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Life expectancy has dramatically increased in recent human history. As a result, neurodegener-
ative diseases have become a primary health issue. Circadian clocks are found in all mammali-
an tissues, including neurons and glia, and are, thus, likely to have an impact on the onset and
progression of neurodegenerative diseases. However, the link between circadian clocks and
neurodegeneration is poorly understood. Means et al. now report an intriguing connection be-
tween circadian genes and pathways implicated in neurodegenerative processes [1].

Circadian rhythms are fundamental adaptive mechanisms that enable organisms to opti-
mize most of their bodily functions with the day/night cycle. A critical circadian output in ani-
mals is the sleep/wake cycle. Circadian and sleep disruptions are frequently associated with
neurodegenerative diseases [2]. Furthermore, sleep abnormalities can precede the onset of
other neurological symptoms. For example, patients carrying a pathogenic allele of Ataxin-2
causing Spinocerebellar Ataxia Type 2 (SCA-2) experience sleep disruptions prior to suffering
from ataxic symptoms [3,4]. Interestingly, in fruit flies, the ATXN2 homolog dATX2 plays a
critical role in the expression of the circadian gene period (per) in circadian pacemaker neu-
rons. Indeed, dATX2 collaborates with the translation factor TWENTYFOUR (TYF) to pro-
mote permRNA translation [5,6]. Thus, the homolog of a gene involved in neurodegeneration
contributes to the control of circadian rhythms in fruit flies. But what about the opposite con-
nection: does the clock, or at least some circadian genes, contribute to the onset and progres-
sion of neurodegenerative diseases? Means et al. also turned to Drosophila to try to answer this
important question [1].

The Price lab has had a long interest in a critical circadian kinase called DOUBLETIME
(DBT), which is the fly homolog of Casein Kinase 1 δ/ε. DBT regulates PER phosphorylation,
as well as the activity of the circadian transactivator CLOCK (CLK) [7]. DBT is, thus, critical to
determining the period of circadian rhythms. Looking for DBT regulators, Means et al. identi-
fied SPAGHETTI (SPAG). SPAG downregulation leads to a long period phenotype or to ar-
rhythmic behavior. SPAG has recently been shown to be part of a multimeric co-chaperone
that works with HSP70 and HSP90 to regulate the assembly of large protein complexes [8].
HSP proteins play an important role in the progression of neurodegeneration [9]. Moreover,
SPAG was found to affect aggregation of Huntingtin (HTT), the protein that causes Hunting-
ton disease when its polyQ domain is expanded [10].

Means et al. uncovered a novel pathway connecting SPAG to neurodegenerative mecha-
nisms in flies, which is modulated by circadian genes and light (Fig 1). Their results indicate
that SPAG protects DBT from proteasomal degradation at specific time points: during the day
about seven hours after the lights are turned on, and seven hours into the night. DBT disap-
pearance during the day is very closely associated with activation of the caspase DRONC
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[11,12], but not at night. However, light exposure during the night can also cause DRONC acti-
vation, demonstrating that both light and loss of DBT are required. DRONC promotes cell
death, and Means et al. show that it can also trigger TAU cleavage, which is observed in Alzhei-
mer disease [13]. Loss of DBT also worsened the neurodegenerative phenotype observed when
human TAU is overexpressed in the fly eye. Thus, SPAG and DBT protect flies against activa-
tion of caspases that can ultimately lead to neuronal degeneration and cell death.

Interestingly, the SPAG pathway appears to be entirely cell-autonomous since it can be reca-
pitulated beginning from SPAG inactivation to TAU cleavage inDrosophila S2 cell culture.
However, in the brain, a more complicated mechanism is at play. Indeed, DRONC activation is
very broad in the brain, even when SPAG/DBT are inactivated in only 16 circadian neurons
called ventral lateral neurons (LNvs), which express the neuropeptide Pigment Dispersing Factor
(PDF). Moreover, the receptor for PDF (PDFR) is required for broad DRONC activation, which,
in the brain at least, is largely non-autonomous. How a similar set of proteins can be involved in
what appears to be rather different mechanisms of DRONC activation will need to be deter-
mined. Also surprising is the fact that downregulating DRONC only in tissues expressing circa-
dian rhythms in the brain (clock neurons and glia) appears to block DRONC activation in non-
circadian neurons. It seems that DRONC expression in circadian neurons is required for the
spread of its activation. These are very intriguing observations that certainly warrant further
study since this could shed light on how neurodegeneration spreads to large regions of the brain.

To come back to the initial question, what is the actual role of the circadian clock in this
process? In vivo, DRONC activation implicates DBT, a key circadian protein, and PDF positive
circadian neurons. It would, therefore, seem likely that the circadian molecular pacemaker is

Fig 1. Connection between circadian proteins (in blue) and proteins causing cell death or neuronal degeneration (in red). SPAG and light modulate
this protein network.

doi:10.1371/journal.pgen.1005266.g001
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implicated. Unexpectedly however, although a strong dominant negative clkmutant caused
DRONC to be activated, a null permutation—which makes flies completely arrhythmic—did
not. Moreover, DRONC activation happened in clkmutant flies at the same time as in wild-
type flies. Finally, short and long period permutants had no effect on the phase of DRONC ac-
tivation. Thus, although at least two circadian proteins (CLK, DBT) control DRONC activa-
tion, it does not appear that the circadian molecular clock itself impacts this process. This
conclusion could seem particularly unexpected since well-characterized circadian neurons and
their neuropeptidic output PDF are critical for DRONC activation in the brain. However, there
are two types of PDF positive circadian neurons. The small LNvs are the actual pacemaker for
circadian behavior, which means that they determine the pace and phase of circadian locomo-
tor rhythms [14]. Then there are the large LNvs, which have been shown to mediate various be-
havioral light responses, including acute light-induced arousal [15–17]. These neurons send
numerous projections into the optic lobe and, thus, probably receive light input from the eyes.
Moreover, they are themselves directly acutely light sensitive through the photoreceptor
CRYPTOCHROME [18]. It seems therefore plausible that prolonged light exposure would
cause the large LNvs to secrete PDF and, thus, trigger the broad activation of DRONC when
the protective SPAG/DBT pathway is disrupted. Importantly, Means et al. show that this pro-
tective pathway is defective in aging wild-type flies, with DRONC becoming activated even
under dark conditions. Neuronal aging in flies could be linked to SPAG/DBT pathway disrup-
tion. Whether similar mechanisms are at play in aging or diseased mammalian neurons now
needs to be determined.
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