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Abstract: Promoting technical change is an important driving force for promoting the sustainable
development of urban economy and ecology; however, the technical change is not always neutral and
technical change may has a certain direction. This paper uses the DEA-Malmquist index to measure
the directed technical change of 280 cities in China from 2009 to 2019, and uses the DMSP/OLS night
light data to characterize the urban economic development level. It uses the dynamic threshold
regression model to analyze the impact of directed technical change on urban carbon footprint under
different economic development levels. The results show that: (1) during the study period, the
carbon footprint of Chinese cities has a positive spatial correlation, and the direction of technical
change is towards capital-saving overall. (2) The impact of capital-saving technical change on urban
carbon footprint presents a negative double-threshold characteristic in China, and the inhibition of
capital-saving technical change on the urban carbon footprint becomes stronger with the increasing
economic development level. (3) The inhibitory effect of capital-saving technical change on carbon
footprint has regional heterogeneity, and the inhibitory effect of capital-saving technical change on
carbon footprint is stronger in eastern China than other regions. (4) Industrial structure, energy
structure and innovation efficiency are mediating variables of the inhibitory effect of capital-saving
technical change on carbon footprint except for population density.

Keywords: directed technical change; carbon footprint; dynamic threshold regression

1. Introduction

The climate change brought about by the greenhouse effect will not only have a
great impact on the global ecological environment, but will also endanger the production,
consumption, lifestyle and living space of human beings [1]. Therefore, in recent years,
climate change has been at the top of the global environmental issues and has attracted
more and more attention, making it a consensus of the international community to deal
with global climate change. Since 2015, at least 190 countries and regions have signed the
Paris Agreement, which emphasizes the need to strengthen the global response to the threat
of climate change. The core goal is to limit the global average temperature increase to less
than 2 ◦C by the end of the 21st century, and to strive to limit the temperature increase to
within 1.5 ◦C [2]. As of 2020, a total of 54 countries and regions in the world have achieved
carbon peaks, mainly in developed countries. As the largest developing country in the
world, China’s demand for natural resources has exceeded a reasonable range with the
rapid development of urbanization [3]. The total amount of carbon emissions is huge,
accounting for about 28% of the world’s total. China’s energy structure is dominated by
coal, and in 2019, coal accounted for 57.7% of total energy consumption [4]. In fact, climate
change, environmental pollution, and the sharp reduction in total resources have placed
varying degrees of ecological pressure on China’s urbanization development, threatening
the sustainable development of the urban economy and the environment [5]. Therefore, it
is necessary for us to conduct continuous tracking research on environmental issues such
as climate change in China.
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Under the background of tightening resource constraints and ecological environ-
ment degradation, technical change has become one of the most important sustainable
development paths for industrial structure upgrading, competitiveness enhancement and
environmental sustainability. However, Hicks argued in his 1932 wage theory that technical
change leads to an increase in the marginal output of an element when the ratio of capital
to labor remains constant, thus giving rise to the direction of technical change, also known
as biased or directed technical change [6]. And so, will directed technical change have an
impact on urban carbon emissions? Will this impact change as the level of economic devel-
opment increases? What is more, China is a country with an uneven distribution of natural
resources. Does the impact of directed technical change on urban carbon emissions with
different resource endowments have regional differences? In view of this, this paper will
reveal the dynamic threshold effect on carbon emissions from the perspective of directed
technical change, and provide experience for urban sustainable development in China.

2. Literature Review
2.1. Carbon Emissions

With the increasingly prominent environmental problems arising from the develop-
ment of industrial civilization, Malthus (1798) proposed the theory of population that “the
main cause of resource scarcity comes from the limit growth of population”, which is also
the starting point for people to pay attention to whether the population scale has an impact
on the environment [7]. Commoner (1971), an American biologist and ecologist, proposed
“technological determinism”, believing that the development of industrial technology was
the primary cause of environmental quality deterioration [8]. At the same time, the “Popula-
tion growth Theory” believed that “compared with sophisticated management technology,
oversize population is the deep-seated cause of ecological environment pressure”, empha-
sizing that population growth is the most important cause of environmental deterioration.
Thus, the IPAT model is a widely accepted cognitive framework of the impact of economic
and social development on the natural environment, that is, the impact of economic and
social development on the natural environment is closely related to the size of the human
population, the degree of wealth, and the level of technology [9]. However, since the
IPAT model belongs to the identity model, and the explanatory variables have an equal
proportional derivation relationship with each other, this cannot explain the influence of a
single factor on environmental quality [10]. Therefore, the STIRPAT (Stochastic Impacts by
Regression on Population Affluence and Technology) model is formed on the basis of the
IPAT model. Especially after obtaining the natural logarithm of both sides, more variables
are added to the right side of the equation to enhance the richness of the model [11].

“Carbon footprint” is one of the most commonly used indicators used to measure
greenhouse gas emissions, which can quantitatively measure the forest area required to
absorb the corresponding carbon emissions in a certain area. By comparing this with the
local forest area, the local environmental pressure can be judged intuitively, and then,
the regional carbon emissions can be compared and analyzed from a multi-dimensional
perspective of time and space. The concept of “carbon footprint” is based on the concept of
“ecological footprint” [12], which first became popular in the UK. It represents a collection
of greenhouse gas emissions caused by an enterprise, activity, product, or an individual.
The main greenhouse gas emissions are generated through transportation, food production
and consumption, energy use and various production processes. By combing the relevant
literature, scholars have done a lot of research on carbon emission and carbon footprint
from the different angle, objects and methods. For example, from the product, household,
industry, land use, region, country and other different scales of research; from the perspec-
tive of consumption and production, there are also direct carbon emissions and indirect
carbon emissions [13–17].

This paper uses ArcGIS to display the spatial distribution map of urban carbon
footprint in 2009, 2013, 2016, and 2019 in Figure 1 (the upper left picture is 2009, the
upper right picture is 2013, the lower left picture is 2016, and the lower right picture is
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2019). There are five categories, sorted numerically from high to low, and each category
accounts for 20% of the 280 cities. The closer the color is to red, the larger the carbon
footprint of the city, and the closer the color is to green, the smaller the carbon footprint of
the city. We can clearly see that the overall level of the urban carbon footprint from 2009 to
2019 is a significantly weakening. Among these, the carbon footprint of the eastern region
in 2019 is obviously lower than that in 2009, and it also shows a trend of shifting to the
central and western regions during the study period. However, urban carbon footprints
in the northeast have not changed much from 2009 to 2019. The possible reason for this
is that in recent years, the eastern region has paid more and more attention to the quality
of the urban environment, and green and high-quality development has become the main
theme of urban development. However, under the national industrial transfer policy, the
western region has to take over the transfer of polluting industries from the eastern region,
so the carbon footprint of the western region has not decreased significantly from 2009 to
2019 [18,19].
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2.2. Directed Technical Change

The main endogenous function form is the C-D (Cobb-Douglas) function, which can
well describe the phenomenon of balanced economic growth, and the Kaldor stylized
fact is consistent with the fact that the ratio of labor and capital income remains stable
in the long run. The C-D function, which makes the neutral technical change, has been
widely used [20]. However, with the large-scale development of the software machinery
and equipment industry in various countries globally, technical change has shown a
capital-biased attribute, and the proportion of labor income has also shown a continuous
downward trend, which deviates from the traditionally stylized fact that Kaldor’s labor
income proportion is stable [21]. Neutral technical change is beginning to be questioned.

Facts have proved that neutral technical change cannot really depict the evolution
of technology, and capital-saving technical change may occur in the process of economic
transition; that is, technical change may significantly contribute to raising the marginal
productivity of capital and increasing the share of capital investment income in national
income [22,23]. Moreover, with the decline in the share of labor income and the skill
premium in some developed countries [24,25], the direction of technical change theory was
effectively extended by Acemoglu (2002, 2006, 2007), whose main contribution is that he
extended the direction of technical change to any two factors (Z, L) and also defined the
directed technical change: when the technical change makes the relative marginal output of
the factor Z increase, we could say that technical change is in favor of the Z factor [26–28].

2.3. The Relationship between Directed Technical Change and Carbon Emissions

The research on the relationship between technical change and carbon emissions is
carried out from the following two aspects. First, technical change can significantly affect
carbon emissions through energy substitution rate, factor substitution rate and other factors.
Bampatsou et al. (2013) used the data envelopment analysis (DEA) method and found
that the impact of technical change on carbon emissions comes from two aspects. That
is, technical change may increase energy demand while reducing energy consumption.
The degree of influence of these two aspects leads to different directions of the impact of
technical change on carbon emissions [29]. Schiemann et al. (2020) found that economic
growth brought about by technical change will promote carbon emissions, but if technical
change brings clean technology, not just technology that improves production efficiency,
technical change will effectively reduce carbon emissions [30]. Hui et al. (2020) also found
that the reduction of carbon emissions brought about by technical change through energy
efficiency improvements cannot yet offset the increase in carbon emissions brought about
by its promotion of economic growth [31]. It is worth noting that the research of Gu et al.
(2020) shows that the technical change of the previous period can significantly reduce the
carbon emissions of the current period, indicating that there is a certain time lag in carbon
emissions [32]. Secondly, from the perspective of the impact of directed technical change on
carbon emissions, the earlier analysis on the economic effects of environmental policies was
mainly carried out under the condition of exogenous technology, ignoring the endogenous
problem of environmental technology. Recently, scholars have begun to internalize the
directed technical change and introduce it into the climate change model. Smulders and
Maria (2012) and Ploeg and Rezai (2016) found that if directed technical change is ignored,
the welfare cost of optimal carbon tax will be exaggerated [33,34]. This implies that directed
technical change has some impact on carbon emissions. Furuya et al. (2015) found that the
direction of technical change in Japan has an important impact on carbon emissions [35].
Kronenberg (2010) verified that directed technical change has a positive effect on China’s
industrial energy conservation and emission reduction [36].

In addition to the relationship between directed technical change and carbon emis-
sions, it also needs to be considered that the impact of directed technical change on urban
carbon emissions in eastern China may be different to other regions due to the higher level
of economic development [37]. For example, Li and Wang (2019) found that the inhibitory
effect of technical change on China’s pollutant emissions is positively affected by the level
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of regional economic development; that is, when the level of economic development is high,
the financial support required for the development and application of technical change
is more effective, which is conducive to vigorously developing, promoting and utilizing
clean energy, thereby reducing carbon emissions and suppressing pollutant emissions [38].
Simultaneously, with the improvement of the level of economic development, the social
awareness of environmental protection has been relatively enhanced, and people’s con-
sumption preferences have gradually shifted from the price of the final product to the
environmental protection and energy saving of the product production process, which
alleviates the growth of total carbon emissions to a certain extent [39]. It can be seen that
due to the differences in the level of regional economic development, directed technical
change may have varying degrees of impacts on carbon emissions.

Additionally, there are also significant regional differences in directed technical change
in China. Due to the excellent technology research and development environment in the
eastern region of China, the investment amount of scientific and technological resources
and the technology market turnover have shown rapid growth year on year [40]. The
technical level has been continuously improved, and the degree of openness is much higher
than the national average level, the market economy has a high degree of freedom, the
industrial structure has been continuously optimized and upgraded, and the public’s
appeal for improving the ecological environment is relatively higher. The DEA method
is used to measure the directed technical change of 30 provinces in mainland China, and
it was found that the directed technical change in the eastern region was significantly
higher than that in the central, western and northeastern regions [41,42]. Therefore, in
addition to different economic development stages, directed technical change may have
different impacts on carbon footprints, and at the same time, it may have a heterogeneous
impact on carbon footprints in different regions, and existing research lacks attention on
this issue. Therefore, this paper aims to explore whether there is also a threshold effect on
the impact of the directed technical changes on carbon footprint under different economic
development levels. Moreover, does the threshold effect change in different regions?

3. Models and Data
3.1. Models
3.1.1. STIRPAT Model

This paper selects and combines the STIRPAT model as the basic theoretical framework
for studying the quality of the ecological environment [10,11]. However, the panel data
form of the STIRPAT model is originally from the IPAT model. The IPAT model is as shown
in Formula (1):

Iit = aPb
it Ac

itT
d
ite for city i and time (1)

where I, P, A and T represent environmental impact, population size, per capita wealth and
technical level, respectively, and e is the error term. However, the IPAT model belongs to
the identity model, and the explanatory variables have an equal proportional derivation
relationship with each other which cannot explain the influence of a single factor on
environmental quality. Therefore, The STIRPAT model is formed on the basis of the IPAT
model [40]. Especially after obtaining the natural logarithm of both sides, more variables
are added to the right side of the equation to enhance the richness of the model.

lnc f it = α0 + α1lnpopit + α2lnpopit + α3lndtcit ++α4Xit + εit (2)

Among them, due to the availability of data, i is the cross-sectional unit of 280 prefecture-
level cities in China, and t is the year; the population is P, the per capita wealth A and the
technology level T are represented by the population number (lnpopit), per capita GDP (lngdpit),
and the core explanatory variable is directed technical change (lndtcit) respectively; lncf it is
the carbon footprint of the explained variable; X is a set of control variables; α0–α3, α4 are
parameters to be estimated; ε is the random disturbance term.
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3.1.2. Dynamic Threshold Regression Model
Because the strict assumptions of Hansen’s (1999) static panel threshold model are

difficult to meet in the process of practical application, multicollinearity, significant bias and
endogeneity among the variables are extremely likely to occur [43]. In order to solve some
of the defects of the static threshold model, Kremer (2013) proposed a dynamic threshold
model that included the lag term of the explanatory variable, which solved the endogeneity
and lag problems of variables to the greatest extent [44,45]. Therefore, in the following
formula, it is only assumed that there is a threshold, but in order to make the analysis more
accurate, this chapter also sets a double threshold model and a triple threshold model:

lnc f it = αXit + β1lndtcit × I(Tit ≤ δ1) + β2lndtcit × I(δ1 < Tit ≤ δ2)
+β3lndtcit × I(Tit > δ2) + β4lnc f it−1 + β5lnc f it−2 + C + εit

(3)

lnc f it = αXit + β1lndtcit × I(Tit ≤ δ1) + β2lndtcit × I(δ1 < Tit ≤ δ2)
+β3lndtcit × I(δ2 < Tit ≤ δ3) + β4lndtcit × I(Tit > δ3) + β5lnc f it−1 + β6lncfit−2 + C + εit

(4)

3.2. Data
3.2.1. Variables
1© Explained variable: carbon footprint

According to report from Global Footprint Network (GFN) in 2007, “carbon footprint
is a part of the ecological footprint, which can be regarded as equivalent to the ecological
footprint of fossil energy” [46]. That is to say, the carbon footprint is the geographical area
required to absorb the corresponding carbon emissions in a specific area. The larger the
carbon footprint, the higher the impact on regional warming. The formula is as follows:

lnc f it = ∑ c f i = ∑ Ci/Fi (5)

In Formula (1), lncfit is the urban carbon footprint; cfi is the energy utilization carbon
footprint of the i-th energy; Ci is the per capita carbon emissions of the ith energy; and
Fi is the land conversion coefficient of the ith energy, that is, the actual consumption of
various energy sources is converted into carbon emissions. Then, the carbon footprint of
various energy use is calculated by the ratio of carbon emissions to land area conversion
coefficients [47]. The land area conversion factor (Fi) is 6.49 t/hm2 (measured by the amount
of CO2 absorbed by forest land) [48].

Then, we calculated CO2 emissions for 280 cities in China according to the type of
fuel consumption. Among them, the types of urban energy consumption mainly include
raw coal, coke, crude oil, gasoline, diesel oil, fuel oil, natural gas, heat, electricity. The
data of fuel consumption are generally measured and accounted for in mass or volume
units. Since the carbon content of fuel is usually closely related to the energy content, it
is reasonable to convert the fuel consumption value into calorific value units. Based on
the 2006 IPCC (Intergovernmental Panel on Climate Change), the calculation method of
the carbon emission coefficient of various energy sources shown in the National Green-
house Gas Emission Inventory Guide [49], and the calculation method of the relevant CO2
emission is as follows:

Ci = ∑ ln ecij × rj (6)

In the formula, rj is the carbon emission coefficient of the jth energy, and the carbon
emission coefficients of various energy sources are shown in the Table 1.

Table 1. Carbon emission coefficients of various energy sources.

Energy Types Raw Coal Coke Crude Oil Gasoline Diesel Oil Fuel Oil Natural Gas Heat Electricity

coefficients 0.4861 0.7482 0.8206 0.8071 0.8453 0.8657 5.3903 0.0279 0.1623



Int. J. Environ. Res. Public Health 2022, 19, 5151 7 of 15

2© Core explanatory variables: directed technical change

Fare et al. (1997) decomposed the Malmquist index into the following parts: tech-
nical efficiency change index (FFCH) and technology change index (TECH) [48]. It also
decomposes the technology change index into the technology scale change (MATECH),
the output-biased technology change (OBTECH) and the input-biased technology change
(IBTECH) index. As IBTECH can effectively judge the direction of technical progress
after combining the changes in the proportion of element input combination between two
adjacent periods. Therefore, this article uses the IBTECH index to measure the directed
technical progress [50–52], and the calculation method is as follows:

Let xt = (x1t, . . . . . . , xNt) be the vector of factor input in period t, yt = (y1t, . . . . . . , yNt)
be the vector of output in period t. The Shephard input distance function in period t can be
defined as:

Dt
i (y, x) = max

{
λ :

x
λ
∈ Lt(y)

}
(7)

Among them, Lt(y) represents the possible investment combination required during
t period. With constant returns to scale, the Malmquist index (MI) used to measure total
factor productivity is:

MI =

√√√√ Dt+1
0 (yt, xt)

Dt+1
0 (yt+1, xt+1)

×
Dt

0(y
t, xt)

Dt
0(y

t+1, xt+1)
(8)

MI can be broken down into FFCH and MATECH, OBTECH and IBTECH:

MATECH =
Dt+1

0 (yt, xt)

Dt
0(y

t, xt)
(9)

OBTECH =

√
Dt+1

0 (yt+1, xt+1)

Dt
0(y

t+1, xt+1)
/

Dt+1
0 (yt+1, xt)

Dt
0(y

t+1, xt)
(10)

IBTECH =

√
Dt+1

0 (yt+1, xt)

Dt
0(y

t+1, xt)
/

Dt+1
0 (yt, xt)

Dt
0(y

t, xt)
(11)

When x2t+1/x1t+1 < x2t/x1t and IBTECH are both less than 1, the technical change
is x1-saving, and the IBTECH becomes smaller, the higher the degree of technical change
directed towards x1-saving. When x2t+1/x1t+1 > x2t/x1t, the situation is the opposite. When
x2t+1/x1t+1 = x2t/x1t, technical change is neutral. In this study, x1 is the labor input, and x2
is the capital input. In order to unify the two situations, this article sums up the opposite of
the IBTECH value in x2t+1/x1t+1 > x2t/x1t and two. The IBTECH value under x2t+1/x1t+1
< x2t/x1t remains unchanged to obtain the quantitative index of labor-saving technical
change. Therefore, a large value of this index indicates that the directed technical change is
more capital-saving.

3© Mediating variables

This paper selects the following four variables to characterize population aggregation,
industrial structure, energy structure and innovation efficiency, respectively. Specifically,
we use population density to characterize the effect of population agglomeration; the
ratio of the secondary industry to GDP to characterize the industrial structure; the ratio of
coal consumption to energy consumption to measure the energy structure; and the ratio
of input and output of innovation resources to characterize innovation efficiency. Based
on the related literature, it is expected that the population agglomeration effect and the
improvement of innovation efficiency will reduce the carbon footprint. It is expected that
the ratio of the secondary industry to GDP and the ratio of coal to total energy will both
contribute to the carbon footprint [53,54].
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4© Threshold variable

DMSP/OLS data is currently one of the most widely used nighttime light data, and
it has been used in studies on population estimation, electricity consumption estimation,
and urban expansion monitoring. Therefore, this paper selects the nighttime light data of
DMSP/OLS to characterize the economic development level of 280 cities in China (lnnlit).
Because stable light data can be used not only to test real economic growth, but also to
measure economic activities such as economic agglomeration, urbanization, population
mobility, and energy consumption [55]. At the same time, stable light data objectively
reflects regional differences in the production and living conditions of human society [56].

5© Control variables

Based on the STIRPAT model (Dietz and Rosa 1994) [11], this paper selects the fol-
lowing five control variables from the economic, social, and environmental perspectives:
the proportion of tertiary industry (lnthirdit), foreign direct investment (lnfdiit), total road
passenger transport (lntransit), the number of full-time college teachers (lntechsit), and the
scale of pollution control investment (lnpollutionit) [57,58]. Among them, population, GDP
and total road passenger transport are expected to have a positive effect on carbon footprint.
However, the proportion of tertiary industry, foreign direct investment, the number of
full-time college teachers and the scale of pollution control investment are expected to have
a suppressing effect on carbon footprint.

3.2.2. Data Source

Considering the availability and representatives of data, this paper takes 280 cities
in China as the research object, and obtains the basic data for measuring urban energy
consumption and carbon footprint from the relevant yearbooks from 2009 to 2019; “China
Statistical Yearbook”, “China Environmental Statistical Yearbook, China Forestry Statistical
Yearbook, China Social Statistical Yearbook, Compilation of Foreign Resources, Energy and
Environment Statistical Data, China Rural Statistical Yearbook”, etc. The capital stock of
urban-oriented technological progress is estimated by the perpetual inventory method,
with 2000 as the base period, of which the total employment and real GDP are derived from
the 2010–2020 China Urban Statistical Yearbook. This paper uses 2009–2019 DMSP/OLS
data to obtain nighttime light data in 283 cities in China, and uses the method of Xu et al.
(2020) to calibrate the problem of inconsistent data sources around 2013 [59]. This paper
obtains the basic data for calculating the DEA-malmquist index from the China Urban
Statistical Yearbook. The input variables are labor and capital. The labor is estimated by the
total number of employees in the region, and the capital is estimated by the capital stock.
The output variable is the real GDP of the region.

4. Results Analysis
4.1. Regional Difference Analysis of Directed Technical Change on Carbon Footprint

The 280 cities are classified according to the regions of China’s four major plates,
including 100 cities in eastern China, 79 cities in central China, 68 cities in western China
and 33 cities in northeastern China. According to Formulas (3) and (4), the Hausman
significance test was performed on the panel data, and the results showed that the null
hypothesis was rejected, so the fixed-effects model was selected for analysis. Based on the
fixed effect model, the carbon footprint is used as the explained variable; the night light
data (replacing the level of economic development) is used as the threshold variable. This
paper measures the impact of urban technological change on the carbon footprint of the
whole country, eastern, central, western and northeastern regions under different economic
development levels.

All regions have passed the single-threshold test in Table 2, but there are obvious
differences in their significance. The single-threshold test of the eastern and northeastern
regions is only at the 10% level, and the significance of the central and western regions is at
the 5% level. However, all regions except the northeast region passed the 1% significance
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level for the double-threshold test; the triple-threshold effect in the west and northeast
regions was not significant. Therefore, under the premise that night light data are used as
the threshold variable, the F value of the double threshold of capital-saving technical change
on carbon footprint is relatively large. Therefore, this paper adopts the double-threshold
test for the impact of capital-enhanced technological progress on carbon footprint.

Table 2. Threshold effect test.

Regions National Eastern Central Western Northeastern

single threshold test 41.565 *** 19.203 * 26.187 ** 19.054 ** 22.019 *
(5.29) (1.78) (2.20) (2.01) (1.70)

double threshold test 28.005 *** 17.146 *** 22.436 *** 20.183 *** 27.043 **
(3.09) (4.17) (6.88) (5.90) (2.09)

triple threshold test 11.001 * 9.076 ** 12.261 *** 8.238 0.000
(1.77) (1.99) (6.01) (0.47) (0.12)

Note: ***, ** and * indicate significance at the 1%, 5% and 10% levels, respectively.

It can be seen from Tables 3 and 4 that the first line and second line show that there
is a positive spatial relationship between urban carbon footprint of China, and this is
also consistent with the conclusions from some scholars [60–62]. When the first and
second lag periods of urban carbon footprint are used as the explained variables, for the
whole country, when the urban night light data is below the first threshold of 6864.52,
the elasticity coefficient of capital-saving technical change on carbon footprint is −0.2077,
and it is significant at the 1% level. When the urban night light data are between the two
thresholds, the elasticity coefficient of capital-saving technical change to carbon footprint is
−0.3003. When the night light data exceed the second threshold of 8136.44, the elasticity
coefficient of capital-saving technical change to carbon footprint is −0.3428. Therefore,
under the dynamic threshold model, the improvement of China’s overall urban capital-
saving technical change significantly inhibits the growth of carbon footprint, and at the
same time, the higher the city’s night light data, the stronger the inhibition effect.

Table 3. Threshold estimate.

Single-Threshold
Estimate (δ1)

95% Confidence
Interval

Double-Threshold
Estimate (δ2)

95% Confidence
Interval

Entire country 6864.52 (5903.09, 7215.83) 8136.44 (7965.84, 9019.78)
East 5824.17 (4978.69, 6070.11) 7211.86 (6553.07, 7422.84)

Central 7802.36 (7255.39, 8104.61) 8427.30 (7909.68, 8577.93)
West 6780.19 (6407.63, 6978.26) 8469.38 (7719.36, 9066.78)

Northeast 9245.32 (8905.83, 9763.15) 10,705.68 (9758.89, 11,003.25)

Similarly, the inhibitory effect of capital-saving technical change on the carbon foot-
print in the eastern, central and western regions is consistent with that of the country as
a whole. That is, the improvement of capital-saving technical change has an increasingly
strong inhibitory effect on the growth of carbon footprint in the eastern, central and western
regions. Among them, for the western region, when the night light data exceed the first
threshold of 6780.19 and the second threshold of 8469.38, the effect of increasing capital-
saving technical change on curbing total carbon footprint is becoming more and more
obvious, with the coefficient changing from −0.0038 to −1.0003 (all at the 1% significant
level). It is worth mentioning that for the northeast region, only after the night light data
crosses the second threshold of 10,705.68 does capital-saving technical change exhibit a
dampening effect on the carbon footprint with a coefficient of −1.0216, which is significant
at the 5% level. Therefore, under the dynamic threshold model, we control for the endo-
geneity of the explained variables to a certain extent, the impact of capital-saving technical
change on urban carbon footprint still has significant stage and regional differences.
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Regarding the control variables, except for the population in the western region, which
showed a significant promoting effect on the urban carbon footprint in all models, GDP
shows a significant contribution to the city’s carbon footprint. The level of foreign direct
investment, the ratio of tertiary industry to GDP, and the ratio of pollution input scale
to GDP have significant inhibitory effects on carbon footprint in all models; the annual
passenger volume of highways has no significant impact on the total urban carbon footprint,
so there is no regional difference. The improvement of education level represented by the
number of college teachers only shows a restraining effect on carbon footprint in the eastern
region, which shows that the public’s environmental protection awareness has a certain
relationship with the urban social and economic development level [63].

Table 4. Dynamic threshold regression results of capital-saving technical change on carbon footprint
in different regions.

Variables
Model (1) Model (2) Model (3) Model (4) Model (5)

Entire Country East Central West Northeast

lnecit-1
2.0725 *** 1.2073 *** 1.0413 *** 1.6073 *** 1.0266 ***

(4.13) (3.06) (5.88) (4.01) (6.06)

lnecit-2
1.8547 *** 0.9877 *** 0.8765 *** 0.9463 *** 0.9029 ***

(3.24) (4.17) (5.78) (4.09) (3.62)

lndtc (Tit < δ1) −0.2077 *** −1.0208 *** −0.0097 *** −0.0038 ** −0.7021
(−5.73) (−4.17) (−3.08) (−2.10) (0.88)

lndtc (δ1 ≤ Tit < δ2) −0.3003 *** −1.0302 *** −0.1015 *** −0.0705 *** −0.9006
(−3.01) (−4.47) (−5.13) (−3.68) (1.20)

lndtc (Tit ≥ δ2) −0.3428 *** −1.3063 *** −0.2705 *** −1.0003 *** −1.0216 **
(−3.17) (−5.44) (−3.35) (−5.08) (−1.98)

lnpopit
0.9037 *** 0.8025 *** 1.0004 *** −0.0713 *** 0.5946 ***

(3.79) (−3.29) (6.09) (−5.17) (−4.16)

lngdpit
1.0005 *** 0.9801 *** 0.7975 *** 0.8009 *** 0.0429 ***

(3.91) (3.83) (3.46) (4.08) (5.91)

lnfdiit
−0.9358 *** −1.0133 *** −0.2046 *** −0.7085 *** −0.1129 ***

(−4.55) (−5.06) (−5.97) (−4.83) (−6.04)

lnthirdit
−0.9031 *** −0.6708 *** −0.4079 *** −0.3397 *** −0.4289 ***

(−4.00) (−3.46) (−4.82) (−7.03) (−5.62)

lntransit
0.0740 0.0526 0.0899 0.0645 0.1012
(0.45) (1.02) (1.23) (0.97) (1.38)

lntechsit
−1.0802 −0.9153 *** −1.0246 −0.9011 −1.2038
(−0.94) (−1.02) (−0.68) (−0.93) (−1.01)

lnpollutionit
−1.2463 *** −1.0589 *** −0.9976 *** −1.0205 ** −1.6173 ***

(−4.07) (−3.28) (−4.03) (−2.39) (−3.04)

C
6.533 *** 5.087 *** 3.014 *** 4.006 *** 3.498 ***

(7.33) (5.10) (3.47) (3.96) (5.08)

Note: *** and ** indicate significance at the 1% and 5% levels, respectively.

4.2. Mediation Effect Regression Results

It can be seen from Table 5 that the coefficients of lndtcit in model (2) are −1.9421, with
1% significant level, and the Sobel value is 0.8703, which is less than 0.97. This means that
the increase in the level of capital-saving technical change does not inhibit or promote
urban carbon footprint by changing population density or population aggregation; that is,
population density as a mediating variable does not play a significant mediating effect. This
may be because there is no significant direct association between capital-saving technical
change and population density, so the mediating effect does not exist. The coefficients of
lndtcit in model (5) are −0.4709, respectively, with 1% significant level, and the Sobel value
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is greater than 0.97. This means that the improvement of the level of capital-saving technical
change can inhibit the urban carbon footprint by changing the industrial structure. That
is, the industrial structure as an intermediary variable has played a significant mediating
effect. However, in models (4) and (6), the coefficient of lndtcit is significant at different
levels, indicating that this is not a full mediating effect, but a partial mediating effect.

Table 5. Mediation effect regression results of population density and industrial structure.

Variables Model (1)
lnecit

Model (2)
lndensit

Model (3)
lnecit

Model (4)
lnecit

Model (5)
lninsit

Model (6)
lnecit

lndensit
−0.0987 ** −0.9045 ***

(−2.20) (−3.67)

lndtcit
−0.0804 *** −1.9421 *** −0.9478 *** −0.2766 *** −0.4709 *** −0.6570 **

(−4.05) (−3.00) (−2.71) (−4.88) (−3.70) −2.5

lnpopit
0.0608 *** 0.0931 *** 0.0833 ** 0.7302 *** 0.4331 ** 0.5062 ***
−5.47 −3.99 −2.39 −4.07 −2.22 −5.78

lngdpit
0.7576 *** 0.0922 ** 1.0273 *** 0.0994 *** 0.0871 *** 0.9204 ***
−4.67 −2.12 −4.08 −3.27 −3.1 −4.45

lnfdiit
−0.9760 *** −0.6834 ** −0.0901 *** −1.0742 ** −0.9776 ** −0.3802 ***

(−2.99) (−2.07) (−3.88) (−2.62) (−2.47) (−5.06)

lnthirdit
−0.4698 *** −0.0926 ** −0.6609 *** −0.0076 *** −0.0328 * −0.1059 ***

(−3.93) (−1.98) (−4.04) (−3.97) −1.84 (−4.75)

lntransit
0.0411 *** −0.0289 *** 0.0738 *** 0.3776 *** 0.2588 *** 0.0901 ***
(−4.83) (−5.07) (−4.56) (4.19) −5.32 −3.66

lntechsit
−0.0095 −0.0702 −0.0548 −0.1023 −0.3864 −0.8991
(−0.01) (−0.49) (−1.32) (−0.99) (−1.37) (−0.71)

lnpollutionit
−1.2205 *** −0.1988 *** −0.4759 *** −0.1209 *** −0.3765 *** −0.8201 ***

(−4.30) (−3.41) (−3.26) (−4.48) (−3.70) (−3.26)

Time fixed effect Control Control Control Control Control Control

Individual fixed effects Control Control Control Control Control Control

Constant
0.1920 *** −0.9928 *** 0.8330 *** 3.8029 *** −4.7280 *** 3.6004 ***
−3.93 (−3.30) −4.99 −3.43 (−4.65) −6.03

R2 0.758 0.7869 0.7761 0.7361 0.7822 0.7553

Sobel |Z| = 0.8703 ** |Z| = 2.6935 **

Mediating effect No mediating effect Partial mediating effect

Note: ***, ** and * indicate significance at the 1%, 5% and 10% levels, respectively.

The coefficients of lndtcit in model (2) and (5) are −1.3706 and −2.0505, respectively,
and both are significant at the 1% level, and the Sobel value is greater than 0.97. This
means that the improvement of the level of capital-saving technical change can inhibit the
urban carbon footprint by changing the energy structure; that is, the energy structure as an
intermediary variable has played a significant mediating effect. However, in model (1) and
(3), the coefficient of lndtcit is significant at the 1% level, indicating that this is not a
complete mediating effect, but a partial mediating effect. It can be seen from Table 6 that
the coefficients of lndtcit in model (5) are −2.0505, and with 1% significant level, and the
Sobel value is greater than 0.97. This means that the increase in the level of capital-saving
technical change has an inhibitory effect on urban carbon footprint by changing innovation
efficiency. That is, innovation efficiency as an intermediary variable has played a significant
mediating effect. However, in models (4) and (6), the coefficient of lndtcit is significant at
the 1% level, indicating that this is not a full mediating effect, but a partial mediating effect.
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Table 6. Mediation effect regression results of energy structure and innovation efficiency.

Variables Model (1)
lnecit

Model (2)
lnensit

Model (3)
lnecit

Model (4)
lnecit

Model (5)
lnieit

Model (6)
lnecit

lndensit
−0.9877 *** −0.9832 ***

(−3.70) (−6.26)

lndtcit
−0.1921 *** −1.3706 *** −0.4559 ** −0.1937 *** −2.0505 *** −1.0841 **

(−5.17) (−4.65) −2.33 (−4.51) (−3.89) −2.45

lnpopit
0.7325 *** 0.6822 ** 0.0905 *** 0.0681 *** 0.4073 ** 0.0943 ***
−6.1 −2.24 −4.15 −4.28 −2.17 −4.05

lngdpit
0.0916 *** 0.8807 ** 0.1065 *** 0.9925 *** 0.9028 ** 1.0085 ***
−4.09 −2 −3.9 −3.85 −2.19 −5.68

lnfdiit
−0.1050 ** −0.3629 ** −0.7609 *** −0.9630 ** −0.8240 ** −0.9064 ***

(−2.18) (−2.46) (−4.57) (−2.21) (−2.36) (−3.69)

lnthirdit
−0.9903 *** −0.6304 * −0.4937 *** −0.6977 *** −1.0025 ** −0.7793 ***

(−4.03) −1.86 (−3.69) −4.08 −5.78 −4.32

lntransit
0.9607 *** 0.8219 *** 0.6503 *** 0.9118 *** 0.9376 *** 0.8762 ***
−4.66 −7.9 −4.89 −3.95 −4.26 −5.07

lntechsit
−1.3227 −0.8746 −0.9972 −0.9950 −0.0617 −1.0815
(−0.98) (−1.21) (−0.79) (−0.87) (−1.06) −0.69

lnpollutionit
−0.0736 *** −0.1028 *** −0.0977 *** −0.5876 *** −0.4210 *** −0.3599 ***

(−3.28) (−5.72) (−5.68) (−4.15) (−3.09) (−4.77)

Time fixed effect Control Control Control Control Control Control

Individual fixed effects Control Control Control Control Control Control

Constant
2.8240 *** −5.9070 *** 3.6094 *** 1.0705 *** −1.6368 *** 3.9784 ***
−6.73 (−4.22) −3.94 −5.21 (−4.16) −3.77

R2 0.7582 0.7981 0.7802 0.7258 0.7387 0.7972

Sobel |Z| = 2.0065 ** |Z| = 1.9896 **

Mediating effect Partial mediating effect Partial mediating effect

Note: the data in the table are the F statistics corresponding to the threshold test, ***, ** and * indicate significance
at the 1%, 5% and 10% levels, respectively, and the P statistics are in brackets.

5. Conclusions

This paper investigates the relationship between directed technical change (capital-
saving) and carbon footprint under a dynamic threshold effect model, and then discusses
whether the relationship will change in different regions across China. Then, we use a me-
diation effect model to partially test the impact mechanism of capital-saving technological
progress on carbon footprint: (1) the direction of technical change is towards capital-saving
among Chinese cities. The carbon footprint of Chinese cities has a positive spatial cor-
relation (2) the inhibition of capital-saving technical change on urban carbon footprint
becomes stronger with the increase of economic development level. (3) The inhibitory
effect of capital-saving technical change on carbon footprint has regional heterogeneity,
and the inhibitory effect of capital-saving technical change on carbon footprint is stronger
in eastern China than other regions. (4) The mediating variables of the inhibitory effect of
capital-saving technological change on carbon footprint include industrial structure, energy
structure and innovation efficiency.

Therefore, first of all, while improving the level of technological progress, the Chinese
government should also pay attention to the direction of technological progress, so as to
better strengthen the inhibition of carbon footprint by adjusting the industrial structure and
energy structure. Secondly, it is important to formulate differentiated strategies according
to the resource endowments of different cities, so that cities can achieve sustainable develop-
ment in terms of economic development and environmental protection. Thirdly, the central
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city should play the leading role of its growth pole to a greater extent, drive the surrounding
cities to improve the level of technological progress, and strengthen their role in carbon
footprint. More importantly, although this paper is innovative in its research perspective,
most of the literature only pays attention to the impact of the level of technological progress
on carbon footprint, ignoring the importance of the direction of technological progress.
However, in this paper, remote sensing data can be used to be more detailed and accurate.
The research scope can also be broader. For example, advanced technology must be used in
the process of emission reduction, and the extensive use of technology will consume a lot
of energy. For example, electricity. Therefore, the direction of our future research can start
from distinguishing the relationship between energy saving and emission reduction.
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