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a b s t r a c t

Mn(III) N-alkylpyridylporphyrins (MnPs) have demonstrated protection in various conditions where
increased production of reactive oxygen/reactive nitrogen species (ROS/RNS), is a key pathological
factors. MnPs can produce both pro-oxidative and antioxidative effects depending upon the cellular
redox environment that they encounter. Previously we reported (Free Radic. Res. 39: 81–8, 2005) that
when the treatment started at the onset of diabetes, Mn(III) meso-tetrakis(N-methylpyridinium-2-yl)
porphyrin, MnTM-2-PyP5þ suppressed diabetes-induced oxidative stress. Diabetes, however, is rarely
diagnosed at its onset. The aim of this study was to investigate if MnTM-2-PyP5þ can suppress oxidative
damage and prevent diabetic complications when administered more than a week after the onset of
diabetes. Diabetes was induced by streptozotocin. The MnP-based treatment started 8 days after the
onset of diabetes and continued for 2 months. The effect of the treatment on activities of glutathione
peroxidase, superoxide dismutase, catalase, glutathione reductase, glucose-6-phosphate dehydrogenase,
glyceraldehyde-3-phosphate dehydrogenase, and glyoxalases I and II as well as malondialdehyde and
GSH/GSSG ratio were determined in kidneys. Kidney function was assessed by measuring lysozyme and
total protein in urine and blood urea nitrogen. Vascular damage was evaluated by assessing vascular
reactivity. Our data showed that delayed administration of MnTM-2-PyP5þ did not protect against
oxidative damage and did not prevent diabetic complications. Moreover, MnTM-2-PyP5þ contributed to
the kidney damage, which seems to be a consequence of its pro-oxidative action. Such outcome can be
explained by advanced oxidative damage which already existed at the moment the therapy with MnP
started. The data support the concept that the overall biological effect of a redox-active MnP is
determined by (i) the relative concentrations of oxidants and reductants, i.e. the cellular redox
environment and (ii) MnP biodistribution.

& 2013 The Authors. Published by Elsevier B.V. All rights reserved.

Introduction

It is generally accepted that hyperglycemia is the major cause of
oxidative stress in diabetes [1], and that oxidative stress is a main
contributor to diabetic complications [2]. Hyperglycemia-induced
increased mitochondrial production of superoxide is regarded as

the event triggering all other mechanisms underlying diabetic
complications [2–6]. Those findings suggest that catalytic scaven-
ging of superoxide at the site of mitochondrial electron transport
chain could prevent or delay complications of diabetes [4,5,7].
Such removal of superoxide could be achieved by Mn porphyrin-
based SOD mimics [8–15].

Mn(III) N-alkylpyridylporphyrins (MnPs) were originally designed
as SOD mimics [16]. The values of kcat(O2U� ) for some of those
compounds are similar or nearly identical to those of SOD
enzymes; thus these Mn porphyrins are among the most potent
synthetic SOD mimics [12,13]. Substantial knowledge of the
biology of oxidative stress injuries and on the chemistry and
biochemistry of Mn porphyrins, including their effects on redox-
based signaling pathways, has accumulated over the last two
decades. Researchers became aware that the in vivo actions of
MnPs are much more complex than initially anticipated and that
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the scientific community is far away from fully comprehending
MnPs' in vivo behavior [13]. It has been established that cellular
redox environment (levels of reactive species and levels and
activities of endogenous antioxidant defenses), biodistribution of
Mn porphyrins and their co-localization with redox-active species
(low-molecular weight species and proteins) would impact the type
and the magnitude of therapeutic outcome [12,13,17]. Possible
in vivo reactions of MnPs with reactive species, including signaling
molecules, have been discussed in details recently [13]. Cysteines of
signaling proteins are likely involved in the mechanism of action of
MnPs, as are cellular reductants and reactive species, in particular
H2O2 [13]. The ability of MnP to mimic SOD enzyme, i.e. to reduce
and oxidize O2 U

� with nearly identical rate constants, suggests that
MnPs may act as either anti- or pro-oxidants; both types of actions
may be beneficial, the former in normal tissue and the latter in
tumor. However, the pro-oxidative action may result in both
(i) antioxidative; and (ii) prooxidative effects/therapeutic outcomes.
Several reports substantiate the pro-oxidative action of MnP which
resulted in antioxidative effects. The adaptive response to mild pro-
oxidative action of MnP (either given alone or combined with N-
acetylcysteine) resulted in upregulation of endogenous antioxi-
dants, i.e. in antioxidative therapeutic outcome [18,19]. The inhibi-
tion of NF-κB activation in diabetes and stroke models, which was
assigned to the oxidation of NF-κB cysteines by MnP, resulted in a
suppression of inflammation and downregulation of inflammatory
cytokines, i.e. in antioxidative therapeutic outcome [9,20–23]. In
lymphoma study, though, the pro-oxidative action of MnP led to
apoptosis [20].

Most of the works published so far report high therapeutic
efficacy of Mn porphyrins [13,15,24,25]. Data from only few studies
are available where administration of MnP did not have therapeu-
tic effect. While MnP was efficacious in reducing infarct volume
size if administered at all tested times up to 6 h, no beneficial
outcome of MnP was demonstrated when the therapy started 12 h
after the middle cerebral artery occlusion [15,26]; at such late
time, the inflammatory processes have already damaged biological
targets beyond repair. Delayed administration of MnP had no
effect on tumor growth suppression: tumor radiosensitization by
MnP was observed only if the treatment of mice bearing sc
245-GM glioblastoma multiforme xenografts, started when the
tumor size was �80 mm3, but not when it averaged �300 mm3

(Tovmasyan et al., unpublished). The rate of tumor growth also
determined the outcome of MnP therapy: the faster the tumor
growth the smaller the effect of the MnP (Tovmasyan et al.,
unpublished). Further, in a mouse xenograft prostate tumor model
the tumor growth delay was observed only if the therapy with
MnP started immediately upon the implantations of tumor cells
[27]. Similar result was recently shown in a prostate mouse sc
xenograft model: the tumor growth suppression was achieved
when administration of H2O2-producing MnP/ascorbate system
started when tumors size averaged �30 mm3 [28]. In a 4T1 mouse
breast tumor xenograft study, where administration of MnP and
ascorbate started when tumors were �200 mm3, only trend
towards tumor growth suppression was observed [29].

In a previous study, the treatment with MnTM-2-PyP started at
the onset of diabetes at 24 h post-STZ injection and continued
throughout the duration of the study [14]. Under such conditions
the Mn porphyrin suppressed the diabetes-induced oxidative
stress, decreased the mortality and markedly increased the life
span of a diabetic rat. Diabetes, however, is rarely diagnosed at its
onset. Thus we were left wondering what the therapeutic outcome
of MnP may be if the treatment does not start early, at the onset of
diabetes. To answer that question we performed a 2nd study
where administration of MnTM-2-PyP started eight days post-
onset of diabetes. Under such conditions no suppression of
diabetic complications was detected; moreover substantial

evidence is provided that MnP acted as a pro-oxidant amplifying
diabetes-induced kidney damage.

Materials and methods

MnTM-2-PyP

The 5,10,15,20-tetrakis(2-pyridyl)porphyrin (H2T-2-PyP4þ)
was supplied by MidCentury Chemicals (Chicago, IL, USA). The
N-methylation and metal incorporation was accomplished as
already described [30]. For simplicity, charges are omitted through-
out the text from MnTM-2-PyP5þ and its metal-free non-quater-
nized ligand H2T-2-PyP4þ .

Diabetes

Male Wistar rats weighing 150–200 g were used in this study. The
rats were maintained and cared for as outlined by the ‘Principles of
laboratory animal care’ (NIH publication no. 85–23, revised 1985) and
by Kuwait University guidelines for care and use of laboratory animals.
They were divided into four groups (each consisting of eight randomly
selected rats) as follows: (1) Control; (2) ControlþMnTM-2-PyP;
(3) Diabetic; and (4) DiabeticþMnTM-2-PyP. Diabetes was induced
by a single (60 mg/kg) intraperitoneal injection of streptozotocin.
Induction of diabetes was confirmed by the presence of glucosuria
within 24 h. Rats which maintained blood glucose concentrations
above 15mM during the first week of diabetes were randomly divided
into two groups designated as “Diabetic” (group 3) and “Diabe-
ticþMnTM-2-PyP” (group 4). Eight days after the diabetes was
established the animals in the second group, as well as a matching
group of non-diabetic control rats (group 2), started to receive
subcutaneous injections of a sterile saline solution of MnTM-2-PyP,
1 mg/kg/day for five days per week, with two days rest after each
five-day cycle, as previously described [14]. The whole treatment
lasted for twomonths. The animals in groups (1) and (3) were injected
with isotonic saline only. Blood samples were collected from the tail
vein for determination of glucose and glycosylated hemoglobin
(HbA1C). At the end of the two-month period the animals were
transferred to metabolic cages for collection of urine. The urine
collection was carried out during 24 h; food and water were provided
ad libitum. During this period, the tubes used for the urine collection
were immersed into an ice-cold water bath to avoid the loss of
enzyme activity. After the 24 h-period of urine collection, the animals
were fasted for 12 h and sacrificed under sodium pentobarbital
anesthesia. The kidneys were excised, perfused with ice-cold saline,
snap-frozen in liquid nitrogen and stored at �80 1C until analysis.
Unless otherwise indicated, for analyses, kidneys were cut into small
pieces and homogenized using ice-cold 0.2 M phosphate buffer pH.7.6
(5� volume/kidney weight). The homogenates were centrifuged at
2500 rpm for 10 min at 4 1C and the supernatants were used for the
specified assays. Protein was determined by the method of Lowry [31].

Hyperglycemia

The blood glucose and glycosylated hemoglobin (HbA1C) were
measured as described before [32] and used as markers of glycemic
stress.

Determination of blood urea nitrogen

Blood samples were taken before autopsy and centrifuged at
3000 rpm for 10 min. Blood urea nitrogen (BUN) was measured in
plasma samples using Sigma reagents (Sigma Technical Bulletin
No. 640, Sigma, St. Louis, MO, USA).
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Determination of electrolyte, total protein, and lysozyme excretion in
the urine

The total urine volume was determined gravimetrically and the
collected urine was centrifuged at 5000 rpm and 4 1C for 15 min.
Urine samples from each animal were aliquoted and stored at
�20 1C until electrolytes, protein and lysozyme determinations
were carried out. The electrolytes (Naþ and Kþ) were determined
in the urine using an EasyLyte Plus Analyser (Medica Corporation,
5 Oak Park Drive, Bedford, MA 01730-1413, USA). Total protein
concentration in the urine was determined by the method of
Schacterle and Pollack [33]. The lysozyme activity in the urine was
assayed as described by Cojocel and Baumann [34]. The total
protein excretion was expressed as mg/24 h and total lysozyme
excretion as μg/24 h.

Glucose 6-phosphate dehydrogenase (G6PD)

The activity of G6PD in kidneys was measured by following the
increase in the absorbance at 340 nm due to the formation of
NADPH as described by Lee [35]. One ml of a reaction mixture
contained 0.1 M Tris–HCl buffer (pH 8.0), 0.01 M G6P and 0.01 M
NADPþ . One unit of G6PD is defined as the activity of G6PD that
reduces 1 μmole/min of NADPþ to NADPH at 25 1C.

Glyceraldehyde-3-phosphate dehydrogenase (GA3PD)

The protocol of Dagher [36] was followed to determine the
activity of GA3PD in kidneys. One ml of the assay mixture
contained 0.05 M of Tris–HCl buffer (pH 8.8), 0.01 M NADþ and
(2:1) ratio of 0.02 M GA3PD and 0.01 M disodium arsenate. The
formation of NADH, due to the reduction of NADþ by GA3PD, was
measured spectrophotometrically at 340 nm. One unit is defined
as the activity of GA3PD that is required to reduce 1 μmole/min of
NADþ to NADH at 25 1C.

Superoxide dismutase (SOD)

The SOD activity of kidneys was determined following the
protocol of McCord and Fridovich [37]. The assay mixture con-
tained 0.1 mM EDTA, 50 mM phosphate buffer (pH 7.8), 10 mM
cytochrome c, 50 mM xanthine and 2 nM xanthine oxidase. The
reduced cytochrome c was measured at 550 nm. One unit of SOD
activity was expressed as the amount of SOD that inhibits the rate
of cytochrome c reduction by 50%.

Glutathione peroxidase (GPx)

The GPx activity in kidney was measured by a coupled enzyme
assay using BIOXYTECHs GPx-340™ kit according to manufac-
turer's instructions. One unit of GPx is defined as the amount of
enzyme that catalyzes the oxidation of 1.0 mmole/min of NADPH at
pH 7.0 at 25 1C.

Glutathione reductase (GR)

GR activity of kidneys was determined as described by Smith
et al. [38]. The assay is based on the reduction of 5,5′-dithiobis
(2-nitrobenzoic acid) (DTNB) by GSH resulting in increase in the
absorbance at 412 nm. One ml of assay mixture contained 0.05 M
of potassium phosphate buffer (pH 8.0), 0.06 M of DTNB, 0.024 M
of GSSG and 0.035 M NADPH. One unit of glutathione reductase
activity is defined as the amount of enzyme that catalyzes the
reduction of 1 mmole/min of DTNB. The assay is more sensitive and
less subject to interference than the widely used assay where
NADPH oxidation is monitored.

Catalase (CAT)

CAT activity of kidneys was assayed as described by Visick and
Clarke [39] by measuring the decomposition of H2O2 at 240 nm.
The reaction mixture consisted of 12.5 mM H2O2 in 50 mM
phosphate buffer (pH 7.0). One unit of catalase is defined as the
activity of catalase that decomposes 1.0 mmole/min of H2O2 to O2

and H2O at 25 1C. The H2O2 concentration was determined by
using the molar extinction coefficient of hydrogen peroxide at
240 nm, ε¼43.6 M�1 cm�1.

GSH/GSSG ratio

The BIOXYTECH® GSH/GSSG-412TM Colorimetric Determina-
tion of the Reduced and Oxidized Glutathione kit was used to
measure the oxidized glutathione and the total glutathione in
kidneys.

Lipid peroxidation

Lipid peroxidation in kidneys was assessed by measuring
malondialdehyde (MDA) content. Since the thiobarbituric acid
(TBA) assay lacks specificity, HPLC separation was performed. In
brief, MDA was measured in a 0.5 ml assay mixture following the
protocol of Buege and Aust [40]. The separation of MDA was
performed using GBC HPLC system: LC1650 Autosampler, LC1150
pump, LC1205 UV/VIS detector (Winchrom detector control) with
Thermo hypersil keystore (C18) ODS hypersil (Octadecylsilane)
column (250�4 mm in diameter, 5 mm particle size) with acet-
onitrile: TRIS buffer (1:10) as a mobile phase. Twenty ml of samples
were loaded and the separation was carried out at a flow rate of
1 ml/min. The MDA peaks were monitored at 270 nm.

Methylglyoxal (MG) and glyoxalases activities assays

For those assays the kidney samples were homogenized following
the procedure described by Phillips et al. [41], and homogenates
were used for the determination of glyoxalases activities and the
content of methylglyoxal [41].

Vascular reactivity

The descending aorta was removed and carefully cleaned of any
adhering connective tissues. Care was taken to preserve the
integrity of the endothelium. Endothelial function was confirmed
by the ability of acetylcholine (10�6 M) to relax artery segments
contracted with noradrenaline (NA) (10�7 M). The artery ring
segments (3–4 mm in length) were set up in 25.0 ml tissue baths
containing Krebs' solution of the following composition: NaCl, 119;
KCl, 4.7; NaHCO3, 25; KH2PO4, 1.2; MgSO4, 1.2; CaCl2, 2.5 and
glucose, 11 mmol/l. The temperature was maintained at 37 1C. The
solution was continuously gassed with a 5% CO2/95% O2 mixture at
pH�7.4. The samples were allowed to equilibrate under a resting
tension of 1.0 g for up to 60 min during which time the bath
fluid was changed at least once. Isometric contractions were
recorded through the dynamometer UF1 transducers on a Lec-
tromed 4-channel polygraph (MultiTrace 4 P). After the period of
equilibration, KCl (80 mM) was added to the bath to test for tissue
viability. The addition of KCl was repeated after 30 min. The tissues
were then washed repeatedly over the next 30-min period. There-
after, increasing concentrations (1 log unit increments) of nora-
drenaline were added to the bath to generate a concentration–
response curve. The contractile response to each aliquot of NA was
allowed to reach a peak before the addition of the next aliquot.
After obtaining the maximum response, the samples were washed
several times and allowed to rest for 60 min. The potency of NA
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was expressed as pD2 value where pD2 is the negative logarithm of
the agonist concentration producing 50% of the maximum
response. Next, the aorta segments were contracted with NA
(10�7 M). After a stable contraction had been achieved, increasing
concentrations of carbachol (1 log unit increments) were added to
the bath and the relaxation response was recorded. Once maximal
response was achieved, the samples were washed several times
and allowed to rest for 60 min. The response to each concentration
of carbachol was expressed as a percentage of NA-induced con-
traction. The potency of carbachol was expressed as the pD2 value.
Similar experiments were carried out using sodium nitroprusside
as agonist.

Statistical analysis
Mean values and standard deviation (S.D.) were shown. One-

way analysis of variance and the Student–Neumann–Keuls test
were used for statistical analysis of the data. A 0.05 level of
probability was accepted as a criterion of significance. The sig-
nificance is indicated as nPo0.05 compared to control and
nnPo0.05 compared to diabetic, non-treated group.

Results

Hyperglycemia

Blood glucose concentrations were significantly higher in the
STZ rats, when compared to the controls. As reported before [42],
the MnTM-2-PyP treatment had no effect on the blood glucose
(Table 1). Prolonged hyperglycemia was assessed by the content of
glycosylated hemoglobin (HbA1C). Accordingly, HbA1C level was
elevated in the STZ rats and remained unaffected by the MnP
treatment (Table 1).

GSH/GSSG ratio

Under physiological conditions the cells maintain high levels of
reduced glutathione (GSH) and low level of its oxidized form
(GSSG). Increased reactive oxygen species (ROS) production, as
well as decreased glutathione reductase and glucose-6-phosphate
dehydrogenase activities, are among the factors leading to the
decrease in GSH with concomitant increase in GSSG levels. There-
fore, the shift in the GSH/GSSG ratio is considered a sensitive and
early indicator of oxidative stress. As demonstrated in Fig. 1 the
GSH/GSSG ratio dropped dramatically in the kidneys of the
diabetic animals. Fig. 1 also shows that MnTM-2-PyP treatment
affected the GSH/GSSG ratio neither in normal nor in diabetic rats.

Glyceraldehyde-3-phosphate dehydrogenase

GAPDH is ubiquitous enzyme displaying a variety of functions
[43]. Since the enzyme contains a highly reactive thiol at its active
site (cysteine 149) [44], it is sensitive to inactivation by sugars [45],
and reactive oxygen and nitrogen species [46]. Inhibition of
GAPDH has been reported to cause accumulation of dicarbonyls
like methylglyoxal (MG), derived from triosephosphates [46,47].
Fig. 1 shows that GAPDH activity in the kidneys of the diabetic rats
was lower than in the normoglycemic controls, which is in
agreement with previous reports [48]. The MnT-2-PyP treatment
of healthy and diabetic animals had no effect on the activity
of GAPDH.

Malondialdehyde

MDA was significantly elevated in the diabetic groups (Fig. 1) in
agreement with earlier reports [14]. This confirms the hyperglycemia-
induced oxidative damage. However, no decrease of MDA was
observed in the group of diabetic animals treated with MnTM-2-PyP.
Moreover, a trend towards increase of MDA by MnTM-2-PyP was
observed in the diabetic group.

Superoxide dismutase (SOD)

Superoxide dismutase (SOD) is reportedly inactivated by glyca-
tion [49]. Thus, in diabetes, increased production of superoxide
combined with suppressed SOD activity, resulting in increased
superoxide steady state concentrations, might be the leading
causes of the oxidative damage. Fig. 2, however, shows that the
total SOD activity in the kidneys of diabetic animals was higher
than in the normoglycemic controls. Treatment with MnTM-2-PyP
further increased the SOD activity. The increase is statistically
significant compared to the diabetic, non-treated group.

Table 1
Blood glucose concentrations and the levels of glycosylated hemoglobin.

Experimental group Glucose (mM) HbA1C (mM)

Control 3.770.5 4575.8
ControlþMnP 4.170.5 4277.1
Diabetic 18.472.4n 99.579.0n

DiabeticþMnP 19.673.1n 107.2719.1n

n Po0.05 compared to control.

Fig. 1. Effect of Mn porphyrin-based SOD mimic on markers of oxidative stress: glutathione levels, lipid peroxidation and GAPDH. (A) GSH/GSSG ratio; (B) activity of
glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and (C) malondialdehyde (MDA) content. Groups are: C – Control; CþMnP – ControlþMnTM-2-PyP; D – Diabetic;
DþMnP – DiabeticþMnTM-2-PyP. nPo0.05 compared to control.
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Glutathione peroxidase

Similarly to SOD, the GPx activity in kidneys was significantly
elevated after two months of diabetes (Table 2) and remained
higher in the diabeticþMnTM-2-PyP group.

Glutathione reductase

Glutathione reductase activity was increased by 15% when
compared to the control group (statistically significant, po0.05).
The MnP treatment had no effect on GR activity (Fig. 2).

Catalase activity

Diabetes alone did not induce any changes in the catalase activity
in the kidney (Fig. 2). Treatment of non-diabetic rats with MnTM-2-
PyP also did not cause statistically significant changes, even though a
tendency towards increase was noticed. Treatment of diabetic
animals with MnP, however, produced statistically significant eleva-
tion of catalase activity in the kidney (Fig. 2C).

Glucose-6-phosphate dehydrogenase

G6PD has a unique role in cell survival as it is the principle
source of NADPH [50]. Diabetes was reported to cause inhibition of
G6PD via activation of protein kinase A, which contributes to the
oxidative stress in rat kidney cortex [51]. Decrease in the G6PD
activity, and consequently, decrease in the levels of NADPH, makes
cells sensitive to oxidative damage. Table 2 shows that the activity
of G6PD in the kidneys of the diabetic animals was significantly
decreased. Similar results were reported for the kidney cortex of
STZ diabetic rats at 4, 8 and 16 weeks [51]. In both, diabetic and
non-diabetic MnTM-2-PyP-treated animals, the G6PD activity was
not statistically different compared to the non-treated groups.

Methylglyoxal content

Table 2 shows that the concentration of methylglyoxal in the
kidneys of the STZ rats was significantly increased, when com-
pared to the control animals. MnTM-2-PyP did not prevent the
accumulation of MG in the diabetic rats, and had no effect on the
level of MG in the non-diabetic animals (Table 2). The extent of
accumulation of MG depends on the relative rates of its formation
and degradation. As mentioned above, low activity of GAPDH is
considered among the reasons for accelerated MG production.
Under normal conditions MG is removed mainly by the action of
the glyoxalases.

Glyoxalases activity

The glyoxalases are responsible for detoxification of methyl-
glyoxal and other reactive aldehydes, which are by-products of
metabolism. The detoxification is accomplished by the sequential
action of two thiol-dependent enzymes: glyoxalase І, which catalyzes
the isomerization of the spontaneously formed hemithioacetal
adduct between GSH and 2-oxoaldehydes (such as methylglyoxal)
into S-2-hydroxyacylglutathione; and glyoxalase ІІ, which hydrolyzes
these thiolesters, and in the case of methylglyoxal catabolism
produces D-lactate and GSH from S-D-lactoylglutathione.

The activities of both glyoxalase I and glyoxalase II were slightly
lower in the diabetic rats (Table 2), which is in agreement with
earlier reports [41]. The MnP treatment had practically no effect on
glyoxalase I and its activity remained lower than in the controls. The
same result was observed for glyoxalase II, even though a slight,
statistically insignificant tendency for the increase in its activity was
observed in the MnTM-2-PyP-treated animals (Table 2).

Overall kidney damage

The effect of MnTM-2-PyP on hyperglycemia-induced kidney
damage was determined by assessing the total protein and

Fig. 2. Effect of Mn porphyrin-based SOD mimic on activities of antioxidative enzymes. (A) SOD; (B) glutathione reductase (GR); and (C) Catalase. Groups are: C – Control;
CþMnP – ControlþMnTM-2-PyP; D – Diabetic; DþMnP – DiabeticþMnTM-2-PyP. nPo0.05 compared to control, nnPo0.05 compared to Diabetic.

Table 2
Kidney content of methylglyoxal and activities of GPx, G6PD and glyoxalases.

Control ControlþMnP Diabetic DiabeticþMnP

GPx (U/mg protein) 18427170 17307187 30117624n 28037733n

G6PD (U/mg protein) 6.272.2 5.471.7 2.470.9n 2.871.3n

MG (pmol/mg protein) 4.9270.38 4.3170.43 6.7570.62n 6.2870.61n

Glyoxalase I (U/mg protein) 0.6470.04 0.6770.04 0.5370.03n 0.5570.03n

Glyoxalase II (U/mg protein) 0.2770.02 0.2570.03 0.1870.01n 0.2170.03n

GPx, glutathione peroxidase; G6PD, glucose-6-phosphate dehydrogenase; MG, methylglyoxal.
n Po0.05 compared to control.
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lysozyme content in urine. Similarly to the above listed findings,
no positive effect of the MnP treatment on diabetes-induced
proteinuria was observed (Fig. 3). The MnP treatment actually
caused an increase in urinary protein, which, however was
statistically insignificant. The treatment increased the excretion
of lysozyme, which is a marker of impaired tubular reabsorption of
low molecular weight proteins (Fig. 3). This coincided with
increased blood urea nitrogen levels in the diabetic rats, which
was further significantly augmented by the treatment (Fig. 3).

Vascular (Aortic) reactivity

Stimulation with noradrenaline (10�9–10�4 M) induced reprodu-
cible and concentration-dependent contractions of aorta segments
from the control and diabetic rats (Fig. 4A). The concentration–
response curve of the aorta segments from diabetic rats was
displaced to the left but there was no change in the response
maximum. Treatment of control rats with MnTM-2PyP did not affect
the response to NA (not shown) and failed to reverse the leftward
displacement of NA concentration–response curve in diabetic rats
(Fig. 4A).

Carbachol

Carbachol (10�9 M–10�4 M) produced reproducible and
concentration-dependent relaxation of precontracted aorta seg-
ments from control and diabetic rats (Fig. 4B). Carbachol-induced
relaxation was significantly reduced in aorta segments from
diabetic rats. Treatment of control rats with MnTM-2PyP did not
affect the response to carbachol (not shown) and also failed to
reverse the attenuated response aorta segments from diabetic rats
to carbachol (Fig. 4B). The relaxant effect of sodium nitroprusside
was not affected by diabetes (not shown).

Discussion

Cationic Mn(III) ortho N-substituted pyridylporphyrins (MnPs)
are considered among the most efficacious SOD mimics, based on
their log kcat(O2U� ) approaching that of the SOD enzyme [12]. The
experimental evidence thus far collected demonstrate that while
they may not act in vivo predominantly as SOD mimics [13], their
properties which favor O2U� -dismutation (electron-deficiency and
cationic charge) make them favor reactions with anionic deproto-
nated reactive species [anionic thiolates, ONOO� , HClO� , mono-
deprotonated ascorbic acid (HA�)] [13]. In turn, the therapeutic
efficacy of MnPs parallels their kcat(O2U� ) values: the higher the kcat
values, the higher is the efficacy of MnPs as therapeutics [12,13].
Due to the key impact of mitochondria in pathological conditions,

it is important to note that all cationic MnPs accumulate in
mitochondria; the degree of accumulation depends upon their
lipophilicities [13,17,52]. The SOD-like activity of MnP,
i.e. ability to reduce and oxidize, O2U� (a mild pro- and antioxidant),
indicates that MnP can operate as mild pro- and antioxidant also, as
confirmed by experimental evidence. The pro-oxidative action,
though, can result in anti- and pro-oxidative effects (see
Introduction and Refs. [13,20,53,54] for details).

The ability of MnTM-2-PyP to suppress oxidative damage and
diabetic complications was investigated using the same standard
STZ diabetes model while varying the time of the initiation of
treatment. STZ is a potent alkylating agent that directly kills the
beta cells of the pancreas and thus completely abolishes insulin
secretion. Irrespective of the fact that STZ diabetes is the most
often used chemically-induced diabetes model, it has certain
limitations which should be kept in mind when data based on
this model are interpreted. Among the drawbacks are generalized
STZ toxicity and genotoxicity, producing DNA strand breaks, alkali-
labile sites, unscheduled DNA synthesis, DNA adducts, chromoso-
mal aberrations, micronuclei, and sister chromatid exchanges [55].
Even though alkylation is considered the main mechanism of
STZ-induced cell damage, several lines of evidence indicate that
STZ produces free radicals [56–60], and that beta cell killing is
radical-mediated [61]. This fact should be taken into consideration
particularly when data from experiments with redox-active com-
pounds are interpreted. In addition, the STZ diabetes model differs
substantially from the diabetes in humans by its duration and time
of manifestation of diabetic complications. In most of the cases,
the diabetic complications in humans are observed relatively long
time after the onset of diabetes. In STZ-treated animals complica-
tions appear within few weeks of inducing diabetes [62]. While
humans receive insulin and other glucose-lowering agents,
diabetic animals are normally not subjected to glucose control,
which results in early display of severe diabetic consequences
including reduced growth, dehydration, and metabolic derailment.
Poor general health and suppressed immune responses dramati-
cally reduce the lifespan of the diabetic animals. Therefore, it is
difficult to extrapolate from the accelerated, short term STZ
diabetes model to the chronic, long lasting human diabetes, where
glucose level, hygiene and general health are well controlled [62].

This study provides evidence which supports the pro-oxidative
action of MnP in enhancing the kidney damage. Such outcome
contradicts an earlier study where, under similar conditions, MnP
suppressed oxidative stress and protected the STZ diabetic rats
[14]. The differences in the experimental design of this and earlier
STZ rat diabetes study are shown in Scheme 1.
In the 1st study the therapy with MnP started at the onset of
diabetes, while in the 2nd study the sc injections of MnP started at
day 8 after the onset of diabetes (Scheme 1).

Fig. 3. Mn porphyrin-based SOD mimic enhances diabetes-induced kidney damage. The effect of MnTM-2-PyP treatment on hyperglycemia-induced kidney damage was
evaluated by measuring (A) urinary protein, (B) blood urea nitrogen and (C) lysozyme content in urine. Groups are: C – Control; CþMnP – ControlþMnTM-2-PyP; D –

Diabetic; DþMnP – DiabeticþMnTM-2-PyP. nPo0.05 compared to control, nnPo0.05 compared to Diabetic.
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The GSH depletion and lipid peroxidation are early events in the
STZ diabetic model, taking place as early as at the third day after STZ
injection [63] and are accompanied with increase of urinary albumin
[64]. These findings suggest that in the current (2nd ) study the MnP
therapy started at a stage of advanced oxidative stress, while in the 1st
study the treatment began before oxidative damage could be detected.
Our current results confirmed previous data, indicating that diabetic
nephropathy is accompanied with oxidative damage, accumulation of
reactive oxoaldehydes, and changes in the activities of important
metabolic and antioxidant enzymes. The delayed treatment did not
show beneficial effect and did not ameliorate the overall kidney
damage (Figs. 1–4). Moreover, judging by the urinary lysozyme,
urinary protein and blood urea nitrogen, MnTM-2-PyP enhanced
diabetic kidney damage (Fig. 3). Further, MnTM-2-PyP did not reverse
the effect of hyperglycemia on vascular reactivity (Fig. 4). G6PD is a
critical enzyme, which provides reducing equivalents in the form of
NADPH for regeneration of GSH. Suppressed G6PD activity in diabetes
is among the reasons for low GSH/GSSG ratio (Fig. 1). Our data further
show that the MDA content, reflecting lipid peroxidation, was elevated
in the kidneys of the diabetic rats and was not decreased by MnP
(Fig. 1). The SOD activity was higher in diabetic kidneys compared to
controls and further increased by MnP treatment of the diabetic rats,
but did not change when healthy rats received MnP (Fig. 2). The only
plausible explanation for such increase in SOD activity is the

upregulation of the enzyme as an adaptive response to oxidative
stress. Therefore, in this model of diabetes, the MnP did not act as an
SOD mimic, but likely as a pro-oxidant. Eventually, by redox-cycling
indicated in Scheme 2, MnP contributed to the increase of superoxide
and consequently H2O2, which in turn contributed to kidney damage
(Fig. 3). Such an effect has been observed in a rat kidney ischemia/
reperfusion model [18], where MnP was given as a part of mixture
containing growth factors and amino acids [18]. Upregulation of
extracellular and mitochondrial SODs, GR, GPx, and several peroxir-
edoxins was observed [18]. Addition of a simple thiol, N-acetylcysteine,
to the mixture, which acted as a reductant of Mn porphyrin, thus
stimulating redox-cycling, resulted in stronger upregulation of the
antioxidant enzymes [65]. Again, had MnP acted as an SOD mimic it
would have not upregulated SOD enzymes. Further, in the current
study, MnTM-2-PyP did not protect the oxidation-sensitive enzymes
like GAPDH from inactivation (Table 2). Low GAPDH activity leads to
the accumulation of methylglyoxal, which is a potent contributor to
the production of Advanced Glycation Endproducts (AGE). Catalase
activity was also increased by the action of MnP (Fig. 2) suggesting
further the adaptive responses to the increased production of H2O2.

Scheme 2 summarizes possible reactions involving MnPs, which
might have contributed to the production of H2O2. Production of
H2O2 has been proven in various systems were MnP was administered
with ascorbate [28,29,66,67]. Such scenario is relevant even without

Scheme 1. Summary of the differences between the current (Study 2) and the previous (Study 1) investigations. The Mn porphyrin-based SOD mimic suppresses oxidative
damage and extends the lifespan of STZ diabetic rats if administered at the onset of diabetes, but acts as prooxidant if the therapy starts at day 8 days post-onset of diabetes.
In the 1st study, the treatment with MnTM-2-PyP started at 24 h after streptozotocin injection, continued for the duration of study (5 days/week) with one week rest after
4 weeks of sc injections. In the 2nd study, the treatments with MnTM-2-PyP followed the same scheme, but started 8 days post-STZ injection and continued for two months
without a week rest after four weeks of treatment.

Fig. 4. Vascular responsiveness to vasoconstrictor and vasodilator. (A) Carbachol-induced relaxation of aorta ring segments from control and diabetic rats. Artery segments were
pre-contracted with noradrenaline (10�7 M). ■ represents responses to carbachol in aorta segments from control rats while ▼ and ▲ represent responses in aorta segments from
streptozotocin-treated rats with and without treatment with MnTM-2-PyP. Each point on the graph is the mean7S.E. of five experiments. (B) Reactivity of thoracic aorta segments
to noradrenaline in control and diabeticrats. ■ Represents responses to noradrenaline in aorta segments from control rats while ▼ and ▲ represent responses in aorta segments from
streptozotocin-treated rats with and without treatment with MnTM-2-PyP. Each point on the graph is the mean7S.E. of five experiments.
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exogenous ascorbate, due to high, mM levels of endogenous ascorbate.
We have demonstrated adaptive responses (upregulation of catalases
and peroxidases) when E. coli grew in the presence of MnP/ascorbate
[66]. Our aqueous chemistry data demonstrate that Mn porphyrin
utilizes H2O2 to oxidize NADPH, NADH or thiols (Tovmasyan et al.,
unpublished). MnP can also oxidize thiols directly [13]. In vivo
depletion of NADPH could further deplete GSH [53,67]. MnP was
shown to induce lipid peroxidation in the absence of cellular reduc-
tants [68–70]. When combined with GSH and H2O2, MnP catalyzes
glutathionylation of the p65 subunit of NF-κB thus preventing its DNA
binding [20,53,71]. Moreover, it was found that MnP glutathionylates
complexes I, III and IV of the mitochondrial electron transport chain,
with subsequent inactivation of complexes I and II and suppression of
ATP production [53].

Diabetes is considered a main risk factor for vascular disease [74],
leading to altered vascular responsiveness to vasoconstrictors and
vasodilators [75,76]. Convincing data show that increased production
of superoxide is the mechanism underlying vascular dysfunction
[5,77]. Therefore, catalytic scavenging of superoxide by MnTM-2-PyP
should have prevented the alterations in vascular responsiveness.
Administration of MnTM-2-PyP, however, did not show any positive
effect. The diabetes-related vascular dysfunction is characterized by
altered vascular reactivity to vasoactive agents. Several studies have
reported enhanced agonist-induced vasoconstriction in a variety of
vascular smooth muscle preparations [78–81]. In addition, impaired
endothelium-dependent relaxation to acetylcholine has been reported
[78,79,82,83], while there was no change in endothelium-independent
relaxation to sodium nitroprusside. Our data, which demonstrate the
higher reactivity to noradrenaline and impaired relaxation to carba-
chol but not nitroprusside in aorta segments from diabetic rats, are in
agreement with those reports. The delayed treatment with MnP failed
to reverse both the enhanced response to noradrenaline and the
impaired endothelium-dependent relaxation to carbachol (Fig. 4).

Results of this study differ from the previously reported datawhere
MnTM-2-PyP [14,42,84] and analogs [22,85–90] ameliorated bio-
chemical and physiological alterations triggered by oxidative stress.
The reasons for such discrepancy are most probably related to

differences in the timing of Mn porphyrin administration. In diabetes,
different pathogenic mechanisms leading to diabetic complications are
triggered by hyperglycemia-induced overproduction of superoxide by
the mitochondrial electron transport chain [5]. It has been found that
superoxide activates poly(ADP-ribose) polymerase, which in turn
inhibits GAPDH. The inhibition of GAPDH activates four known path-
ways causing diabetic complications: the polyol pathway, the AGE
production, the activation of protein kinase C, and the hexosamine
pathway [5]. It seems reasonable to expect that once all those
mechanisms are activated, the MnP could barely suppress or reverse
such processes. The observed upregulation of SOD and catalase by
MnP in diabetic tissue, together with augmented kidney damage in
the MnP-treated diabetic animals suggest that MnTM-2-PyP has not
acted as SOD mimic but as a pro-oxidant contributing to the diabetes-
induced oxidative stress.

Concluding remarks

In summary, the overall action of a Mn porphyrin in vivo would
depend upon its cellular accumulation and subcellular distribution, co-
localization with reactive species, concentrations of ROS/RNS, levels of
cellular reductants, i.e. cellular redox status, oxygen concentration and
other, yet not fully understood factors. MnP would exert beneficial
effects if introduced at early stages of oxidative stress. When the
oxidative injury is already profound, the capability of the MnP to
reduce reactive species and restore physiological redox environment is
greatly diminished – i.e. the therapeutic efficacy of a MnP would depend
on the magnitude of the oxidative stress at the moment the MnP-based
therapy is initiated.
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