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Abstract: The steady spread of the 2019 Coronavirus disease has brought about human and economic
losses, imposing a new lifestyle across the world. On this point, medical imaging tests such as
computed tomography (CT) and X-ray have demonstrated a sound screening potential. Deep learning
methodologies have evidenced superior image analysis capabilities with respect to prior handcrafted
counterparts. In this paper, we propose a novel deep learning framework for Coronavirus detection
using CT and X-ray images. In particular, a Vision Transformer architecture is adopted as a backbone
in the proposed network, in which a Siamese encoder is utilized. The latter is composed of two
branches: one for processing the original image and another for processing an augmented view of
the original image. The input images are divided into patches and fed through the encoder. The
proposed framework is evaluated on public CT and X-ray datasets. The proposed system confirms its
superiority over state-of-the-art methods on CT and X-ray data in terms of accuracy, precision, recall,
specificity, and F1 score. Furthermore, the proposed system also exhibits good robustness when a
small portion of training data is allocated.

Keywords: COVID-19; vision transformer; computed tomography; X-ray images; deep learning

1. Introduction

Over the past two years, the world has endured an unprecedented pandemic, namely
COVID-19, which is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-
CoV-2). Notwithstanding the tremendous efforts that have been undertaken to contain this
pandemic at the global level, the world is still dealing with the heavy aftermath, ranging
from human losses to economic recessions.

Common medical diagnostic methods of COVID-19 include antibody testing [1] and
quantitative reverse transcription-polymerase chain reaction (qRT-PCR) [2,3]. The antibody-
testing technique is typically fast, and results can be achieved in quasi real-time. However,
its precision remains questionable as it may present high false negative rates for early and
active infections. RT-PCR, on the other hand, is relatively much more accurate. However,
its prolonged process does not qualify it for real-time use. Furthermore, it may not be as
effective in discerning the presence of the virus if there is not enough traces of the virus in
the body of the subject [3–5].

In this regard, both diagnostic methods are heavily dependent on human expertise
to collect and analyze the samples. Moreover, hospitals and medical facilities in many

J. Pers. Med. 2022, 12, 310. https://doi.org/10.3390/jpm12020310 https://www.mdpi.com/journal/jpm

https://doi.org/10.3390/jpm12020310
https://doi.org/10.3390/jpm12020310
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jpm
https://www.mdpi.com
https://orcid.org/0000-0002-8105-9746
https://orcid.org/0000-0001-9287-0596
https://orcid.org/0000-0003-1846-1131
https://orcid.org/0000-0001-9745-3732
https://doi.org/10.3390/jpm12020310
https://www.mdpi.com/journal/jpm
https://www.mdpi.com/article/10.3390/jpm12020310?type=check_update&version=2


J. Pers. Med. 2022, 12, 310 2 of 17

countries have fallen short in their availability of test kits and in their ability to respond to
the ongoing influx of test demands, which may encourage the spread of the virus. Thus,
improved medical image analysis, if properly addressed, is believed to provide an auxiliary
aid to medical experts.

Medical image analysis as a field of study has been gaining ground over the past
decade on account of its (typically) non-invasive, quick, and automatic nature. Medical
data constitute a paramount component in this sense. It may take the form of unidi-
mensional/bidimensional signals [6,7], an image stack [8], or a large amount of data [9].
Furthermore, multimodal data sources can also be leveraged [10].

For the detection of COVID-19, X-ray [11,12], ultrasound [13,14], and Computed To-
mography (CT) [15] represent the most common sources of medical images. For instance,
CT scans have proven useful in the assessment of pulmonary conditions and have demon-
strated sound potential in supporting early diagnosis of COVID-19 [16]. Nevertheless,
it requires transfer of the patient to the CT department, a platform-sterilization routine
before conducting the test, and the need for the involvement of experts before and after the
procedure [17].

X-ray images provide another useful and cost-effective means of computerized detec-
tion of COVID-19 and other lung infections [15]. However, as the disease progresses, the
image features may become less informative [18,19].

Ultrasound scanning, on the other hand, offers the possibility to transfer the probing
device to the patient room with limited infectious implications and less radiation exposure
and provides remarkable diagnostic contributions [13].

In this context, medical image analysis has been tailored to the detection of many
conditions, such as malaria [20], diabetes [21], glaucoma [22], tuberculosis [23], and many
types of cancer [24–26], among others [27]. Nevertheless, traditional pipelines remain
limited in terms of performance, owing mainly to the rather shallow and often data-
specific representation of the image features adopted. Thanks to the advent of powerful
processing hardware, deep learning has emerged as a cutting-edge solution in medical
applications [28–34].

On this point, with respect to other medical applications, the assessment of deep
architectures for the diagnosis of COVID-19 has not developed a solid literature base of
research so far. This may be traced back to (i) the fact that the topic has not matured enough
and (ii) the scarcity of representative public datasets. Although much attention has been
given to deep learning-based COVID-19 image analyses since the outbreak of the virus,
still, there is much room for improvement.

This paper presents a novel deep learning pipeline for automatic analysis of COVID-19
using different types of chest medical data, namely Chest X-ray (CXR) and CT images. The
main contributions of this study are as follows:

(1) Unlike previous deep learning frameworks that only used one type of data, this work
uses both CXR and CT images.

(2) For the automatic detection and classification of COVID-19, we propose a new ap-
proach based on Vision Transformer (ViT).

(3) The development of a Siamese encoder that employs a distillation technique to classify
original and augmented images.

The remainder of this paper is organized as follows. Section 2 provides a narrative of
existing deep learning work for COVID-19 diagnosis. Section 3 describes the details of the
proposed methodology. Section 4 describes the adopted data and the experimental setup.
Section 5 presents and discusses the results. Section 5 concludes the paper.

2. Related Work

The processing of COVID-19 images aims to determine the existence of features
potentially associated with infection, namely unilateral or bilateral ground-glass opacities,
distributed peripherally, mostly in round and oval shapes [35–37]. A comprehensive review
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for machine learning techniques used for COVID-19 detection and classification based on
CXR or CT images was provided in [38].

Some contributions follow a traditional scheme by combining such features with a
classifier to infer the presence of infection. For instance, Mahdy et al. [39] used a multi-level
thresholding for segmenting the X-ray images. The segments were then classified using a
Support Vector Machine (SVM) classifier. Barstugan [40] first proceeded with SVM-based
classification without any feature selection and then with features selected via five feature
selection methods. The best score was observed using a grey level size zone matrix feature
selector along with SVM classification.

Thus far, the literature has accumulated various deep learning methods for COVID-
19 detection in X-ray and CT images. For X-ray images, Marques et al. presented an
EffecientNet pipeline to classify chest X-ray images into the classes COVID-19, normal,
or pneumonia following 10-fold cross validation [41]. Zabirul Islam et al. combined a
convolutional neural network (CNN) and a long short-term memory network for COVID-19
detection in X-ray images [42]. In [43], the authors proposed a multiscale attention-guided
deep network with soft distance regularization to detect COVID-19 in X-ray images. The
proposed network generated a prediction vector and attention from multiscale feature
maps. Furthermore, to render the model more robust and to populate the training data,
attention-guided augmentations along with a soft distance regularization were adopted.
In [44], wavelet decomposition was incorporated into a convolutional neural network to
enable multiresolution analysis. The authors in [45] proposed detecting COVID-19 in X-ray
data by implementing several uncertainty estimation methods such as Softmax scores,
Monte-Carlo dropout, and deterministic uncertainty quantification. An ensemble of deep
learning models was presented in [46], where weighted averaging was applied according
to the sensitivity of each model towards each class. Heidari et al. fine-tuned a pre-trained
VGG16 model to classify X-ray images into three classes [47]. Abbas et al. applied transfer
learning from object recognition (i.e., ImageNet dataset) to X-ray images. The transfer
was carried out in three steps, namely (i) decomposition, which consists in applying class
decomposition to AlexNet-extracted deep local features; (ii) the transfer phase, where the
network weights were fine-tuned for X-ray images; and (iii) the compose phase, which
assembles the subclasses of each class [48]. The dependence of these methods on CXR in
the diagnosis reduces the sensitivity of the results of early detection because the sensitivity
increases with the progression of the disease [18,49,50].

Regarding CT images, Amyar et al. [51] constructed a deep network that consisted of
a 10-convolutonal-layer encoder stage, a 9-convolutional-layer decoder part for reconstruc-
tion, and a 9-convolutional-layer decoder part for segmentation. Xu et al. implemented a
VNet and an inception residual network for feature extraction and region proposal network
for region-of-interest segmentation [52]. Sun et al. presented a two-stage feature selection
method, namely, a deep forest to learn the high-level features and an adaptive feature
selection to find the discriminative features. The selected features were then fed to the four-
criteria classifier [53]. Ko et al. also used transfer learning to compare four pre-trained deep
convolutional networks and obtained their best result using ResNet-50 [54], while Wu et al.
transferred the knowledge of a Res2Net and appended an enhanced feature model to detect
COVID-19 cases in a two-class CT dataset [55]. In [56], a CT image synthesis approach
based on a conditional generative adversarial network was proposed to deal with data
shortage. Horry et al. proposed a noise-reduction pre-processing step to prepare a hybrid
dataset of X-ray, CT, and US images, and the data were then fed into a VGG19 network [57].
Although processing CT datasets yields better results when diagnosing COVID-19 [18,58],
there will be always restrictions in reducing patients’ exposure to radiation, which limits
the availability of a CT dataset that can optimize the performance of model diagnoses
alone [59,60].
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3. Methodology

Let us consider S = {Xi, yi}n
i=1, a set of n chest medical images, where Xi and yi are

representative images and their corresponding class labels, yi ∈ {1, 2, . . . , m}, and m is the
number of defined classes for this set.

The aim of the proposed method is to learn mapping from the input chest image to
the correct class label. The model is based on a Data-Efficient Image Transformer (DeiT)
architecture, which is an improved version of Vision Transformer (ViT). ViT’s architecture
is fully based on a Data-Efficient Image Transformer (DeiT) architecture, which is an
improved version of Vision Transformer (ViT). The architecture of ViT is based entirely on
the vanilla Transformer [61], which has garnered a lot of attention in recent years due to
its ability to achieve state-of-the-art (SOTA) performance in machine translation and other
natural language-processing applications [62]. The Transformer architecture is made up of
encoder–decoder blocks that allow sequential data to be handled in parallel without the
use of any recurrent networks. The success of Transformer models largely comes from the
self-attention mechanism, which is proposed to capture long-range relationships between
the sequence’s elements. Vision Transformer was proposed as an attempt to extend the
use of the standard Transformer to image classification. The main goal was to generalize
image classification on modalities other than text without integrating any data-specific
architecture. In particular, ViT utilizes the encoder module of the Transformer to perform
classification by mapping a sequence of image patches to the semantic label. Unlike the
conventional CNN architectures, which typically use filters with a local receptive field,
the attention mechanism employed by the Vision Transformer allows it to be used over
different regions of the image and to integrate information across the entire image.

Our proposed model is composed of three main blocks: an embedding layer, a Siamese
encoder, and a decoder. The original input image from the training set is processed to
generate an augmented input image; then, these two images (original and augmented)
are subdivided into non-overlapping patches and fed into the embedding layer, followed
by the Siamese encoder. The encoder is also connected to two independent classifiers:
the token and distiller classifiers. In the following subsections, we discuss the model’s
components in detail. Figure 1 illustrates the overall structure of the proposed model.

3.1. Linear Embeddimg Layer

First, an augmented view image is generated from the original image by applying
a data-augmentation technique. These two images are then converted into a sequence
of non-overlapping patches. The original input image x and the augmented image of
dimension h× w× c (where h, w, and c are the height, width, and number of channels,
respectively) are then converted into a sequence of length m by dividing it into small
patches x =

{
x1

p, x2
p, · · · , xm

p

}
of a fixed dimension of p × p and m = h × w/p2. These

patches are analogous to word tokens in the original Transformer. Before feeding the
sequence of patches into the encoder, it is linearly projected into a vector of the model
dimension dmodel using a learned embedding matrix E. The embedded representations
are then concatenated together along with a learnable class token xclass that is required to
perform the classification task. The flattened image patches are converted into embeddings
by feeding them into a linear embedding layer E to match their dimension to the model
dimension dmodel .
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Figure 1. The overall structure of the proposed model.

To prevent losing the positional information because of the flattening process, each
patch embedding is added to its corresponding positional information. The resultant
position-aware embeddings are appended with a learnable class token xclass. Since the
decoder is adopted from DeiT architecture, another distillation token xdistil is appended
along with the class token to the patch embeddings, as shown in Equation (1). The two
tokens and the patch embeddings interact with each other via a self-attention mechanism.

z0 =
[

xclass; xdistil ; x1
pE; x2

pE; . . . ; xm
p E
]
+ EposWhileE ∈ R(p2.c)×dmodel ,∧Epos ∈ R(m+2)×dmodel (1)

3.2. Siamese Encoder Module

The Siamese architecture of the encoder is adopted from the Data-Efficient Image
Transformer (DeiT) architecture. DeiT is an enhanced version of ViT, where less training
data are required. The encoder consists of a stack of L identical layers, each one composed
of two main blocks: a multi-head self-attention (MSA) block, and a feed-forward network
(FFN) block. The MSA, which is a key component of the Transformer encoder, utilizes
the self-attention (SA) mechanism to find dependencies between different patches of the
input image. Equations (2) and (3) show the details of the calculations that take place in
the SA block. First, three different matrices—key K, the query Q, and the value V—are
generated from the input sequence using three linear layers. By applying an inner product
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for matching query matrix against the key matrix, an attention-map is generated. The
SoftMax function is applied to obtain the output after scaling it by the dimension of the key
dK. Finally, the result is multiplied with the value V to focus on more important values.

[Q, K, V] = zUQKV ; UQKV ∈ Rdmodel×3dK (2)

SA(z) = so f tmax
(

QKT/
√

dK

)
.V (3)

The multi-head self-attention is an extension of SA, in which it runs the SA process in
parallel using multiple self-attention heads (SA1, SA2 . . . SAh), where h is the number of
heads. The aim of using h head is that each head can focus on different relations among the
image patches. The outputs of all heads are then concatenated together and projected to
the final dimension by a linear layer, as in Equation (4):

MSA(z) = Concat(SA1(z); SA2(z); . . . SAh(z))WO, WO ∈ Rh.dK×dmodel (4)

where WO represents the learned parameters of the final projection matrix.
FNN is the second block in the encoder layer that follows the MSA block. It consists

of two fully connected layers with a GeLU activation function [63] in between. A layer of
normalization (LN) proceeds each of the two encoder layer’s blocks. By applying residual
connections, the outputs are computed according to the following Equations (5) and (6):

z′l = MSA(ln(zl−1)) + zl−1, l = 1 . . . L (5)

zl = FNN
(
ln
(
z′l
))

+ z′l , l = 1 . . . L (6)

Similarly, the encoder receives the augmented view of the image, which is subdivided
into a sequence of patches. To generate the second view of the image, we applied differ-
ent image-augmentation techniques. Data-augmentation techniques are appropriate for
increasing the size and diversity of the limited-size training dataset, which is the case for
medical images datasets. Several data-augmentation techniques that are based on applying
simple geometric transformations such as rotating, cropping, or shifting or applying color
transformations such as modifying the brightness or the contrast of the images have been
implemented in the literature. Recently, several advanced data-augmentation techniques
have been applied in the detection of COVID-19 using medical images on generative adver-
sarial network (GAN) [64,65], conditional generative adversarial networks (CGAN) [66],
and AdvProp [67]. More sophisticated techniques based on random erasing and image-
mixing have been introduced recently to generate more challenging samples for the model
such as the Cutout [68], Mixup [69], and CutMix [70] techniques. In Cutout, a random
fixed-size region of the image is intentionally replaced with black pixels or random noise.
The process of randomly erasing regions boosts the model to learn from the entire image’s
context rather than relying on a specific visual feature. One limitation of using Cutout is
losing information since erasing some regions could remove informative parts of image
objects [70]. In this paper, we utilize the Cutout technique to generate augmented images
from the original images.

3.3. Classification Layer

The output of the Siamese encoder is fed into the classification layer, which is com-
posed of two connected classifiers: the class and distiller classifiers. Each one is composed
of a fully connected layer (FC) with a SoftMax activation function to determine the class
labels. We feed the first element of the encoder output z0

L, which represents the classification
token to the class classifier.

yclass = So f tmax
(

FC
(

z0
L

))
(7)
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The second token z1
L represents the distillation and is passed to the distiller classifier.

ydistiller = So f tmax
(

FC
(

z1
L

))
(8)

Then, the outputs are fed into a weighted average fusion layer followed by SoftMax
layer to obtain the final class of the predicted class of the input image according to the
following equation:

y =
1
2
( yclass + ydistil) (9)

3.4. Network Optimization

To learn the model for the binary (CT dataset) or multi-class (CXR dataset) classifica-
tion, we use the following loss function:

L
(

xij, yij
)
=
−1
n

w

∑
i=1

h

∑
j=1

yijlog
1

1 + e−xij
+
(
1− yij

)
log
(

1− 1
1 + e−xij

)
(10)

where w and h are number of training images and defined classes, respectively; ground-
truth labels are represented by yij ∈ {0, 1}c (CT dataset) or yij ∈ {0, 1, 2}c (CXR dataset),
and xij ∈ [0, 1] is the predicted probability. The learning is performed by minimizing a total
loss consisting of two terms given by the following equation:

Ltotal = L
(

z0
L, yg

)
+ L

(
z1

L, yg

)
(11)

where L represents the binary cross-entropy loss, shown in Equation (10), yg states the
ground-truth labels, z0

L is classification tokens, and z1
L represent the distillation tokens.

In the following Algorithm 1, we provide the main steps for training and testing the
model.

Algorithm 1: Main steps for training and testing the model.

Input: Training set of n chest images S = {Xi, Yi}n
i=1 with corresponding ground-truth labels.

Output: test images predicted class labels

1. Set parameters of the model:

• Image size: 224.
• Patch size p: 16.
• Mini-batch size b: 50.
• Learning rate: 0.0001.
• Optimizer: Adam

2. Set the number of mini-batches as: nb = n/b
3. For iteration = 1: number of iteration (25)
3.1 For batch = 1 number of mini batches

• Augmented view images.
• Feed the obtained training set batch to the Siamese encoder’s class branch.
• Feed the generated batch of augmented images to the Siamese encoder’s distill branch.
• Classification token is fed to the token classifier and distiller token is fed to distiller

classifier.
• Loss is calculated using Equation (11)
• Loss Backpropagation.
• Update the parameters of the model.

4. Feed the test images to the model.
5. Feed the model with test images
6. Calculate the predicting labels using the weighted average fusion of the two outputs yclass

and ydistiller according to Equation (9).
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4. Experiments
4.1. Datasets Description

In our work, we evaluate the proposed model on two CT and CXR datasets, as detailed
below:

4.1.1. Chest X-ray Dataset

The first dataset is a CXR dataset called the COVIDx dataset, proposed by Wang et al. [71].
This dataset was collected from multiple datasets and amounts to CXR images from
13,870 patients. The images were collected and modified from the following data sources:
COVID-19 Image Data Collection [72], Figure 2 COVID-19 Chest X-ray Dataset Initia-
tive [73], ActualMed COVID-19 Chest X-ray Dataset Initiative [74], RSNA Pneumonia
Detection Challenge dataset [75], and COVID-19 radiography database [76].
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Figure 2. Samples of patients from the COVIDx dataset: (a) healthy (normal), (b) pneumonia, and (c)
COVID-19.

COVIDx is the largest open access dataset in terms of the number of positive COVID-19
cases. It is composed of images from three classes, i.e., COVID-19, pneumonia, and
normal, and contains 358 CXR images from 266 COVID-19 cases, 8066 normal cases (i.e., no
pneumonia), and 5538 cases with non-COVID19 pneumonia. Table 1 shows the number of
images per class with the split ratio between the training and testing, where the test part of
this dataset was composed of 300 images equally divided between the three classes.

Table 1. Numbers of images per class in the COVIDX dataset.

Normal Pneumonia COVID-19

Train 66 5438 258
Test 100 100 100
Total 8066 5538 358
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4.1.2. Chest X-ray Dataset

The second dataset is named the SARS-CoV-2 CT scan dataset, which was collected
from hospitals in Sao Paulo, Brazil [77]. It is composed of 2482 CT scan images (1252 CT
scan images of 60 patients with COVID-19 infection and 1230 CT scan images of 60 patients
without COVID-19 infection). Detailed characteristics of each patient have been omitted
by the hospitals due to ethical concerns. Figure 3 depicts some examples of the CT scan
images of patients with and without COVID-19 infection.
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4.2. Evaluation Measures

We followed standard evaluation measures typically adopted in the state-of-the-
art [78], yet we report the results in terms of accuracy, precision, recall, specificity, and
F-measure (F1 score):

Accuracy =
TP + TN

TP + FPz + TN + FN
(12)

Precision =
TP

TP + FP
(13)

Sensitivity = Recall =
TP

TP + FN
(14)

Speci f icity =
TN

TN + FP
(15)

F1 = 2∗ Precision ∗ Recall
Precision + Recall

(16)

where TP, TN, FP, and FN denote true positives, true negatives, false positives, and false
negatives, respectively. Accuracy is a common measure of correctly classified (TP and TN)
samples over the total number of samples, as expressed by Equation (12). Precision and
recall are often adopted along with accuracy in detection problems. Precision determines
how many of the positive predictions are correct, which is calculated by dividing the
number of correctly classified positives (TP) by the total samples predicted as positives
(TP and FP), as expressed by Equation (13). On the other hand, recall (also known as
sensitivity) is calculated by dividing the number of correctly classified positive cases by
the total number of all actual positive (TP and FN) cases, as expressed by Equation (14). It
expresses the tendency of a model to identify infected cases [78]. Specificity determines the
ability of the model to detect non-infected cases (i.e., similar to recall for positive cases),
which is calculated by dividing the number of correctly classified negative cases (TN)
by the number of all actual negative (TN and FP) cases, as expressed by Equation (15).
Furthermore, F-measure, or F1 score, is considered a balance between precision and recall,



J. Pers. Med. 2022, 12, 310 10 of 17

which is obtained by calculating the weighted harmonic mean of both precision and recall,
as presented in Equation (16).

4.3. Experimental Setup

We conduct several experiments, and each experiment was repeated three times. First,
we simulated the scenarios of previous state-of-the-art work, where some contributions
allocated 60% and others 80% of the dataset for training and where the remainder was set
for testing purposes. Then, we reported the results of the proposed model considering a
realistic scenario, in which only 20% of the available data was placed for training.

The proposed model was implemented in Pytorch, where we used the AdaBelief
optimization algorithm to train the network [79]. The experiments were conducted using a
workstation with i9 CPU @ 2.9 GHz, 32 GB of RAM, and NVIDIA GeForce GTX 1080 Ti (11
GB GDDR5X).

5. Results

In this section, we present and discuss the results of the experiments to evaluate
the proposed pipeline. The average and detailed values of the results are reported and
discussed in terms of the aforementioned evaluation measures. First, we present the results
on the individual datasets and display the activation maps of the processed images at
different layers of the network. Second, we analyze the sensitivity of the model towards
different scenarios of the availability of training data. Finally, we compare the results of the
model on the described datasets against the SOTA.

5.1. Results on CXR

In this subsection, we present the results of the proposed model on the COVIDx dataset.
Table 2 shows the overall and per-class classification results in terms of accuracy, precision,
recall, specificity, and F1 score), while Figure 4 depicts the corresponding confusion matrix.
The results indicate that the proposed model exhibits good performance in terms of all
of the evaluation measures. The overall accuracy of the model is equal to 94.62%, with
an accuracy over 90.0% for each class. The precision, recall, and F1 score of the model
amounted to 96.77%, while the overall specificity yield was 99.65%. This confirms the
ability of the proposed pipeline to correctly detect positive cases and to discard irrelevant
cases. In Figure 5, we show heat maps generated by analyzing X-ray images from different
layers of the model. They demonstrated the progression of the focus region over layers.
The model appears to focus on random locations in the initial layers. As the image proceeds
through the model layers, the network focuses increasingly on regions that have a strong
and consistent relationship with the image’s class. Finally, the key zones of the lungs that
reflect COVID-19 or pneumonia observations objects are highlighted in the last layer.

Table 2. Classification results (expressed as a percent) obtained on the COVIDX dataset.

Overall
Per Class

Normal COVID-19 Pneumonia

Accuracy 94.62 96.61 90 92.42
Precision 96.77 95.21 92.84 94.17

Recall 96.77 97.61 90 92.42
Specificity 99.65 93.7 99.43 96.53

F1 96.77 95.91 90.91 93.29
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5.2. Results on CT

Table 3 shows detailed results of the model on the CT dataset, where we used 60% of
the dataset for training and 40% for testing. We repeat the experiments three times. The
average values exceeded 99.10% across all measures, with a standard deviation of less
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than 0.50%. These results confirm the power and the stability of the model in classifying
COVID-19 cases from CT images.

Table 3. Classification results (expressed as a percent) obtained on the CT dataset with a split of 60:40.

Trial 1 Trial 2 Trial 3 Avg ± sd.

Accuracy 99.09 99.19 99.59 99.29 ± 0.26
Precision 98.57 99.39 99.41 99.12 ± 0.48

Recall 99.58 98.98 99.8 99.45 ± 0.42
Specificity 98.61 99.39 99.38 99.13 ± 0.45

F1 99.08 99.18 99.68 99.31 ± 0.32

On the other hand, in order to assess the robustness of the proposed approach, we split
the dataset using different training to-testing ratios. Table 4 shows the average classification
accuracies in the case of s 80%:20% split. The average values for accuracy, precision, recall,
specificity, and F1 score were 99.13, 99.46, 98.82, 99.47, and 99.13, respectively. Table 5
reports the average results in terms of a 20%:80% split, and the results are proof that, even
when we reduce the training size, the accuracies remain comparable with those of the
80%:20% split, suggesting a potential real-time use of the proposed approach. In Figure 6,
heat maps derived from the model’s various layers are shown. They show the progression
of focus areas over network layers, similar to X-ray images, where the network learns to
highlight relevant places consistent with the assessed conditions. The last layer of the
network, for example, tends to emphasize zones of the lungs that represent COVID-19
instances, such as bilateral and peripheral ground glass and consolidative pulmonary
opacities [80], as illustrated in Figure 1. Table 6 compares the proposed model’s findings
with those of SOTA works on the same CT dataset (i.e., the SARS-CoV-2 CT scan dataset).

Table 4. Classification results (expressed as a percent) obtained on the CT dataset with a split of 80:20.

Trial 1 Trial 2 Trial 3 Avg ± sd.

Accuracy 99.40 98.99 98.99 99.13 ± 0.23
Precision 98.77 99.60 100.00 99.46 ± 0.63

Recall 100.00 98.41 99.5 98.82 ± 1.04
Specificity 99.82 99.59 100.00 99.47 ± 0.6

F1 99.38 99.00 99.01 99.13 ± 0.22

Table 5. Classification results (expressed as a percent) obtained on the CT dataset with a split of 20:80.

Trial 1 Trial 2 Trial 3 Avg ± sd.

Accuracy 99.55 99.01 99.55 99.37 ± 0.31
Precision 99.6 98.18 99.6 99.13 ± 0.82

Recall 99.5 99.79 99.5 99.6 ± 0.17
Specificity 99.6 98.28 99.6 99.16 ± 0.76

F1 99.55 98.98 99.55 99.36 ± 0.33
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Table 6. Classification results (expressed as a percent) obtained on the CT dataset with a split of 80:20,
60:40, and 20:80.

Training-to-Testing
Ratio (%) Accuracy Precision Recall F1

Alrahhal et al. [67]

80:20

99.24 99.16 99.25 99.21
Soares et al. [77] 97.38 99.16 95.53 97.31
Silva et al. [81] 98.99 99.20 98.80 98.99

Proposed 99.13 99.46 98.82 99.13

Alrahhal et al. [67]
60:40

98.65 97.81 99.41 98.60
Pathak et al. [82] 98.37 98.74 98.87 98.14

Proposed 99.29 99.12 99.45 99.31

Alrahhal et al. [67]
20:80

96.16 96.90 95.41 96.15
Proposed 99.37 99.13 99.60 99.36

In terms of all performance indicators, our model clearly outperforms the results of
all SOTA works. Our model, in particular, improves the accuracy, precision, recall, and
F-measure by 0.64%, 1.31%, 0.04%, and 0.71%, respectively.

6. Conclusions

In this study, we proposed a deep learning-based framework for the detection of
Coronavirus disease 2019 via two common types of medical images, namely CT and X-ray.
The Vision Transformer architecture was used as a backbone to the proposed pipeline, in
which a Siamese encoder was applied. The Siamese encoder was developed to process
the class token and distillation token. Moreover, we employed atrous convolution at
different rates to produce denser features from multi-scale feature maps. To augment the
dataset, we generated adversarial examples, which clearly improved the performance.
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The classification results revealed that our proposed framework outperforms state-of-the
art deep learning techniques. The proposed framework has demonstrated its robustness
under limited training data. We believe that the proposed architecture potentially suits a
multimodal scenario.
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