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Abstract

Background: Somatically acquired genomic alterations with MYCN amplification (MNA) are key features of neuroblastoma
(NB), the most common extra-cranial malignant tumour of childhood. Little is known about the frequency, clinical
characteristics and outcome of NBs harbouring genomic amplification(s) distinct from MYCN.

Methods: Genomic profiles of 1100 NBs from French centres studied by array-CGH were re-examined specifically to identify
regional amplifications. Patients were included if amplifications distinct from the MYCN locus were seen. A subset of NBs
treated at Institut Curie and harbouring MNA as determined by array-CGH without other amplification was also studied.
Clinical and histology data were retrospectively collected.

Results: In total, 56 patients were included and categorised into 3 groups. Group 1 (n=8) presented regional
amplification(s) without MNA. Locus 12q13-14 was a recurrent amplified region (4/8 cases). This group was heterogeneous
in terms of INSS stages, primary localisations and histology, with atypical clinical features. Group 2 (n=26) had MNA as well
as other regional amplifications. These patients shared clinical features of those of a group of NBs MYCN amplified (Group 3,
n =22). Overall survival for group 1 was better than that of groups 2 and 3 (5 year OS: 87.5%*11% vs 34.9%*7%, log-rank
p<0.05).

Conclusion: NBs harbouring regional amplification(s) without MNA are rare and seem to show atypical features in clinical
presentation and genomic profile. Further high resolution genetic explorations are justified in this heterogeneous group,
especially when considering these alterations as predictive markers for targeted therapy.
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aberrations, most of which consist of copy number alterations.
Indeed, it is now well established that the overall genomic pattern

Introduction

Neuroblastoma (NB) is the most common extra-cranial malig-
nant tumour of childhood, [1] and is characterised by its wide
heterogeneity in clinical presentation and evolution [1-3]. Recent

is an important prognostic marker which might be taken into
account for treatment stratification [4—13]. Numerical chromo-
some alterations (whole chromosome gains or losses) are observed

advances In genetic analysis of this heterogeneous tumour, using a
wide panel of techniques including array Comparative Genomic
Hybridization (aCGH), have revealed different recurrent genomic
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in NBs with good prognosis when exclusive. Typical segmental
copy number alterations (deletions of chromosome arms 1p, 3p,
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4p, 11q and gains of chromosome arms 1q, 2p, 17q) are associated
with poor outcome [7].

Amplification of the proto-oncogene MYCN (MNA), found in 25
to 30% of NBs, is the most important genomic feature, in terms of
prognosis and impact on treatment decisions [2,3]. Other genomic
aberrations defined by regional amplifications targeting various
sites, non syntenic with the MYCN locus, have been previously
described [5,6,14-19]. These amplicons seem to have a low
recurrence and most often occur concomitantly with MNA [16].
In a previous study, the precise genetic mapping of such amplicons
has been described, and a poor survival for patients with NBs
harbouring loci co-amplified or not with AMYCN has been
suggested [16].

Nevertheless, to date, clinical features of NB harbouring
amplicons different from MYCN, and particularly without concur-
rent MNA, have not yet been reported in detail. The role of these
amplicons and their possible contribution to the oncogenic process
are unclear and there is a need to better characterise clinically
these tumours. The aim of this study is to describe occurrence,
detailed clinical characteristics, histology and outcome of NBs
harbouring amplicons at loci distinct from MTCN, without and
with MNA.

Patients and Methods

Ethics statement

This study was authorized and approved by the ethics
committee “Clomité de Protection des Personnes Sud-Est IV,
reference L07-95 and L12-171 and the ethical committee Ile de
France, reference 0811728. Written informed consent was
obtained from parents according to national law and the ethics
committees listed above approved this consent procedure.

Patients and samples

Between 1996 and 2011, tumour samples from a total of 1100
patients were sent to the laboratory from French centres for
genetic analysis and were studied by aCGH.

The 1100 aCGH profiles were re-examined specifically for high
level amplification, regardless of their overall genomic pattern,
using the VAMP graphical interface and visual inspection [20].
aCGH profiles were taken into account if tumour cell content was
known to be >50%, or in the absence of known tumour cell
content, if the copy number profile showed a clear dynamic
profile. All patients for whom amplifications distinct from the
MYCNlocus were observed were then selected. As a control group,
patients treated at Institut Curie from 1999 to 2011, for whom
aCGH was performed on the tumour and revealed a MNA
without any other amplification were also studied. The aCGH
platform and analysis steps were identical for all patients.

A total of 56 patients were included in this study. For all cases
MYCN status was confirmed by Fluorescent in situ hybridization
(FISH) [21] and no discordance between aCGH and FISH has
been observed. Clinical data (sex, date of birth, date at diagnosis,
INSS tumour stage, localisation, MIBG uptake, sequence of
treatment, relapse or progression, date and status of last follow up),
biological data (urinary catecholamine at diagnosis) and histology
(tumours were classified according to INPC, with focus on the
differentiation of the tumour cells) were retrospectively collected.
Patients were treated in French centres from the Société Francaise
des Cancers de I'Enfant (SFCE) according to national or
International treatment protocols.
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Comparative Genomic Hybridization and definition of

genomic amplification

Tumour samples sent to the laboratory for somatic pangenomic
analysis were studied by aCGH as previously described [16]. The
resolution was determined by the genomic spacing of the array
elements. Two types of arrays have been used: until 2009 an in-
house designed array containing between 2855 and 3799 BAC-
PAC clones covering the whole genome with a median probe
spacing of 1 Mb [16], then a commercial array (NimbleGen) was
used with an average resolution of 40 kb (72 000 probes).

Amplification was defined by at least two BAC clones (for the
in-house array) or at least 3 adjacent oligonucleotide probes (for
the NimbleGen array taking into account its higher resolution)
with a fluorescent tumour/normal ratio =3 corresponding to a
log2 ratio =1, 5 [16]. Boundaries of an amplicon were described
according to the genomic position of the markers located outside
the amplified region (coordinates of the non amplified markers
closest to the observed amplicon, according to UCSC genome
draft, hgl9 (http://genome.ucsc.edu/)). On chromosome band
2p24, amplicons harbouring MYCN with or without directly
adjacent co-amplified genes were considered as MNA. In case of
amplifications of loci distant from MYCN but still within the
cytogenetic 2p24 band, we defined arbitrarily an amplicon distinct
from MYCN, when the amplicon was separated from MYCN locus
by at least five BAC/PAC clones with a normal fluorescence
tumour/normal ratio on the in-house array, or the corresponding
number of probes on the NimbleGen array.

Analysis of somatic genetic alterations with definition of losses,
gains and high level amplifications was performed as previously
described [16]. Precise genetic analysis of 31 of the NBs in this
study has been reported previously [16] but the precise clinical
data had not been analysed for these patients.

Statistical analysis

Contingency tables were analysed by the Fisher exact test.
Mean values were compared by the non parametric Kruskal
Wallis Test. Median follow up was calculated according to the
inversed Kaplan-Meier method. Progression free survival (PFS)
was defined as the time between diagnosis and the first event:
relapse, progression, and death from any cause or last follow-up.
Opverall survival (OS) was defined as the time between diagnosis
and death of any cause or last follow-up. Survival curves were
analyzed according to the Kaplan-Meier method and compared
using the log-rank test with a P-value of less than 0.05 considered
to be significant.

Results

Genomic amplifications

Among 1100 aCGH profiles, we found a total of 12 tumours
showing amplification of one or several loci distinct from MYCN
without any evidence of MNA (1%). We did not get access to
clinical information for two of them. For another two, the
histological report was non conclusive and a definitive diagnosis of
NB could not be retained. Indeed, diagnosis of malignant
pheochromocytoma was suggested. These four patients were not
included. Therefore eight confirmed NBs presenting regional
amplification(s), without MNA, were included as group 1 (n=8). A
further 26 patients were found with NB exhibiting MNA
associated with one or several amplification(s) at other loci (group
2, n=26). Finally, 22 patients treated for NB in our institution
between 1999 and 2011, for whom aCGH have been performed
on tumour, were identified with amplification only located at the
MYCN locus and were considered as a control group (group 3,
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Figure 1. Examples of different genomic profiles with genomic amplifications obtained in neuroblastoma by array comparative
genomic hybridization for each group at diagnosis. For each panel, the genome wide aCGH profile is shown with zoom on the amplified
regions. Genomic profiles were obtained using the NimbleGen R platform, and images were generated using the SignalMap R software. Log2 ratio
=0 corresponds to a balanced tumour/normal DNA ratio. Amplification is indicated by plots with a log2 ratio =1, 5 (corresponding to a tumour/
normal DNA ratio =3). (A) Example of group 1 profile (NB0760): NB without MYCN amplification but harbouring amplifications at loci 12q13-14 and
12qg24. (B) Example of group 2 profile (NB0863): NB with MYCN amplification (2p24) and harbouring amplification at locus 12q14. (C) Example of
group 3 profile (NB1244): NB with MYCN amplification and no other amplicon.

doi:10.1371/journal.pone.0101990.g001

n=22). Examples of genomic profile for each of the 3 groups are
shown in Figure 1 with zoom on the amplified regions.
Altogether, the most frequent amplified regions distinct from
MNA were located at chromosome band 19pl2, 2p25, 2p23,
21921, 22qll1 and 12ql13-14, with amplification in other
chromosome regions being much rarer. Genomic findings for
groups 1 and 2 cases are summarised in Table 1 and Table 2
respectively. Precise amplification boundaries are available in
Table S1 and in a.BED file (File S1) enabling to export all genes
possibly included in the amplicons, according to UCSC genome
draft, hg19 (http://genome.ucsc.edu/).

In group 1, the amplified region 12ql13-14 was recurrent,
observed in 4/8 cases (NB0760, NB0830, NB0037, NB0039). For
two of them, the amplification was larger and comprises
chromosome bands 12q13 to 12q15. Amplification at 11q13 was
observed in two cases (NB0384, NB0040). Four NBs had a single
amplification and the other four (NB0037, NB0039, NB0040,
NB0760) had two distinct amplicons. These amplifications arise in
an overall genomic pattern of segmental aberrations (Table 1).
However for 4/8 cases, aCGH showed overall atypical genomic
profiles for a NB, and for two others the genomic profile was
numerical.

In group 2, more than 50% of cases had at least two regions co-
amplified with MNA. Among these, amplification at chromosome
band 19p12 was found in 8/26 cases, amplification of ALK at band
2p23 in 5/26 cases, and ODCI at band 2p25 in 3/26 cases
(Table 2 and Table S1). The majority of tumours in group 2
had a genomic profile typical of NB, with segmental chromosome
alterations including losses of 1p, 11q and gain of 17q. One had
only numerical chromosome alterations and two other cases
neither numerical nor segmental chromosome alterations. In this
group, aCGH profiles globally showed a higher number of copy
number alterations (Table 2).

In group 3, aCGH profiles showed a single amplification at the
MYCN locus associated with segmental chromosomal alterations
typical of NB in most cases.

Clinical characteristics

All patients from the 3 groups presented non familial and non
syndromic NB. Detailed clinical characteristics and histology data
for patients of groups 1 and 2 are summarised in Tables 1 and 2
respectively.

For group 1, patients were of all INSS stages, the primary site
occurred in different localisations, clinical features and histology
were heterogeneous (Table 1). Interestingly, three patients
(NB0791, NB0830, NB0039) in this group had normal urinary
catecholamines and no uptake of MIBG at scintigraphy at
diagnosis. For NB0039, lung metastasis was observed at diagnosis.
Of note, NB0037 had an atypical presentation with a lumbar
primary site with metastatic relapse located at the spermatic cord.

Patients in groups 2 (Table 2) and 3 (data not shown) shared
clinical features with NB of advanced stage. All patients in group
2, except one (data not available), had positive MIBG uptake in
their primary tumour. All except one (and data were not available
for six patients) presented with high level urinary catecholamines.
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The primary tumour was localised mostly at the adrenal gland and
histology was in general poorly differentiated or undifferentiated.

Concerning the general distribution of clinical parameters for
the three groups (Table 3), no statistically significant difference of
median age at diagnosis was found between the three groups, with
an overall median age of 25 months. No difference was found
between the three groups concerning distribution of INSS stage at
diagnosis, with a high percentage of advanced stages observed in
all three groups (Fisher exact test, P=0.35). Interestingly,
distribution of primary tumour localisation was different between
group | and the two other groups (Fisher exact test, £<<0.001).
Indeed, localisation was mainly abdominal for the three groups,
but an adrenal site was found for 37.5% of primary tumours in
group 1 versus 85% in group 2 and 100% in group 3 (Table 3).

Survival analysis

Opverall median follow up was 88 months (range from 3.7 to 155
months). No significant difference in outcome was found between
the three groups (Figure 2A and 2B).

However when comparing patients of group 1 to all patients
with NB harbouring MYCN amplification, i.e. groups 2 and 3
pooled together, we found a significantly better OS for group 1
(Figure 2C, P=0, 045). There was no difference in PFS
(Figure 2D).

Concerning groups 2 and 3, no statistically significant difference
in outcome was found between patients with exclusively MYCN
amplified NB and patients with MNA associated with other
amplicons. Nevertheless a trend towards a poorer outcome in OS
and particularly in PFS was observed for group 2 compared to

group 3.

Discussion

Somatic DNA amplification plays an important role in the
development of many solid tumours possibly by providing a means
of overexpression of oncogenes [22,23]. Identification of high level
amplifications has clinical impact due to the role of such genetic
alterations as both prognostic and predictive molecular markers.
MYCN, first identified in NB, was the first amplified proto-
oncogene with significant clinical relevance, and its status is
routinely used to stratify treatment [2,3,24,25]. In other cancer
types, such as medulloblastoma, amplification of MYC family
genes 1is associated with clinical high risk disease and predicts an
extremely poor prognosis [26]. Other specific gene amplifications,
for instance in breast cancer such as FRBB2 or MDM?2 are
associated with high grade cancer and have strong prognostic
significance [23,27].

In NB, in previous studies, regional amplifications other than
MYCN have been occasionally described with low recurrence and
most often concomitantly with MNA [5,6,14,17-19]. The
objective of this study was now to report in detail the clinical
features of patients with NB harbouring amplification(s) other than
MYCN.

In this more extensive series, we confirm the rarity of regional
amplifications occurring either without MNA or together with
MNA (1% and 3% of all cases, respectively) as detected by aCGH.
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Undiff NB
P. diff NB

Diff NB
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16922

CR(44)
CR(44)
CR(27)

No

CT-S
IM

NI

LLN No

Cervical
Abd

18
17
22
55

M
E
E

NB0791

numerical
—22q

12q13_14, 12924

12q13_14

No

DLN

NB0760

No

none No NI
LLN

Abd median

2b

NB0830

P. diff NB

+1p, +13q, +17q

12913_15, 21922
7921

CR(129)
Al(31)

L(7)
No

S-CT
CT-S
IM

Abd lumbar

Adr
Adr

M

F

NB0037

Undiff NB
P.diff NB

—3p, +18 pq

Y na

B, M, DLN

51

NB0072

12912, 12q13_15 +1p, +4q

DOD(19)

Ms+L(14,5)

NI

No

Lung

67

M

NB0039

M, male; F, female; Adr, adrenal; Abd, abdominal; B, bone; M: bone marrow; DLN: distant lymph nodes; LLN: local lymph nodes; Ms, Metastatic relapse; L, Local relapse; MIBG, metaiodobenzylguanidine uptake at primary tumour
site; Y, yes; H, high secretion of urinary catecholamines; NI, normal secretion of urinary catecholamines; IM, intensive multimodality; S: surgery; CT, chemotherapy; DOD, dead of disease; Al, alive status unknown; CR, complete

remission; NB, neuroblastoma; Undiff., undifferentiated; P.diff., poorly differentiated; Diff, differentiating; na, not available.

doi:10.1371/journal.pone.0101990.t001
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Given the resolution of the arrays used in this study, it cannot be
excluded that amplified regions smaller than the interval between
the probes of the arrays might have gone undetected by our
techniques. However only few amplified regions distinct from
MYCN have been observed in recent high resolution sequencing
studies based on whole exome/genome sequencing [28-30],
confirming that this is a rare phenomenon. Thus our lower
resolution approaches give a good overview of the majority of
amplicons in the genome. In a next step, it will be interesting to
determine with accuracy genes implicated in the amplicons using
next generation sequencing.

Interestingly, patients with NBs harbouring amplifications other
than MYCN, without concomitant MNA, constitute a heteroge-
neous group of patients with NBs arising from non adrenal sites
observed more frequently, as well as occurrence of atypical
metastatic sites (lung, spermatic cord). Furthermore an increased
frequency of absence of MIBG avidity and absence of urinary
catecholamine secretion was noted, when normally positive in 90
95% of NB cases [1]. In addition to atypical clinical features, the
overall genomic pattern of these NBs revealed atypical segmental
patterns. Although histological analysis confirmed the diagnosis of
NB, novel histology characterisation using PHOX2B immuno-
staining might be useful in this context of atypical NB to help in
the diagnosis of undifferentiated types [31]. Indeed PHOX2B
immunolabelling has been shown to improve the diagnosis of
undifferentiated NB among childhood small round blue-cell
tumours with high specificity and sensitivity. Considering recent
publication, it would be also interesting for this atypical group of
NB without MNA to further study expression of MYC protein in
the tumour as it has been suggested that MYC protein expression
could be a new prognostic factor indicating more aggressive
clinical behaviour than MNA [32].

On the other hand, clinical features of patients whose tumours
harbour regional amplifications other than MYCN together with
MNA are comparable to those with MNA only.

Although limited by the small number of patients, analysis
suggests that OS of patients with amplification(s) other than MYCN
without MNA might be better than that of patients with MNA,
whereas those harbouring both M1CN and other amplifications
might have an even worse prognosis. Indeed tumours harbouring
regional amplicons in addition to MNA showed a higher genomic
instability as documented by the observation of more segmental
chromosomal alterations with a tendency towards a poorer
outcome, as suggested previously [16]. Furthermore when
comparing OS to a group of 170 NBs with segmental chromo-
somal alterations but without MYCN or other amplification
(corresponding to genomic type B and D from a previous study
[7]), the OS for group 1 was comparable to these NBs (type B and
D) with 5 year OS of 87, 5%=*11, 7 SE for group 1 vs 73%*3,9
SE and this result was significantly better than OS for patients in
groups 2 and 3.

The genes targeted by regional amplifications in NB have been
analysed in detail in previous study [5,6,9,14,16-19]. The most
frequent amplifications concern ALK amplification at band 2p23,
frequently co-amplified with MYCN, accounting for 4% of NBs
studied in a meta-analysis [33-35], found in five cases in our study
(group 2) and ODC1 amplification at band 2p25 always found co-
amplified with MYCN (20% of cases analysed in 2 studies) [9,30],
found in three cases in our study (group 2). Somatic amplification
at 12q13-15 locus has also been described [6,9,12,14-16,19,36].
This amplified region contains two potential target genes: CDR4
(12q13_14) involved in cell cycle progression and MDM?Z2 (12q15),
a target gene of the transcription factor tumour protein p53 and
the encoded protein can target p53 for proteasomal degradation.
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Figure 2. Kaplan Meier survival curves. (A, B) Overall survival and progression free survival curves of patients according to the 3 groups: group 1
(amplicon other than MYCN, not MYCN amplified, n=8), group 2 (MYCN and other amplicons, n=26), group 3 (only MYCN amplification, n = 22). Five-
year OS rate was 87.5%*+11.7%, 28.6%*=9.2% and 42.4%*11.2% for groups 1, 2 and 3, respectively (P=0.075). Five-year PFS rate was 62.5%*17%,
25.8%+9.2%, 55.9%+11% for groups 1, 2 and 3 respectively (P=0.129). (C, D) Overall survival and progression free survival curves respectively for
patients presenting NBs with amplification other than MYCN, without MYCN (group 1, n=8) and patients with at least amplification of MYCN (group 2
and 3 pooled together, n=48). Five-year OS rate was 87.5%=*11.7% for group 1 and 34.9%*+7% for group 2+3 (P=0.045). Five-year PFS rate was

62.5%+17% for group 1 and 37.9%+7.7% for group 2+3 (P=0.242).
doi:10.1371/journal.pone.0101990.g002

In our study the amplicons at 12q13-14 and 12q13-15 were the
most commonly amplified region in the absence of MNA with the
CDK4 gene amplified constantly but MDAM?2 found amplified only
in half of the cases. Amplifications at 12q13-14 and 12q13-15
have been reported in many other solid tumours such as malignant
glioma, bladder cancer and sarcomas most often resulting in
overexpression of genes in this region, with the implication of a
worse prognosis in amplified cases [37—41]. CDK6 gene at 7q21
was also amplified in the absence of MNA in one case (NB0072)
and CCGNDI gene at 11q13 in two cases (NB0040 and NB0384).

PLOS ONE | www.plosone.org

These observations are noteworthy considering that CCNDI,
CDE4 and CDK®6 are G1 phase-regulating genes, part of the Cyclin
D/CDK4/CDK6/RB pathway found hyperactive in NB, and
considering the efficacy of new small molecule inhibitor targeting
CDK4/CDKG6 leading to G1 arrest and cellular senescence [42].
In group 1, without MNA, seven cases among eight presented
amplification containing one of these genes.

Characterisation of amplicons using aCGH data combined with
gene expression profiling analysis has shown that up to 25% of the
genes targeted by genomic amplification are overexpressed in

July 2014 | Volume 9 | Issue 7 | €101990



tumour cells, with a potential oncogenetic role, an observation of
clinical importance when considering targeted therapies [16,42].

Taken together, NB harbouring distinct amplification other
than MY CN might have atypical clinical and genetic features and
will warrant further studies including high resolution genomic
analysis and expression data to more precisely characterise their
genetic features and impact in oncogenic process. As more
targeted therapies become available, such as molecules inhibiting
specifically CDK4-CDKG6 [42] or ALK for instance, it will be
crucial to obtain precise information about genomic amplification
status at diagnosis. As higher resolution genomic profiles are
obtained, smaller genomically amplified regions might be detected
more frequently. The prognostic impact of the amplified regions
will have to be studied prospectively and their use as predictive
markers for targeted therapy will be of importance.

Supporting Information

Table S1 Boundaries for amplifications found in group
1 and in group 2. Boundaries of one amplified region are given
according to the genomic position of the markers (BAC or
oligonucleotide probe) located outside the amplified region
(coordinates of the non amplified markers closest to the observed
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