDA hypofunction, genetic risk
models, and maternal immune activation (MIA) models, with a
focus on how the basic cellular disturbances associated with these
models could contribute to the disorganized oscillatory activity.

NMDAR Hypofunction Models
Considerable evidence points to abnormal glutamate signaling
in schizophrenia, particularly at the site of the NMDA subtype
of glutamate receptors (Moghaddam and Javitt, 2012; Balu,
2016; Nakazawa and Sapkota, 2020). A transient induction
of schizophrenia-like psychosis can also occur in humans
following administration of NMDAR antagonists, leading to
proposals that changes in glutamate signaling are fundamental
to the disorder (Krystal et al., 1994; Umbricht et al.,
2000; Moghaddam and Javitt, 2012). Several different animal
models of NMDAR dysfunction have thus been developed
to determine how NMDAR hypofunction contributes to
schizophrenia pathophysiology, including those relying on the
acute administration of the antagonist ketamine or MK-801, as
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well as various NMDAR knockout models that allow researchers
to examine the more chronic effects of disturbed NMDAR
transmission during early development (Olney et al., 1999; Lee
and Zhou, 2019). Since NMDA receptors occur on both principal
cells and inhibitory interneurons, a disturbance in these systems
has the potential to disrupt the excitatory/inhibitory balance
within a network, as well as to modify the oscillatory function
that depends on feedback inhibition in order to produce cycles
of activity. Theoretically, this could have profound implications
for the development and temporal coordination of complex
neural circuits, and experimental evidence has confirmed that
fast-spiking interneurons, including PV+ cells, are critical for
organized oscillatory activity in both the gamma and theta
frequency ranges (Cobb et al., 1995; Sohal et al., 2009; Wulff et al.,
2009; Stark et al., 2013; Amilhon et al., 2015).

Both acute and chronic NMDA hypofunction have been
shown to affect oscillatory activity in NMDAR antagonist
models across a range of frequency bands, and these studies
are discussed in greater detail in the relevant sections below.
Broadly speaking, these studies have provided robust evidence
that disrupted NMDAR signaling leads to disturbed oscillatory
activity in a number of brain regions (Ma and Leung, 2000;
Cunningham et al., 2006; Pinault, 2008; Dzirasa et al., 2009;
Hakami et al., 2009; Belforte et al., 2010; Carlén et al., 2012;
Kittelberger et al., 2012; Kocsis, 2012; Caixeta et al., 2013;
Kalweit et al., 2017; Aguilar et al., 2021). There is also evidence
that disturbed oscillatory activity in NMDAR hypofunction
models is mediated by abnormal synaptic inhibition, particularly
by PV+ interneurons (Carlén et al., 2012; Kittelberger et al.,
2012). It remains unclear however whether NMDA hypofunction
and other GABAergic disturbances arise independently (Coyle,
2004; Gonzalez-Burgos and Lewis, 2012), although current
evidence suggests that the timing of NMDAR manipulations is
critical for the development of inhibitory circuits (Wang and
Gao, 2009; Belforte et al., 2010). In line with this proposal,
one study has demonstrated that the selective deletion of
NMDA receptors from predominantly PV+ interneurons during
early development triggers several molecular, physiological, and
behavioral phenotypes reminiscent of schizophrenia, including
spatial working memory impairments, social withdrawal, and
reduced pre-pulse inhibition, as well as reduced network
synchrony in the somatosensory cortex. The same manipulation
had no effect however when performed on post-adolescent mice
(Belforte et al., 2010).

Genetic Risk Models
Although models of NMDAR hypofunction provide important
information about how NMDAR signaling contributes to
abnormal oscillatory activity, such models may be lacking
in ecological validity. Models based on either genetic or
environmental risk factors can address this issue to some extent,
although the specific biological mechanisms that contribute to
abnormal oscillatory activity are more difficult to identify.

Numerous studies indicate that schizophrenia is likely to
have a substantial hereditary component (Cardno et al., 1999;
Sullivan et al., 2003; Lichtenstein et al., 2009; Harrison, 2015).
A number of genomic regions that may confer an increased risk

of developing schizophrenia have been identified, although most
genetic variants associated with the disorder involve non-coding
regions of DNA, indicating that they are predominantly
involved in regulating gene expression, such as the timing,
abundance, and location of transcription events, rather than
encoding for protein sequences themselves (Harrison, 2015;
Kahn et al., 2015). Consistent with proposals that schizophrenia
is predominantly a neurodevelopmental disorder (Bullmore
et al., 1997; Fatemi and Folsom, 2009), several risk variants
are also preferentially expressed during fetal development,
suggesting that the normal developmental processes of neuronal
proliferation, differentiation, and migration may be disrupted
during this critical period (Walsh et al., 2008; Birnbaum and
Weinberger, 2017).

In particular, genes associated with neuregulin signaling
have often been implicated in schizophrenia, and neuregulin
is known to play an important role in the development of
inhibitory circuits, synaptic plasticity, and axon myelination
during critical stages of development (Stefansson et al., 2002;
Brinkmann et al., 2008; Mei and Xiong, 2008; Neddens et al.,
2011; Ting et al., 2011). Other genes that are involved in
early neurodevelopment and maturational processes, such as
the Disrupted-in-Schizophrenia 1 (DISC1) gene, appear to exert
delayed behavioral and neurochemical effects following pre-
and perinatal insults in mice, with measurable effects only
appearing after puberty, clearly mirroring the developmental
trajectory of schizophrenia in humans (Niwa et al., 2010).
Both DISC1 and neuregulin have also been associated with
disturbed parvalbumin (PV+) expression in the hippocampus
and the PFC (Hikida et al., 2007; Shen et al., 2008; Fazzari
et al., 2010), as well as diminished complexity of dendritic
spines in hippocampal regions, attenuated synaptic plasticity,
and several cognitive phenotypes associated with the disorder
(Li et al., 2007; Kvajo et al., 2008; Shamir et al., 2012). Similar
neurodevelopmental disturbances have been observed in mouse
models of 22q11 microdeletion (Paylor et al., 2001; Mukai et al.,
2008, 2015). Taken together, these studies suggest that a range
of genetic risk factors disrupt the development of neural circuits,
with the most prominent effects emerging after adolescence.

Maternal Immune Activation (MIA) Models
A number of epidemiological studies indicate that maternal
infection during the first and second trimesters is associated
with an increased risk of developing schizophrenia in affected
offspring (Mednick et al., 1994; Susser et al., 1996; Brown and
Derkits, 2010; Selemon and Zecevic, 2015). Subsequent studies
have revealed that exposure to proinflammatory cytokines at
critical stages of neurodevelopment affects neuronal proliferation
and synaptogenesis, which could potentially have profound
consequences for the development of neural circuits (Gilmore
and Jarskog, 1997; Meyer et al., 2009a,b; Watanabe et al., 2010;
Selemon and Zecevic, 2015).

MIA has been extensively modeled in rodents using a variety
of induction protocols, including exposure to polyriboinosinic:
polyribocytidilic acid (PolyI:C), a synthetic analog of double-
stranded RNA that regulates acute responses to viral pathogens
(Meyer et al., 2009a,b; Boksa, 2010; Wolff and Bilkey, 2010;
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Brown and Meyer, 2018; Kentner et al., 2019). The PolyI:C model
has been shown to trigger a range of biophysical and molecular
abnormalities consistent with schizophrenia, including decreases
in hippocampal volume (Zuckerman et al., 2003; Piontkewitz
et al., 2011; Crum et al., 2017), altered GAD and PV+
expression (Piontkewitz et al., 2012; Dickerson et al., 2014;
Canetta et al., 2016; Cassella et al., 2016; Steullet et al., 2017),
reduced inhibition (Zhang and van Praag, 2015), an increased
glutamate/GABA ratio in the hippocampus (Patrich et al., 2016),
abnormal synaptic plasticity (Savanthrapadian et al., 2013), and
dopaminergic dysfunction (Zuckerman et al., 2003; Ozawa et al.,
2006; Luchicchi et al., 2016).

A range of behavioral abnormalities that match the
symptomatic profile of schizophrenia have also been observed,
including several cognitive deficits that have also been associated
with disorganized oscillatory activity (Fatemi and Folsom,
2009; Meyer et al., 2009a,b; Brown and Derkits, 2010), These
include reduced PPI (Ozawa et al., 2006; Wolff and Bilkey, 2010;
Howland et al., 2012; Zhang and van Praag, 2015; Luchicchi et al.,
2016), reduced behavioral flexibility (Zuckerman and Weiner,
2005; Bitanihirwe et al., 2010; Savanthrapadian et al., 2013;
Ballendine et al., 2015; Kleinmans and Bilkey, 2018), temporal
processing disturbances (Deane et al., 2017), and spatial memory
impairments (Meyer et al., 2008; Wolff et al., 2011; Murray et al.,
2017).

THE IMPORTANCE OF HIPPOCAMPAL
AND PREFRONTAL OSCILLATIONS FOR
COGNITIVE PROCESSES, AND
IMPLICATIONS FOR SCHIZOPHRENIA

Disorganized oscillatory activity has been documented
throughout several brain regions in individuals with
schizophrenia (Uhlhaas and Singer, 2010), and this current
review is not exhaustive. Instead, we have chosen to focus on
disorganized activity that occurs in hippocampal and frontal
regions in the gamma, theta, and sharp-wave ripple bands. We
also discuss how this may influence hippocampal-prefrontal
functional connectivity.

Considerable evidence suggests that the temporal
coordination of hippocampal activity is critically important
for a range of cognitive processes, including episodic, relational,
spatial, and working forms of memory, as well as flexible
decision making (Buzsáki and Moser, 2013; Colgin, 2016; Drieu
and Zugaro, 2019). The laminar organization of pyramidal
cells in the hippocampus proper, as well as the predominantly
unidirectional flow of information, produces a uniquely robust
LFP signal that can be readily observed in animal models. This
robust signal can be used to infer synchronous LFP activity
with a relatively high degree of precision, as well as providing
a reference point from which to investigate phase coding. As a
result, a large body of work has focused on network synchrony
and phase coding in relation to hippocampal LFPs, and the
properties and mechanisms of these phenomena are relatively
well characterized in comparison to other regions (Colgin, 2016;
Drieu and Zugaro, 2019).

In humans, the hippocampus has predominantly been
associated with episodic memory (Scoville and Milner, 1957;
Vargha-Khadem et al., 1997), and recent evidence also suggests
that prospective memory, such as the simulation of prospective
episodes based on prior experience, is also hippocampus-
dependent (Schacter et al., 2017). One defining characteristic
of episodic memory is that it is anchored to a spatio-
temporal context (Tulving, 1993). Thus, episodic memory
typically includes details about where an event took place, and
how the discrete components that comprise such events are
ordered chronologically within the event space. Several aspects
of hippocampal processing are ideally suited for the construction
of episodic memory. For example, principal hippocampal cells,
known as ‘‘place cells,’’ are known to encode information about
the spatial location as an animal moves through physical space
(O’Keefe and Dostrovsky, 1971), and spatial cognition has been
linked to memory performance across a number of experimental
paradigms in both animals and humans (Eichenbaum et al.,
1999; Smith and Mizumori, 2006; Eichenbaum, 2017b). The
hippocampus also plays an important role in temporal processing
(Meck et al., 2013; Eichenbaum, 2014) including temporal
pattern separation (Jacobs et al., 2013) and sequence generation
(Buzsáki and Tingley, 2018). Importantly, both spatial and
temporal sequencing mechanisms are known to require the
synchronized coordination of oscillatory activity in the theta,
gamma, and sharp-wave ripple bands (Buzsáki, 2006).

Schizophrenia has been associated with structural,
neurochemical, and functional abnormalities of the hippocampal
formation at all stages of disease progression (Heckers, 2001;
Heckers and Konradi, 2002; Harrison, 2004). This includes
decreases in synapse expression (Heckers, 2001; Harrison, 2004)
and altered GABAergic signaling (Benes et al., 1998; Zhang and
Reynolds, 2002) that are consistent with disturbed oscillatory
activity. At the macroscopic level, episodic memory impairments
have frequently been observed in individuals with schizophrenia
(Rushe et al., 1999; Toulopoulou et al., 2003; Danion et al.,
2005, 2007; Leavitt and Goldberg, 2009; Berna et al., 2016), and
one study has also shown disturbed hippocampal activation
in patients as they imagine future scenarios (D’Argembeau
et al., 2008). These complex cognitive operations are difficult
to measure in animals, but the more fundamental aspects that
are thought to underlie episodic memory construction, such as
place cells and sequential processing, can readily be investigated
in preclinical models. Importantly, schizophrenia has also
been associated with spatial memory impairments (Park and
Holzman, 1992; Park et al., 1995; Glahn et al., 2003; Hanlon
et al., 2006; Weniger and Irle, 2008; Fajnerová et al., 2014), and
sequential processing deficits have also been observed in patients
and first-degree relatives (Dickinson et al., 2007; Siegert et al.,
2008; Nour et al., 2021).

The prefrontal cortex has been frequently implicated in
schizophrenia pathophysiology (Selemon and Zecevic, 2015;
Caballero et al., 2016), and it is known to have an important role
in several cognitive processes that are disrupted in patients, such
as working memory, executive control, and adaptive behavioral
responses (Perlstein et al., 2001; Forbes et al., 2009; Eisenberg and
Berman, 2010; Narayanan et al., 2013; Senkowski and Gallinat,
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2015). In particular, dysfunction across the hippocampus-PFC
pathway is correlated with a range of cognitive deficits in
schizophrenia (Pantelis et al., 2003; Ziermans et al., 2012; Godsil
et al., 2013; Cannon et al., 2015). Interactions between these
regions are also thought to play a critical role in the consolidation
of long-term episodic memory, spatial decision making, and the
assimilation of new memories within pre-existing knowledge
frameworks, or schema (Preston and Eichenbaum, 2013; Squire
et al., 2015; Sigurdsson and Duvarci, 2016).

GAMMA FREQUENCY OSCILLATIONS IN
THE HIPPOCAMPUS AND PREFRONTAL
CORTEX

Disturbed gamma activity appears to be particularly pronounced
in individuals with schizophrenia, and such disruptions have
been observed during both cognitive task performance (Cho
et al., 2006; Basar-Eroglu et al., 2007; Haenschel et al., 2009;
Barr et al., 2010; Senkowski and Gallinat, 2015; Barr et al., 2017)
and at rest (Andreou et al., 2015; Grent et al., 2018). Gamma
frequency disturbances have also been observed in unmedicated,
first episode patients and first-degree relatives, suggesting that it
may be an endophenotype of the disorder (Uhlhaas and Singer,
2010; Williams and Boksa, 2010). Such disturbances have also
been linked to a dysregulation of E/I balance in patients at several
stages of illness progression (Grent et al., 2018).

The integrity of gamma activity has been associated with
successful working memory performance, spatial cognition,
selective attention, sensory gating, and the perceptual ‘‘binding’’
of discrete components into an integrated whole (Gray et al.,
1989; Fell et al., 2003; Haenschel et al., 2009; Nyhus and Curran,
2010; Williams and Boksa, 2010; Nguyen et al., 2020). Current
evidence also suggests that gamma activity is important for
the temporal organization of information within local circuits
(Von Stein and Sarnthein, 2000; Siegel et al., 2009; Moran
and Hong, 2011), and for suppressing irrelevant circuit noise
in control animals (Sohal et al., 2009). PV+ interneurons in
particular have been identified as a critical component in this
latter process (Sohal et al., 2009), consistent with proposals that
widespread GABAergic disturbances in schizophrenia contribute
to gamma-mediated working memory impairments (Lewis et al.,
2005). Recent studies have also shown that dopamine modulation
coordinates gamma activity in prefrontal regions (Lohani et al.,
2019), again consistent with schizophrenia pathophysiology
(Howes and Kapur, 2009).

In line with human studies, gamma disturbances have
consistently been observed in a number of different animal
models, including models of genetic risk (Fisahn et al., 2009;
Deakin et al., 2012; Fejgin et al., 2014; Sauer et al., 2015;
Zhao et al., 2021), neurodevelopmental models such as MIA
(Dickerson et al., 2010, 2014; Nakamura et al., 2019; Schroeder
et al., 2019; Lippmann et al., 2021) and MAM (Lodge et al.,
2009) as well as a large number of NMDAR hypofunction models
(Cunningham et al., 2006; Pinault, 2008; Dzirasa et al., 2009;
Hakami et al., 2009; Lodge et al., 2009; Dickerson et al., 2010;
Kittelberger et al., 2012; Caixeta et al., 2013). Taken together,

such studies suggest that the integrity of gamma oscillations
may be particularly sensitive to a diverse range of cellular and
molecular disturbances, and may therefore represent a common
physiological outcome of these disturbances at the network level.
In general, the majority of these studies have shown evidence of
increased gamma power at baseline, particularly among NMDAR
hypofunction models (Bianciardi and Uhlhaas, 2021). This is
consistent with studies showing excessive gamma activity in
individuals with schizophrenia during working memory tasks
(Barr et al., 2010).

In particular, within-animal studies of NMDAR blockade
by either ketamine or MK-801 have provided more causal
evidence that NMDAR disruptions alter cortical gamma activity.
In vivo studies of acute NMDAR blockade have generally found
a consistent pattern of results in hippocampal regions, with
increased gamma power being reported as well as hyperactive
behaviors as rats freely roamed around a familiar environment
(Ma and Leung, 2000, 2007; Kittelberger et al., 2012; Caixeta et al.,
2013; Ji et al., 2013; Nagy et al., 2016; Kealy et al., 2017; Lee et al.,
2017; Sampaio et al., 2018). However, increases in hippocampal
gamma power have been shown to occur independently of
locomotor hyperactivity, indicating that elevated gamma power
is not simply a reflection of hyperactivity (Lazarewicz et al., 2010;
Caixeta et al., 2013). Furthermore, although administration of
ketamine has also been shown to increase baseline, evoked, and
induced gamma power in the hippocampus, the relative power
of induced gamma, when compared to baseline recordings, was
decreased (Lazarewicz et al., 2010). Similar increases in sound-
evoked gamma oscillations were observed from LFP electrodes
located in the CA1 region (Sullivan et al., 2015). Importantly,
the same study obtained similar results from both surface
EEG recordings and LFP probes, providing verification that in
this case, non-invasive recording techniques reflected findings
obtained from more invasive methods, a critical step in assessing
the translatability of animal studies to humans (Sullivan et al.,
2015).

Increases in cortical gamma power following acute NMDAR
antagonism have also been observed in a number of in vivo
studies (Pinault, 2008; Hakami et al., 2009; Kocsis, 2012; Kulikova
et al., 2012; Phillips et al., 2012b; Jones et al., 2014; Molina
et al., 2014; Lee et al., 2017; Hansen et al., 2019; Aguilar et al.,
2021). In one study, however, the effects were dose-dependent,
with the highest doses leading to decreased gamma power
(Hiyoshi et al., 2014). Furthermore, although ongoing gamma
was elevated in another study, both stimulus-evoked gamma and
PPI were reduced, suggesting that sensory gating abnormalities
associated with schizophrenia may be linked to a diminished
ability to modulate gamma activity accordingly (Jones et al.,
2014). Pre-treatment with antipsychotics has also been shown
to reduce baseline gamma power in cortical regions, although
only chronic pre-treatment attenuated increased gamma power
following exposure to ketamine (Anderson et al., 2014), whereas
acute doses had no effect (Jones et al., 2012). However, in a
follow-up study, both ketamine and MK-801 administration
resulted in a reduction of evoked gamma power in response to a
pre-pulse stimulus. This effect was attenuated via administration
of clozapine only, indicating that the distinct mechanisms of
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action associated with these antipsychotics have specific effects
on either ongoing or evoked gamma activity (Hudson et al.,
2016).

Studies conducted in vitro have also reported increases in
induced gamma power in both hippocampal and prefrontal
slices following systemic exposure to MK-801 (Kehrer et al.,
2007; Lemercier et al., 2017), although there was no difference
in spontaneous gamma activity (Lemercier et al., 2017). These
effects were attenuated in a follow-up study via pre-treatment
with the antipsychotic cariprarzine (Meier et al., 2020).

Other important factors to consider are the time course
of drug action, the effects of downstream signaling cascades,
and other compensatory or homeostatic processes that may
not be captured by acute NMDAR blockade. For example, one
study has reported that hippocampal gamma was unaffected
following acute administration of MK-801 (Kalweit et al., 2017),
in contrast to several studies showing elevated gamma activity
(Ma and Leung, 2000, 2007; Kittelberger et al., 2012; Caixeta
et al., 2013; Ji et al., 2013; Nagy et al., 2016; Kealy et al.,
2017; Lee et al., 2017; Sampaio et al., 2018). However, in the
Kalweit et al. (2017) study, in vivo recordings were taken either
1 or 4 weeks after exposure to the drug, suggesting that acute
NMDAR hypofunction only has transient effects on gamma
activity. Interestingly, this manipulation still resulted in both
reduced LTP and theta/gamma cross-coupling at both time-
points, indicating that acute NMDAR hypofunction may have
more long–term effects on cross-frequency coupling. Studies
of chronic exposure to NMDAR antagonists have reported a
different pattern of results. For example, chronic administration
of ketamine resulted in a steady decrease in hippocampal gamma
power 2–4 weeks after treatment, and this coincided with
decreased numbers of PV+ interneurons (Kittelberger et al.,
2012). Paradoxically, however, animals with the greatest PV+
reductions had increased gamma power relative to animals with
smaller PV+ reductions (Kittelberger et al., 2012). Reduced
gamma power has been observed following chronic ketamine
(but not MK-801) exposure in slices from the rodent prelimbic
cortex, a region that is analogous to the human dorsolateral
prefrontal cortex (McNally et al., 2013). Taken together, these
studies indicate that chronic NMDAR hypofunction may result
in a different pattern of gamma abnormalities when compared to
more acute exposures, although more studies will be required to
explore this possibility.

EEG and MEG studies of baseline gamma activity in patients
with schizophrenia have reported mixed results, although acute
administration of ketamine in healthy humans typically produces
similar gamma increases to those observed in animal studies
(for a systematic review see Bianciardi and Uhlhaas, 2021). It
might therefore be expected that selective NMDAR knockout
models may show a more similar pattern to schizophrenia
patients, although surprisingly, such models have tended to
show increased baseline gamma activity in hippocampal regions
(Korotkova et al., 2010; Carlén et al., 2012; Tatard-Leitman
et al., 2015), more in line with acute NMDAR blockade.
These models did however manifest a range of cognitive and
behavioral abnormalities that reflect schizophrenia symptoms,
and auditory-evoked gamma was also reduced in the study by

Tatard-Leitman et al. (2015). Induced gamma was also reduced in
hippocampal slices from a mutant model lacking certain AMPA
receptors subunits on PV+ interneurons, and this result appeared
to proceed from imprecise spike timing (Fuchs et al., 2007).

MIA studies have shown that hippocampal gamma power at
baseline was unaffected in both familiar and novel environments,
but acoustic-evoked gamma and PPI were both reduced
(Nakamura et al., 2019). Reduced gamma power has also been
observed in an MIA model during decision making and memory
tasks, although this reduction was only observed in female
offspring (Schroeder et al., 2019). Reduced gamma coherence
between the PFC and hippocampus has also been associated
with diminished PPI, although gamma power was unaffected
(Dickerson et al., 2010, 2014). The temporal spiking of neurons
in relation to gamma oscillations was also disturbed in the MIA
model (Dickerson et al., 2010). Similar reductions of gamma
coherence were observed in MIA animals prior to repetitive
transcranial magnetic stimulation (rTMS), although this effect
was partially attenuated following the rTMS protocol, suggesting
that this may be a viable treatment option (Lippmann et al.,
2021). Taken together, these studies suggest that MIA leads to
reductions in either gamma power or coherence during specific
tasks, and these disruptions may have important functional
implications, for sensory gating in particular.

In another neurodevelopmental model, exposure to MAM on
GD 17 has also been shown to decrease stimulus-evoked gamma
power in offspring during a latent inhibition paradigm, and this
was correlated with decreased numbers of PV+ interneurons in
hippocampal and prefrontal regions (Lodge et al., 2009).

Models of genetic risk have also shown abnormal gamma
activity. Gamma power during active exploration was increased
in a Df(h15q13)/+ model, although relative evoked gamma
power in response to auditory stimulation was reduced (Fejgin
et al., 2014), a pattern that reflects aberrant gamma activity
frequently observed in schizophrenia patients (Light et al., 2006;
Spencer et al., 2008; Brenner et al., 2009). Reductions of gamma
power have also been observed in hippocampal slices from a
dysbindin-1 model (Zhao et al., 2021). However, in another
in vitro study, hippocampal gamma was indistinguishable from
controls in a model of LPA-1 deficiency, although gamma power
in superficial layers of the entorhinal cortex was significantly
increased (Cunningham et al., 2006). There are a number of
potential explanations for these different results, but the most
likely is that the regulation of gamma activity in hippocampal
regions may be affected by network activity that originates
outside the hippocampus proper and that these more complex
mechanisms are not captured in isolated slices (Cunningham
et al., 2006). In support of this proposal, emerging evidence
that entorhinal cortex-hippocampus pathways are critical for
the organization of information transfer at gamma frequencies
suggests that the integrity of EC transmission is likely to exert
important effects on hippocampal gamma power and synchrony
(Fernández-Ruiz et al., 2017, 2021).

Models targeting neuregulin signaling have also shown a
range of induced gamma abnormalities, including reduced
gamma frequency (Deakin et al., 2012) and power (Fisahn
et al., 2009) in hippocampal slices. Neuregulin signaling has
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been shown to be important for the synchronization of network
activity in the prefrontal cortex in vivo (Hou et al., 2014;
Barz et al., 2016), and increases of induced gamma power that
occur in wildtype animals were absent in mutant mice lacking
ErbB4 receptors on interneurons located in frontal regions (Hou
et al., 2014). Stimulus-evoked gamma is also reduced in mice with
the Neurogulin-1 genetic susceptibility (Barz et al., 2016). DISC-1
models have shown disturbed synchrony in the gamma range
that was associated with disrupted PV+ interneurons (Sauer et al.,
2015), and recent dual-hit models (DISC1 and MIA) have also
shown disorganized temporal spiking in relation to oscillatory
activity in the gamma range (Hartung et al., 2016; Chini et al.,
2020).

Several studies using animal models have also demonstrated
that the familiarity of the task or recording environment is likely
to exert important effects on gamma activity, suggesting that
gamma frequency oscillations may play an important role in
the reallocation of attentional resources in response to novelty.
For example, a reduced shift in the preferred gamma firing
phase of single cells located in the CA1 region in response to
novelty has been observed in a DISC-1 model of genetic risk,
and principal cells were more strongly phase- locked to both
gamma and theta oscillations, specifically in novel environments
(Kaefer et al., 2019). Novelty-induced irregularities were also
observed in a genetic model of NMDA hypofunction (SRKO),
in which the power of background gamma oscillations in frontal
regions was increased prior to a social recognition task. When
another animal was introduced to the testing arena, however,
there was an attenuated increase in gamma power relative to
controls, associated with reduced social recognition (Aguilar
et al., 2021). These disruptions may be due to neuregulin-
induced increases in dopamine signaling, as D4 dopamine
receptor agonists increased gamma activity in hippocampal
slices, and both NRG-1 and D4 receptor types are co-expressed
on PV+ interneurons (Andersson et al., 2012). In another study
that compared hippocampal-PFC gamma synchrony between
wildtype and hyperdopaminergic (DAT-KO) mice in both novel
and familiar environments, gamma synchrony between the
hippocampus and PFC was initially high in both groups in
the home environment. This was attenuated in the control
group when animals subsequently explored a novel environment,
resulting in elevated inter-regional gamma synchrony in the
mutant group when compared to controls (Dzirasa et al.,
2009). Although these studies are inconsistent in regards to the
enhancement or attenuation of gamma activity in response to
novelty, they all suggest that abnormal gamma activity during
rest is likely to be an important factor when interpreting such
results. Further support for this idea has been provided by studies
demonstrating elevated CA1 gamma activity in a ketamine model
when animals are well habituated to the environment (Caixeta
et al., 2013). Increased hippocampal gamma activity reminiscent
of REM sleep has also been observed in a DAT-KO model
as animals explored a novel environment, an effect that was
normalized via treatment with the antipsychotic haloperidol
(Dzirasa et al., 2006). Taken together, these studies suggest
that schizophrenia may be associated with inappropriate state-
dependent gamma processing, which may disrupt the facilitation

of long term potentiation (LTP) in response to novelty when
learning is likely to be most beneficial (Li et al., 2003).

Overall, the evidence from animal models is largely consistent
with human studies showing that gamma activity is disturbed
in individuals with schizophrenia. The majority of studies have
shown evidence of increased baseline gamma, whereas stimulus-
evoked and induced gamma were more frequently, but not
always, reduced. This suggests that abnormal gamma activity
in response to changing environmental and task demands may
underlie at least some of the sensory gating and task switching
disturbances that have been associated with the disorder.

SHARP WAVE RIPPLES AND REPLAY

Sharp wave ripples (SPW-Rs) involve an irregular pattern of
large amplitude waves that are typically present in hippocampal
regions during slow-wave sleep, or when animals are awake
but immobile (Buzsáki, 1986, 2015). These sharp wave events
typically last for around 40–100 ms and are accompanied by
a ‘‘ripple’’ oscillation that occurs above the gamma frequency
range, between 100 and 200 Hz. The SPW-R is the LFP event that
co-occurs with a neuron-level phenomenon known as a replay,
whereby sequences of place field activity that has previously
occurred during active exploration are reactivated (Pavlides and
Winson, 1989; Wilson and McNaughton, 1994; Lee and Wilson,
2002). The reactivation of sequential spiking activity that occurs
during SPW-Rs occurs in a time-compressed manner such that
the representation of events occurs in a timeframe that is suitable
for the induction of synaptic plasticity (Davidson et al., 2009).
These reactivation patterns are most prominent during the first
few hours after learning, and they are thought to contribute
to the consolidation of newly acquired information and the
subsequent transfer of memory from the hippocampus to more
permanent storage in neocortical regions. Consistent with this
proposal, perturbation of SPW-R activity during post-learning
sleep in rodents has been shown to impair performance on spatial
memory tasks (Girardeau et al., 2009; Ego-Stengel and Wilson,
2010). Similarly, stimulation of reward regions in response
to SPW-R related place cell activity during sleep has been
shown to induce an artificial place/reward association, providing
compelling evidence that replay during sleep is functionally
important for goal-related spatial memory (De Lavilléon et al.,
2015). Replay events have also been shown to predict future
trajectories (preplay) and so they may also have a role in planning
(Pfeiffer and Foster, 2013).

Disordered ripple events have been observed in both
a methylazoxymethanol acetate (MAM) neurodevelopmental
model (Phillips et al., 2012a), and a DISC-1 genetic model
(Altimus et al., 2015). Other studies, using a genetically modified
calcineurin animal model which has been shown to reproduce
several phenotypes associated with schizophrenia (Miyakawa
et al., 2003), have also demonstrated a substantial increase in
hippocampal SPW-R events in mutant animals during awake
rest, as well the elimination of sequential replay (Suh et al., 2013).
Furthermore, in a recent in vitro study, the temporal structure
of SPW-R events was shown to be altered in hippocampal
slices obtained from MIA animals (Gao et al., 2019). These
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findings are all consistent with the hypothesis that pathological
ripple activity could be involved in schizophrenia (Buzsáki,
2015). Recent advances have also made it possible to investigate
SPW-R events in humans (Liu et al., 2019), and early evidence
from schizophrenia patients indicates that replay is diminished,
although ripple activity is enhanced relative to control subjects.
in schizophrenia patients (Nour et al., 2021). These findings are
consistent with the animal literature, although further work will
be required to determine how these changes affect processes such
as memory consolidation and planning. Furthermore, it is not
clear what underlying changes produce the alterations in SPW-R
events that are described here. For example, do they reflect subtle
changes in circuitry or functional connectivity, or are they simply
a response to a general loss of inhibition?

THETA FREQUENCY OSCILLATIONS IN
THE HIPPOCAMPUS AND PFC

Although early studies of disturbed oscillatory activity in
individuals with schizophrenia have focused predominantly on
higher-frequency oscillations (Uhlhaas and Singer, 2010), more
recent work has demonstrated that disturbances in the lower-
frequency theta band are also common (Schmiedt et al., 2005;
Siekmeier and Stufflebeam, 2010; Kirihara et al., 2012; Frantseva
et al., 2014; Griesmayr et al., 2014; Andreou et al., 2015; Cousijn
et al., 2015; Di Lorenzo et al., 2015; Garakh et al., 2015; Kim
et al., 2015; Javitt et al., 2018; Ryman et al., 2018; Adams
et al., 2020). Theta oscillations are thought to coordinate long-
range communication across regions (Von Stein and Sarnthein,
2000; Moran and Hong, 2011) and theta frequency disturbances
are therefore likely to be critical for a wide range of complex
cognitive processes that require the integration of both higher
and lower order processes across distributed networks. Theta
oscillations in hippocampal and prefrontal regions have been
extensively studied in both humans and non-clinical animal
models, and theta activity in these regions has been associated
with an exceptionally diverse range of cognitive operations,
including episodic, spatial, and working forms of memory,
sequential processing, adaptive learning, error monitoring,
relational binding, social cognition, and flexible decision making.
These studies have been comprehensively reviewed elsewhere
(Hasselmo, 2005; Nyhus and Curran, 2010; Buzsáki and Moser,
2013; Colgin, 2013, 2016; Cavanagh and Frank, 2014; Hasselmo
and Stern, 2014; Buzsáki and Tingley, 2018; Herweg et al., 2020;
Karakas̨, 2020).

The biophysical mechanisms underlying theta oscillations
have also been extensively studied in non-clinical animal models,
and such studies have provided a framework from which to
understand the likely role of schizophrenia pathophysiology in
disturbed oscillatory activity (Lisman and Buzsáki, 2008). For
example, the generation and maintenance of the hippocampal
theta rhythm involve several neurotransmitter systems that are
known to be disturbed in schizophrenia, including the glutamate,
GABA, dopamine, and acetylcholine systems (Freund and Antal,
1988; Stewart and Fox, 1990; Howes and Kapur, 2009; Losonczy
et al., 2010; Moghaddam and Javitt, 2012; Nakazawa et al., 2012;
Gonzalez-Burgos et al., 2015; Drieu and Zugaro, 2019; Caton

et al., 2020). Furthermore, the regulation of local inhibitory
networks has also been shown to exert profound effects on
theta synchrony (Cobb et al., 1995; Kamondi et al., 1998;
Goutagny et al., 2009). In particular, PV+ interneurons that
target the peri-somatic regions of principal cells appear to play
an important role in the temporal coordination of rhythmic
LFPs within the theta range, as well as the temporal spiking
profile of single cells relative to distinct theta phases of the
theta cycle (Wulff et al., 2009; Stark et al., 2013; Amilhon et al.,
2015). Findings from animal models of schizophrenia risk are
generally consistent with these findings, indicating that theta
disturbances frequently co-occur with disturbed GABAergic
signaling, particularly at the site of PV+ interneurons (Lodge
et al., 2009; Korotkova et al., 2010; Ducharme et al., 2012; Del
Pino et al., 2013; Dickerson et al., 2014; Sauer et al., 2015;
Nakamura et al., 2019).

To date, a broad range of abnormalities in theta activity
in hippocampal and prefrontal regions have been described in
animal models of schizophrenia, with evidence of both enhanced
and reduced theta power, coherence, and synchrony. Models
of NMDAR hypofunction, including both acute exposure and
selective knockout models, have shown evidence of decreased
baseline theta power in hippocampal regions (Korotkova et al.,
2010; Lazarewicz et al., 2010; Kalweit et al., 2017). Event-
related theta power in the hippocampus was also significantly
reduced following sub-chronic exposure to ketamine when
animals were tested 6 months after cessation of the drug exposure
protocol, suggesting that chronic NMDAR hypofunction over
a discrete time period can exert more permanent effects
on circuitry (Featherstone et al., 2012). Acute administration
of ketamine, however, led to layer-specific modulation of
theta power in CA1 as animals freely moved around the
recording apparatus (Caixeta et al., 2013). These latter data are
consistent with evidence that theta properties vary systematically
according to the precise location of recording electrodes in
the hippocampus (Buzsáki et al., 1985; Brankǎck et al., 1993;
Lubenov and Siapas, 2009), and suggest that quite small changes
in experimental procedures could influence the results. Increased
theta power has also been observed in a genetic model of
the disorder that knocks out a neuregulin receptor (ERBb4), a
critical receptor for the integrity of fast-spiking interneurons.
This increase in theta power co-occurred with increased
intra-regional coherence across the hippocampal circuit but
decreased theta synchrony between the hippocampus and PFC
(Del Pino et al., 2013).

Disrupted phase-locking of single cells located in either the
PFC or the hippocampus to the hippocampal theta rhythm
has also been observed in both a DISC1 and a 22q11 deletion
(Df(16)A + /-) model, including decreases in both the phase-
locking strength of individual cells, as well as the synchronization
of preferred locking phase at the network level (Sigurdsson
et al., 2010; Kaefer et al., 2019). In the Df(16)A + /- model,
these disturbances were also associated with reduced LFP
coherence between the hippocampus and the PFC, as well as
working memory impairments (Sigurdsson et al., 2010). Similar
reductions were observed in an alternative model targeting the
22q11.2 deletion, in which the deficiencies at the site of the
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ZDHHC8 gene resulted in reduced axonal growth during early
development (Mukai et al., 2015).

Prelimbic theta synchrony has also been shown to be
reduced in a DISC-1 model, although this effect appeared to be
driven by reduced theta power in the hippocampus, although
coherence was unaffected (Sauer et al., 2015). Disorganized
hippocampal theta oscillations and reduced hippocampal/PFC
theta synchrony have recently been observed in neonates
exposed to a dual-hit procedure (DISC-1 and MIA). However,
theta synchrony was subsequently augmented in pre-juveniles,
suggesting that theta activity is likely to be sensitive to ongoing
developmental processes (Hartung et al., 2016). Furthermore,
unlike the single-hit genetic model (DISC1), MIA did not
affect synchrony on its own, suggesting that the time-course
of disruptions associated with each model is different and
that such disruptions interact with each other in a complex
fashion (Hartung et al., 2016). Interestingly, MIA has also been
shown to delay the maturation of GABAergic transmission from
predominantly depolarizing to hyperpolarizing (Corradini et al.,
2018; Fernandez et al., 2018), which suggests that the precise
time-course of such developmental shifts could potentially play a
crucial role in the emergence of coordinated network synchrony
later in life.

Single hit MIA models have generally shown a number of
theta frequency disturbances once offspring reach maturity,
including increased theta power at baseline, but reductions
in evoked theta power (Nakamura et al., 2019). Increased
theta power has been observed to occur in conjunction with
diminished synaptic inhibition in hippocampal slices following
an MIA manipulation (Ducharme et al., 2012). Decreased
coupling between hippocampal and prefrontal regions has
also been observed in an anesthetized MIA model, although
coherence was similar to controls (Lippmann et al., 2021).
However, theta coherence and the phase locking of PFC cells to
hippocampal theta have been shown to be disturbed in an MIA
model during waking behaviors (Dickerson et al., 2010, 2014),
similar to findings reported in genetic-risk models (Sigurdsson
et al., 2010). Furthermore, abnormal theta synchrony between
these regions was attenuated in the MIA model following
administration of the antipsychotic clozapine, although local
increases in theta power were only observed in the PFC,
suggesting that long-range coherence was more likely to be
mediated by increased PFC theta synchrony than local changes
in the hippocampus (Dickerson et al., 2012).

Reductions in PFC theta activity have also been reported in
the MAM model of schizophrenia during a fear conditioning
paradigm, while theta activity in the hippocampus was
unchanged, again suggesting that theta disruptions in the
PFC may be driving the functional dysconnectivity between
these regions (Lodge et al., 2009). The same MAM model
has previously been shown to produce both hippocampal
hyperactivity and a subsequent hyperdopaminergic state that
could be attenuated via inactivation of the ventral hippocampus,
suggesting that hippocampal signaling may exert important
effects on theta activity in downstream regions via dopamine
modulation (Lodge and Grace, 2007, 2008). This is consistent
with proposals that GABAergic disturbances in hippocampal

regions are likely to have important effects on downstream
dopamine signaling (Sonnenschein et al., 2020). However, theta
phase synchrony between the hippocampus and PFC was not
disrupted in a hyperdopaminergic model of the disorder created
by knocking out a key dopamine transporter gene, suggesting
that dopamine irregularities are not likely to be the primary
mechanism of dysfunctional theta activity between these regions
(Dzirasa et al., 2009).

Interestingly, infusion of dopamine into the PFC of naïve,
anesthetized rats initiated similar increases in theta phase
coherence and synchrony between the PFC and hippocampus
to those observed during successful rule learning (Benchenane
et al., 2010). This suggests that dopamine signaling in response
to salient stimuli and prediction error may play a critical role
in coordinating phase synchrony between the hippocampus and
PFC and that such synchrony supports adaptive learning. Further
support for this hypothesis has been provided by both human
and rodent studies showing that lower frequency oscillations
(<12 Hz) are important for adaptive behavioral adjustments
in response to error detection (Narayanan et al., 2013).
Hyperdopaminergic activity in schizophrenia may, therefore,
contribute to inefficient cognitive task switching in response to
current environmental and motivational demands.

In support of this hypothesis, a reduced novelty-induced shift
in the preferred theta phase of CA1 cells has been observed in
a DISC-1 model, accompanied by disturbed theta coordination
at the network level during exploration (Kaefer et al., 2019).
The DISC-1 model has also been associated with a number
of dopamine signaling abnormalities (Trossbach et al., 2016).
It has been proposed that hippocampal-PFC theta coherence
may reflect sustained attention rather than working memory,
as impaired spatial working memory performance could be
predicted by either low gamma or beta coherence in a genetic
risk model (gria1-/-), while theta coherence was only disturbed
in a novelty recognition paradigm (Bygrave et al., 2019). Given
that several studies have also documented abnormal theta activity
during resting states in both patients with schizophrenia and
animal models of the disorder (Karbasforoushan and Woodward,
2012; Del Pino et al., 2013; Kaefer et al., 2019), these findings
indicate that the dynamic modulation of theta activity in
response to salient changes in either contextual cues or task
demands may be a more critical component of schizophrenia
pathology than simple hypo- or hypersynchrony within and
between these regions.

In human studies, reduced theta power and diminished theta
phase coupling between the mPFC and the medial temporal lobe
have been observed in individuals with schizophrenia, and this
was correlated with both memory performance and abnormal
GABAA receptor expression in the schizophrenia group (Adams
et al., 2020). Both the coherence of theta oscillations between
hippocampal and prefrontal regions and the synchronous
phase locking of PFC neurons to the hippocampal theta
rhythm have been associated with spatial and working memory
performance (Zielinski et al., 2019) as well as successful rule
learning (Benchenane et al., 2010) in non-clinical rodent models.
Tests of animal models of schizophrenia that have included
a cognitive task have generally been consistent with these
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findings, demonstrating that reduced theta coupling between the
hippocampus and PFC is correlated with both spatial working
memory deficits (Dzirasa et al., 2009; Sigurdsson et al., 2010; Del
Pino et al., 2013) and reduced pre-pulse inhibition (Dickerson
et al., 2010). Reductions in hippocampal theta power (Korotkova
et al., 2010) and frequency (Fejgin et al., 2014) have also been
associated with spatial memory deficits in animal models. In one
model, however, impaired recognition memory was correlated
with enhanced hippocampal/PFC coupling, although in that
study, LFP activity was recorded while animals were under-
anesthesia, which is unlikely to reflect theta activity that is
directly associated with the cognitive task (Hartung et al., 2016).
Additional studies will be required to clarify some of these
outstanding issues, although in general, these studies suggest that
targeting theta activity in hippocampal and prefrontal regions
may be a promising avenue for future research into cognitive
disorganization in schizophrenia.

Intriguingly, another study using a neurodevelopmental
model of schizophrenia has demonstrated that targeted cognitive
training during adolescence can normalize theta synchrony
within hippocampal regions and that this normalization
coincided with a rescue of the cognitive deficits that typically
emerge post-adolescence (Lee et al., 2012). This suggests that
targeting basic level mechanisms that support learning and
memory during critical developmental periods is a viable strategy
for preventing the development of schizophrenia in high-risk
individuals, although it remains unclear whether directly
enhancing theta coupling between hippocampal and prefrontal
regions can also prevent pathological trajectories. In this vein,
however, a recent study has shown that non-invasive electrical
stimulation to frontal regions can promote theta synchrony in
schizophrenia patients and that this effect was accompanied by
improved cognitive control (Reinhart et al., 2015).

Overall, the evidence from animal models supports the
proposal that disturbed theta activity may be related to several
cognitive deficits observed in the disorder, although the pattern
is complex. While NMDAR hypofunction models have generally
shown evidence of reduced theta power, models of both genetic
and environmental insults during early neurodevelopment
have produced more variable results. This aside, coordinated
synchrony between the hippocampus and PFC and abnormal
phase-locking of single cells to the theta rhythm has been
consistently observed across several studies suggesting that these
processes may be a viable target for novel interventions.

THETA/GAMMA CROSS-COUPLING

LFP oscillations at gamma frequencies are often nested within
the slower theta rhythm during specific behaviors, with higher
gamma amplitudes typically coupled to the peak of the theta
oscillation (Csicsvari et al., 2003; Belluscio et al., 2012; Colgin,
2016). This phenomenon, known as cross-frequency coupling, is
thought to play an important role in the temporal organization
of information during working and episodic memory processes
(Lisman and Idiart, 1995; Lisman, 2005; Lisman and Buzsáki,
2008; Lisman and Jensen, 2013). Support for this hypothesis
has been obtained in a number of studies showing that the

strength of theta/gamma cross-coupling is increased during
successful memory performance in rodents (Tort et al., 2009;
Shirvalkar et al., 2010), monkeys (Jutras et al., 2009), and humans
(Sederberg et al., 2006; Axmacher et al., 2010; Maris et al., 2011;
Heusser et al., 2016).

It has also been proposed that the theta/gamma neural code
may function as a neural syntax, with each gamma oscillation
representing a single ‘‘word,’’ while the theta oscillation works to
organize the sequential order of such ‘‘words’’ into meaningful
sentences (Lisman and Buzsáki, 2008; Buzsáki, 2010). Disturbed
cross-frequency coupling has thus been linked to cognitive
disorganization in schizophrenia (Lisman and Buzsáki, 2008),
although experimental evidence for this proposal has been
challenging to obtain. For example, no differences in cross-
frequency coupling were observed when patients performed
a simple auditory processing task (Kirihara et al., 2012), and
although global theta/gamma cross-coupling was diminished
in another study, it was actually enhanced for patients across
electrodes located specifically in frontal temporal regions (Allen
et al., 2011). More recently however, impaired theta/gamma
cross-coupling in the PFC has been observed in patients while
they performed a working memory task, and this was associated
with poor task performance when compared to control subjects
(Barr et al., 2017). Interestingly, peak gamma power for
individual items within a sequence has also been shown to be
organized sequentially according to distinct theta phases in
healthy humans (Heusser et al., 2016), suggesting that disturbed
phase coupling could be involved in the disorganization of
temporal sequencing.

Hippocampal theta/gamma coupling has been investigated
in several animal models of the disorder. In general, coupling
deficits have been reported with the hippocampus itself (Caixeta
et al., 2013; Kalweit et al., 2017). Administration of ketamine has
been shown to alter hippocampal theta/gamma cross-coupling
in a dose-dependant manner, with increased coupling evident
for the lowest dose (25 mg/kg), but diminished coupling at the
highest dose (75 mg/kg; Caixeta et al., 2013). In another study
that used an alternative NMDA antagonist model (MK801),
hippocampal theta/gamma cross-coupling was transiently
disrupted during a high-frequency stimulation protocol designed
to induce LTP, and this uncoupling co-occurred with diminished
theta power, whereas gamma activity remained uninterrupted
(Kalweit et al., 2017). Previous studies have demonstrated that
theta/gamma coupling is highly correlated with LTP induction
(Bikbaev and Manahan-Vaughan, 2007, 2008), and given that
hippocampal LTP was also profoundly diminished following the
transient NMDA blockade, it is possible that disrupted cross-
frequency coupling reflects aberrant plasticity processes (Kalweit
et al., 2017). However, it remains unclear whether disturbed
coupling is a cause or effect of impaired synaptic plasticity, or
whether reduced coupling in these models is associated with
cognitive deficits.

Diminished theta/gamma phase coupling within both the
hippocampus and prefrontal cortex has also been observed in
an NMDA hypofunction model (NR1 KD) as animals explored
a novel environment, although inter-regional phase coupling
was enhanced, suggesting that hyper-coupling between these
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regions could also be involved in pathological outcomes (Dzirasa
et al., 2009). Enhanced cross-coupling between these regions
was also observed in a dual-hit model (DISC-1 and MIA)
under anesthesia, and although no differences were observed
in either single-hit models in that study (Hartung et al.,
2016), enhanced coupling was observed in another single-hit
MIA model (Lippmann et al., 2021). This enhanced coupling
furthermore was attenuated when animals were pre-treated
with an rTMS protocol (Lippmann et al., 2021). The enhanced
coupling has also been observed in naïve animals following
stimulation of dopamine cells in the VTA (Lohani et al., 2019),
suggesting that hyperdopaminergic activity in schizophrenia may
also play a role.

Although the gamma rhythm has historically been
conceptualized as a singular rhythm that encompasses a broad
frequency range, recent reports suggest that gamma frequencies
may be better conceptualized as two distinct frequency bands,
with low gamma activity occurring at frequencies between
30 and 60 Hz, whereas high gamma occurs between 60 and
100 Hz (Colgin et al., 2009). These distinct bands are thought
to have complementary functions in the hippocampus and may
allow for the integrated organization of internally and externally
generated information arriving from different sources. Thus,
high gamma activity frequently occurs around the peak of the
theta oscillation, and is thought to play an important role in the
encoding of sensory information arriving from the EC, while low
gamma tends to occur during the descending phases of the theta
oscillation, and has been predominantly associated with memory
retrieval processes originating in CA3 (Colgin et al., 2009;
Schomburg et al., 2014). CA1 low gamma also predominantly
co-occurs with sequential processing that sweeps ahead of the
animal’s current location, suggesting that it is preferentially
involved in the prospective coding of future locations, whereas
high gamma appears to represent the animal’s current location
in real time (Senior et al., 2008; Zheng et al., 2016), as well as
during retrospective encoding of recently visited locations (Bieri
et al., 2014). Although it currently remains unclear whether low
and high gamma typically co-occur during a single theta cycle,
or whether separate theta cycles preferentially represent either
future and present locations depending on the animal’s current
situation and goals (Colgin et al., 2009; Zheng et al., 2016),
these findings suggest that cross-coupling may be important for
the organized integration of new information within existing
schemas. This coding scheme could also have important
implications for aberrant source monitoring in schizophrenia
(Brébion et al., 2000; Martin et al., 2014), potentially shifting
the emphasis from externally generated sensory information
to internally generated representations, and vice versa. At the
present time, however, it is unclear how the high/low gamma
relationship is influenced by schizophrenia or is affected in
animal models of the disorder.

HIPPOCAMPAL PHASE PRECESSION AND
THETA SEQUENCES

The theta rhythm is not only an indicator of synchronous neural
activity, but it also serves as a reference signal against which

temporal, or phase coding of information can occur. Theta
phase precession is a form of temporal coding that was first
observed in CA1 place cells as animals moved along a linear
track. In addition to spatial rate coding, which produces localized
‘‘place fields’’, it was noticed that the firing phase of these cells,
referenced to the underlying theta-frequency LFP oscillation,
changed systematically from a later to earlier phases of successive
theta cycles as an animal advanced across a place field (O’Keefe
and Recce, 1993; Skaggs et al., 1996). As a result, the firing phase
of a cell provides information about where the animal is located
within a place field, over and above that of the conventional rate
code, and several studies have confirmed that this phase code is
a more robust predictor of an animal’s current location than the
rate code alone (Jensen and Lisman, 2000; Huxter et al., 2003;
Tingley and Buzsáki, 2018).

While phase precession describes location-dependent changes
in the spiking activity of single cells, it also has important
implications for sequential processing at the network level.
When several cells with overlapping place fields are co-active,
the phase precession of individual cells produces an emergent
phenomenon known as a ‘‘theta sequence’’ (Foster and Wilson,
2007), wherein recently experienced event sequences occurring
at behavioral timescales are preserved and compressed within a
single theta cycle (∼120 ms), a timescale that is suitable for the
induction of synaptic plasticity (Skaggs et al., 1996; Bi and Poo,
1998; Dan and Poo, 2004). Theta sequences have thus garnered
considerable interest as a mechanism of sequential memory
encoding and storage (Skaggs et al., 1996; Dragoi and Buzsáki,
2006; Jaramillo and Kempter, 2017; Buzsáki and Tingley, 2018;
Drieu and Zugaro, 2019). Several studies have now confirmed
that theta sequences rapidly emerge during active exploration of
an environment, although additional network synchronization
is required to ensure that critical phase precession properties,
such as the starting phase and slope of precession, are relatively
coherent across co-active cells (Foster and Wilson, 2007; Schmidt
et al., 2009; Feng et al., 2015).

Both phase precession and theta sequences have now been
observed in a range of experimental conditions, including tasks
that require goal-planning and decision-making (Johnson and
Redish, 2007; Gupta et al., 2012; Wikenheiser and Redish,
2015), as well as several paradigms that don’t include a spatial
component (Lenck-Santini et al., 2008; Pastalkova et al., 2008;
Royer et al., 2012; Cei et al., 2014). Importantly, hippocampal
phase coding has also been associated with the sequential
integration of sound and odor cues (Terada et al., 2017), as well
as internally generated states (Takahashi et al., 2014; Wang et al.,
2015). These findings suggest that theta sequences are involved
in the complex construction of mental maps, an important
component of both episodic memory and decision making
(Kaplan et al., 2017). Interestingly, the developmental emergence
of theta sequences has recently been shown to coincide with
the maturation of hippocampal memory in rodents (Muessig
et al., 2019), providing compelling evidence that theta sequences
may serve as a neural substrate for episodic memory traces
more generally. Recent studies have also demonstrated that theta
sequences are associated with episodic memory and sequential
planning in humans (Heusser et al., 2016; Kaplan et al., 2020),
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FIGURE 1 | Disorganized phase coding of hippocampal place cells produces disordered theta sequences in maternal immune activation (MIA) animals. The upper
cartoon illustrates phase coding occurring as an animal crosses a place field, with phase color-coded. As the animal enters the place field, the cell spikes at late
phases of the theta cycle, but spiking processes towards earlier phases as the animal traverses the field. The lower cartoon demonstrates how theta sequences
emerge as a result of phase precession in several cells with overlapping place fields. In the control example, the starting phase of precession is coordinated at the
network level, resulting in ordered theta sequences that are concentrated along a portion of a theta cycle. Here cell A fires first during the theta cycle because the
animal is exiting this place field. In contrast Cell D fires last, because the animal is entering this field. In the MIA example, starting phase varies from cell to cell,
resulting in disordered sequences that are also spread further across the theta cycle.

and direct evidence of phase precession has also been confirmed
in single cell recordings from human subjects performing a
virtual reality navigation task (Qasim et al., 2020).

Hippocampal phase precession has only recently been
investigated in a model of schizophrenia risk. In this study, the
firing of individual pyramidal cells in the CA1 region of MIA
animals displayed what appeared to be normal phase precession
as these animals moved through that cell’s place field. On closer
examination, however, the starting phase of this precession as an
animal enters a new place field was considerably more variable
between-cells in MIA animals than in controls (Speers et al.,
2021). An important theoretical consequence of this variability
is that the sequence of place fields (or other experiences) that
an animal encounters would be replayed in a disordered manner
during each theta sequence (Figure 1). To test this hypothesis, the
correlations between the spike time difference of simultaneously
recorded cell pairs and the distance between their respective
place fields were determined. Results showed that there was a
significant positive correlation between these two measures in
the control cells, as would be expected if theta sequences are

functioning normally. In contrast, there was no such relationship
in the MIA cells indicating that theta sequences were disordered
in the MIA group (Speers et al., 2021). To illustrate the effect of
this change, in MIA animals a sequence experienced in the order
ABCD would be encoded and recalled in a disordered fashion,
for example as BDCA.

In addition to disordered theta sequences, increased starting
phase variability should result in reduced clustering of sequential
spiking within each consecutive theta cycle, provided that
individual cells do not precess a full 360 degrees (Schmidt
et al., 2009). This could potentially allow spikes from one
cycle to become erroneously associated with those in the next
cycle, further corrupting the sequential order of experience, as
well as distorting the segmentation of experience into discrete
events (Gupta et al., 2012). An analogy for this phenomenon
is that the pause in firing that normally occurs between
cycles serves as ‘‘punctuation’’ by separating out units of
meaningful information. This lack of ‘‘punctuation,’’ if it occurs
in schizophrenia, may contribute to a disintegration of event
boundaries (Lisman and Buzsáki, 2008; Richmond et al., 2017),
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consistent with evidence that event segmentation is disrupted
at both lower and higher order levels among individuals with
schizophrenia (Zalla et al., 2004; Coffman et al., 2016).

Two previous studies have also provided indirect evidence
that the phase coding may be disrupted in other animal models
of schizophrenia, although phase precession itself was not
explicitly investigated. In one study, the phase-locking preference
of CA1 cells to theta was more variable in a DISC-1 model
(Kaefer et al., 2019), which would be a logical consequence of a
more variable starting phase. Another study has demonstrated
that administration of PCP, which has been shown to induce
transient schizophrenia-like symptoms in healthy individuals
and to exacerbate symptoms in patients, disrupts the precise
spike timing of place cell pairs relative to the theta rhythm
without disrupting other place field properties (Kao et al., 2017).
Both of these studies are consistent with the findings outlined in
Speers et al. (2021), suggesting that disorganized phase coding
mechanisms potentially occur in other models of schizophrenia.
Furthermore, although the precise mechanisms of phase
precession and theta sequences remain to be elucidated, several
animal models of schizophrenia have shown evidence of basic-
level disturbances that are consistent with a discoordination of
phasic spiking, with current evidence pointing towards PV+
interneurons as a critical factor (Lodge et al., 2009; Ducharme
et al., 2012; Royer et al., 2012; Del Pino et al., 2013; Dickerson
et al., 2014; Drieu and Zugaro, 2019).

Phase precession has been shown to occur in regions
outside of the hippocampus, suggesting that phase coding
mechanisms could be important across a wider distributed
network. For example, phase precession has been documented
in the prefrontal cortex (Jones and Wilson, 2005), as well as in
subcortical areas that are likely to be important for dopamine
regulation, such as the lateral septum, the striatum, and the
ventral tegmental area (Lansink et al., 2009; Luo et al., 2011;
van der Meer and Redish, 2011; Tingley and Buzsáki, 2018). In
turn, striatal dopaminergic concentrations have been shown to be
strongly influenced by the synchronization of GABAergic micro-
circuits in a computational model, suggesting that dopamine
might have a wider modulatory role in the coordination of phasic
spiking at the network level (Humphries et al., 2009).

Finally, if theta sequences provide the biophysical scaffolding
that supports the encoding and storage of temporally extended
memories, then a disruption of this system could have profound
implications for learning and memory processes, as well as the
disorganization of thought that occurs in the disorder (Lisman
and Buzsáki, 2008). Sequential processing deficits have frequently
been documented in schizophrenia patients, their first-degree
relatives, and other at-risk individuals, including disturbances
of temporal order judgment and impaired sequence learning
(Dickinson et al., 2007; Lisman and Buzsáki, 2008; Pedersen
et al., 2008; Siegert et al., 2008; Meck et al., 2013; Ciullo
et al., 2016; Eichenbaum, 2017a; Thoenes and Oberfeld, 2017).
Such deficits also appear to be independent of other cognitive
impairments (Ciullo et al., 2016), suggesting that they may be
a primary feature of the disorder and a potential trait marker
(Andreasen et al., 1999). A fundamental disorganization of
sequential processing mechanisms could furthermore affect a

wide range of cognitive processes that have been shown to be
disturbed in schizophrenia (Barch and Ceaser, 2012; Thoenes
and Oberfeld, 2017), and which can be effectively modeled
in animals. Additional studies will be required to establish a
more direct link between disrupted phase coding and these
specific cognitive deficits, and this is a promising area for
further research.

DISCUSSION

In summary, we have described how oscillations in neural
systems may serve as a scaffold upon which coherence and
communication can be achieved within and between brain
regions. We have also discussed how disruptions in these
oscillatory mechanisms could lead to the kind of disorganized
processing and functional disintegration that is observed in
schizophrenia, to the degree that it might underlie some of
the core features of the disorder, particularly the disruption of
episodic memory and planning processes. While dysfunction
in a number of different brain regions is likely to occur in
schizophrenia, we have chosen to focus on the hippocampus
because of its role in encoding sequential information across
time and space. The use of animal models has allowed for a
detailed examination of the biological mechanisms that might
underlie these processes, with current evidence pointing to
local GABAergic circuits as a critical component of coordinated
spiking activity, as well as network synchrony within and
between the hippocampus and PFC. A graphical overview of
these disruptions as they occur at the microscopic, mesoscopic,
and macroscopic levels is provided in Figure 2.

In particular, we have focussed on phase precession
and theta sequences because of their potential to underlie
certain types of sequence learning, and have described how
a disruption of phase precession, as observed in the MIA
model, could result in a fundamental disorganization of
sequential information processing. If a similar dysfunction
occurs in schizophrenia, it may contribute to several symptoms
of cognitive disorganization that have been documented in
schizophrenia, such as and impaired episodic and working
memory, diminished future planning, thought disorder, and
misattributions of agency and control. Taken together with
the large body of evidence documenting sequential processing
and episodic memory deficits in schizophrenia, these findings
suggest that investigating disorganized phase coding in different
animal models of the disorder is a promising area for future
research.

Correlational evidence linking disturbed oscillatory processes
to cognitive dysfunction has been provided across a number
of animal models of the disorder, although this work is still
in its early stages. In particular, more direct manipulations
that target oscillatory activity within specific frequency ranges
are still required to confirm that these phenomena are
causally linked. Such studies are currently difficult due to the
complex nature of the oscillatory activity that occurs across
distributed networks, but emerging evidence describing the
basic level mechanisms of coordinated network synchrony
and phase coding, in addition to technological advances, is
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FIGURE 2 | Disorganized oscillatory activity provides the mesoscopic link between microscopic disruptions at the cellular and molecular level, and macroscopic
outcomes for impaired cognition in schizophrenia. At the microscopic level, hypofunction at the site of NMDA receptors leads to an imbalance of excitatory/inhibitory
regulation in schizophrenia. This in turn is thought to lead to dysregulation of dopamine transmission, with hyperdopaminergic activity predominant in sub-cortical
regions. At the mesoscopic level, local field potential (LFP) synchrony is disturbed across several frequency bands, including theta and gamma. This can manifest as
a desynchronized activity within and between hippocampal and prefrontal regions, and disturbed theta/gamma cross coupling. A failure to coordinate the spiking of
single cells relative to the hippocampal theta rhythm also leads to disordered theta sequences and diminished neural syntax across multiple theta cycles, as well as a
loss of structured replay activity during sharp-wave ripples. Finally, at the macroscopic level, these disturbances are thought to contribute to functional
dysconnectivity across distributed networks. At the cognitive and behavioral levels, this manifests as diminished performance across a range of tasks.
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likely to open up new pathways for animal research in this
domain.

Finally, animal models of the disorder with good construct,
face, and predictive validity have the potential to allow for the
complex aetiological and developmental processes associated
with schizophrenia to be unpacked, including the pathological
trajectories that contribute to disorganized oscillatory at critical
stages of neural development and maturation. At the present
time, however, a number of research questions addressing
these issues remain unanswered. Future studies that attempt
to attenuate abnormal network synchrony and phase coding
disturbances in animal models via administration of either
antipsychotics or drugs that specifically target dysfunctional
inhibitory networks, will help to clarify whether the disorganized
oscillatory activity may be a viable target for preclinical
interventions, as well as the development of novel treatments.
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