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Abstract: Based on 4,4′-[1,3/4-phenilenebis(oxy)]phthalodinitriles, the mixture of phthalocyaninates
of various structures with rare-earth metals were obtained by template fusion method minimizing
the side polymerization processes. Target monophthalocyaninates were isolated from the reaction
mixture and purified using column and then gel permeation chromatography. The compounds
were characterized by NMR, IR spectroscopy, mass spectrometry, and elemental analysis. The
spectral properties were studied and the aggregation behavior of the synthesized Er, Yb, and Lu
phthalocyaninates in chloroform, acetone, and tetrahydrofuran was determined. It has been shown
that lutetium complexes with 3,4-dicyanophenoxyphenoxy ligands are the least stable and least
resistant to aggregation in solution, while erbium and ytterbium phthalocyaninates proved to be
stable in all studied media. The quantum yields and fluorescence lifetimes of the complexes in
chloroform and tetrahydrofuran were calculated.
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1. Introduction

Complexes of rare earth elements (REE) with phthalocyanine derivatives constitute a
separate group of compounds due to the specificity of their properties, which is determined
by the nature of the central metal atom used. Metal phthalocyaninates are characterized by
intense light absorption in the visible region [1–4], which determines their use as dyes [5–7]
and elements of optical devices [8,9], while lanthanide complexes, along with the above
properties, also exhibit absorption and, accordingly, emission in the near-IR region [10,11].
This opens up prospects for the use of such compounds as optical limiting devices [12–14],
luminescent films, and sensors [9]. This fact is associated with the presence in the structure
of the complex of an atom of a rare earth element, which makes it possible to realize
luminescence of the 4f-type [15–17].

It is known that complexes of various structures with Er(III), Yb(III), and Lu(III) have
high fluorescence quantum yields, which, along with high lifetimes, determine the interest
in their study and the prospects for their subsequent application. The structure of the
introduced ligand has a significant effect on the luminescent properties exhibited by the
complex and can both promote and inhibit the processes of energy transfer between the
organic fragment and the complexing atom. Thus, the key task is to search for structures
with suitable electronic and steric parameters that are capable of effectively realizing the
entire energy potential of the rare earth atom.

It is well known that complexes of phthalocyanines with REE can take both mono-
decker and multi-decker forms [18,19]. Sandwich-type complexes of various structures are
well studied and attract researchers primarily as potential elements of nonlinear optical
devices [20], highly sensitive sensors [21], and electrochromic devices [22]. REE mono-
decker phthalocyaninates, in turn, are much less studied due to the lower overall stability of
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the complexes [23]. However, the available works [23] show that the selection of a suitable
peripheral/non-peripheral substitution in the structure of the molecule makes it possible
to stabilize the complex in a stable state, which opens up opportunities for studying their
properties and their use as semiconductor materials [24] and photo- and electroluminescent
applications [25,26]. Moreover, based on stable mono-decker phthalocyaninates, it is
possible to obtain various structures of homo- and heteroleptic sandwich structures [27]
with the possibility of simply introducing metal ions of various characteristics, which gives
the compounds promising properties [28].

One of the key factors limiting the possibility of studying and using phthalocyan-
inates in the liquid phase is aggregation [29]. In view of the relatively large size of
the molecule, this process can be observed even at low concentrations of complexes in
solution [30–32], which, despite this, often leads to a decrease in the ability of complexes
to absorb light [33,34], a decrease in the quantum yields of fluorescence [35] and singlet
oxygen [36], and also electrical conductivity [34]. Thus, in order to prevent the occurrence of
molecular aggregation, it is necessary to fine-tune the structure of the obtained phthalocyan-
inates, which consists in the selection of suitable substituents and the central metal ion [37].
It is known that aromatic fragments give the compounds under study good solubility in
most commonly used organic solvents [38,39], which opens up the possibility of studying
their properties and further application [40,41], on the other hand, the presence of oxygen
bridges [42,43] binding aromatic fragments of the substituent, gives these fragments the
necessary spatial flexibility, thereby preventing the occurrence of aggregation processes.
Thus, we chose the peripheral type of substitution of the phthalocyanine ligand with [3/4-
(3,4-dicyanophenoxy)phenoxy fragments, which provides both good solubility and intense
properties, for example, spectroscopic [44], catalytic [45], and oxidative-recovery [46]. In
the framework of the present work, single-decker complexes of several REE (Er, Yb, Lu)
with tetrakis-4-[3/4-(3,4-dicyanophenoxy)phenoxy]-phthalocyanine ligands were obtained
and characterized, and the spectroscopic and photophysical properties exhibited by them
were studied.

2. Results and Discussion
2.1. Synthesis of Tetrakis(dicyanophenoxyphenoxy)phthalocyaninates of Rare Earth Elements

Attempts were made to tetramerize [phenylenebis(oxy)]diphthalonitriles (2, 3) with an-
hydrous erbium(III), ytterbium(III), and lutetium(III) acetates (Scheme 1i). The reaction was
carried out by refluxing in iso-amyl alcohol in the presence of 1,8-diazabicyclo[5 .4.0]undec-
7-ene (DBU). Nevertheless, as a result, the predominant formation of a polymer alloy of
complex composition was observed, and by varying the temperature, the molar ratio of
the reactants, and other reaction conditions, it was not possible to increase the yield of the
target products (yield < 1%).

This phenomenon is probably due to the presence of a large number of terminal
cyano-groups, which, along with their high coordination activity, leads to intense poly-
merization processes with the formation of a network structure. Thus, in order to obtain
the target mono-complexes, it was decided to carry out the reaction under more stringent
conditions, namely, by means of template fusion in the absence of a solvent. Previously,
we showed [45–47] that by varying the ratio of nitrile:metal salt from 4:1 to 8:1, we have
a mixture of products of various structures with the predominant formation of mono- (at
v/v 4:1) or sandwich (at v/v 4:1) or sandwich (at v/v 8:1) structures, and in the case of the
lutetium salt, the inevitable formation of the phthalocyanine ligand is observed. Thus,
further, template fusion of the starting phthalonitriles 2 and 3 with anhydrous acetates of
rare earth elements was carried out (Scheme 1ii). By varying the reaction conditions, on the
whole, it was possible to increase the yields of the complexes by up to ~40% (depending
on the structure). The lowest yields were observed in the case of lutetium complexes,
which is associated with the smallest radius of the metal, leading to the relative lability of
the mono-complex (the occurrence of spontaneous demetallation processes was observed
over time).
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Scheme 1. Strategy for obtaining complexes of rare-earth elements with [3/4-(3,4-
dicyanophenoxy)phenoxy]-phthalocyanine ligands ((i): Reflux in iso-amyl alcohol, DBU, 24 h;
(ii): Template fusion in the absence of solvent, 190 ◦C, 30 min).

All compounds obtained in the mass spectra gave the characteristic molecular peaks of
the complexes without impurities of the starting reagents or polyphthalocyanine fractions
obtained as by-products.

1H NMR spectra were obtained for the compounds (Figure 1). The paramagnetic
nature of the central metal atoms included in the structures of the obtained complexes
greatly complicates the analysis and interpretation of the obtained spectral patterns, causing
specific broadening of signals and their shifts [48], however, we have shown earlier [46]
that for sandwich type complexes, because of the relative remoteness of the periphery from
the complexing agent, there are no significant shifts in the proton signals of peripheral
substituents in the 1H NMR spectra of the obtained phthalocyaninates, while the proton
signals of macrocyclic fragments are shifted to the upfield.

A similar picture is also observed for mono-phthalocyaninates, which is probably
due to the release of the rare-earth metal atom directly from the coordination cavity of the
compound. However, for lutetium diamagnetic complexes 6 and 9, well-resolved spectra
on the 1H nucleus were obtained, on the basis of which, in combination with the data of
other research and instrumental methods of analysis, we can conclude that the synthesis
strategy was successfully chosen to obtain the given rare-earth phthalocyaninates and the
uniqueness of the definite structure of the complexes.
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Figure 1. 1H NMR spectrum of complex 6 in CDCl3.

2.2. Spectroscopic and Aggregation Properties of Complexes in Organic Media

The spectral properties of the obtained compounds were studied, the light absorption
maxima in the visible region were determined in a number of organic solvents, and the
extinction coefficients were determined. However, the use of compounds in the liquid
phase has a number of limitations associated with the occurrence of such side processes
as aggregation, which can adversely affect all exhibited properties [49,50]. Thus, the
aggregation properties of the complexes were studied, and the concentration ranges of the
aggregation stability of the compounds in the studied media were determined.

Figure 2a shows the electronic absorption spectra of the compounds in chloroform,
acetone, and tetrahydrofuran. In the case of chloroform, the largest bathochromic shift of
the absorption maxima is observed for all the studied complexes, which can be caused by a
change in polarity in the series acetone-tetrahydrofuran-chloroform, and, at the same time,
with a low coordination ability of chloroform, leading to less solvation of the coordination
center of molecules and, as a result, greater accessibility. Thus, passing from acetone
to tetrahydrofuran, the greatest contribution to the red-wave shift corresponds to the
solvatochromic effect, while when passing to chloroform, in addition to solvatochromism,
one should also take into account the degree of solvation of the coordination center of the
molecule. Moreover, a slight bathochromic shift characterizes the transition from complexes
with meta-substitution in the central ring of the peripheral substituent to para-analogs in
all studied media (Figure 2b).

In turn, in the series Er-Yb-Lu of the coordination centers of the complexes, a regular
bathochromic shift (Table 1, Figure 2c) of the absorption spectra in chloroform, acetone,
and tetrahydrofuran is observed, which is explained by a decrease in the atomic radius in
the described series, resulting in a change in orbital energy.

For solutions of compounds 4–9 in all studied media, aggregation characteristics were
determined. Based on the constructed plots of the dependence of the change in optical
density on the concentration of phthalocyanine upon dilution, it was shown that the intro-
duction of 3/4-(3,4-dicyanophenoxy)phenoxy- fragments into the peripheral positions of
the phthalocyanine macroring contributes to the resistance of the complexes to aggregation
in chloroform and tetrahydrofuran media. For lutetium complexes in acetone (6, 9), devia-
tions of the dependence from a linear form were observed at concentrations of 1.52 × 10−5

and 1.77 × 10−5 mol/L, respectively, along with a bathochromic shift of the electronic
absorption spectra, which may indirectly indicate aggregation equilibria (Figure 3). The
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concentration ranges below the indicated values are represented by straight-line depen-
dences, which, together with the nature of the change in the spectral pattern in both cases,
gives grounds to judge the existence of compounds in an aggregated form at concentrations
exceeding certain values in an acetone medium, and in a monomeric form at lower values.
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Figure 2. (a): Normalized electronic absorption spectra of compound 4 in acetone (red line), tetrahy-
drofuran (black line), and chloroform (blue); (b): Normalized electronic absorption spectra for
compounds 4 (red line) and 7 (black line) in tetrahydrofuran; (c): Normalized electronic absorption
spectra for compounds 4, 5, and 6 in chloroform.
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Table 1. Spectroscopic characteristics of compounds 4–9 in organic media.

Compound
Qmax, nm (lgε)

CHCl3 Acetone THF

4 685 (4.34) 677 (4.29) 679 (4.33)
5 687 (4.89) 677 (4.33) 680 (4.41)
6 688 (4.32) 678 (4.27) 682 (4.28)
7 687 (4.40) 678 (4.30) 681 (4.37)
8 689 (4.29) 679 (4.26) 682 (4.25)
9 690 (4.38) 680 (4.30) 682 (4.33)
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Figure 3. Changes in the electronic absorption spectra for solutions of compounds 6 (a) and 9 (b) in
acetone upon dilution. Inserts show the dependencies of the optical density on the concentration of
phthalocyanine in the solution.

In addition, one of the pieces of evidence for the occurrence of side processes in
solutions of compounds 6 and 9 is the obtained values of the total width at half-height
of the absorption maximum (Table S1). With sequential dilution of solutions of these
complexes, a regular decrease in ∆λ was observed to critical points corresponding to the
concentrations of macrocycles in the solution presented above.

Thus, the obtained erbium and ytterbium phthalocyanines are presented in solution
in monomeric form even at high concentrations (up to 6 × 10−5 mol/L) in all the studied
media, lutetium complexes showed good aggregation stability in chloroform and tetrahy-
drofuran media and limited in the case of acetone, which may be due to the specifics of the
electronic structure of the lutetium atom, namely the highest electronegativity and, at the
same time, the smallest atomic radius in the presented series of metals.

In comparison with the complexes of the described ligands with d-metals [45], a
regular bathochromic shift of the electronic absorption spectra by 20–30 nm, depending
on the structure, is observed, which is associated with the introduction of heavy atoms
of rare earth elements. The values of the light absorption coefficients remain practically
unchanged (the difference is less than 2.5% in the chloroform medium). In the transition to
sandwich bisphthalocyaninates, the opposite picture is observed—the ability of molecules
to absorb light increases (up to 12%), and at the same time, the absorption maxima change
only by 2–3 nm.

2.3. Photophysical Properties of Complexes in Organic Media

For solutions of compounds 4–9, photophysical characteristics were calculated in
chloroform, acetone, and tetrahydrofuran media (Table 2).
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Table 2. Photophysical characteristics of compounds 4–9 in organic media.

Compound
CHCl3 Acetone THF

Φx τf, [ns] Φx τf, [ns] Φx τf, [ns]

4 0.19 6.01 0.17 5.92 0.15 5.79
5 0.18 5.93 0.15 5.78 0.12 5.66
6 0.09 5.84 0.08 5.71 0.06 5.60
7 0.17 6.00 0.16 5.90 0.13 5.79
8 0.17 5.93 0.15 5.77 0.11 5.67
9 0.06 5.84 0.06 5.71 0.04 5.58

It was found that, upon going from meta-substitution in the central ring of the periph-
eral substituent to the para-analog, a regular decrease in the fluorescence quantum yields
by 5–10% is observed, which is probably associated with the greater steric flexibility of the
para-substituted fragments. In addition, in the Er-Yb-Lu series, the fluorescence quantum
yields of the complexes decrease due to the manifestation of the heavy atom effect.

In the studied series of solvents chloroform-acetone-tetrahydrofuran, a regular de-
crease in the fluorescence quantum yields of the studied rare earth phthalocyaninates
is observed, which is associated with an increase in the polarity of the medium, on the
one hand, and an increase in the coordination strength of the solvent, leading to greater
solvation of the coordination center of the macroheterocyclic fragment, on the other.

Deviations from certain regularities were found for compounds 6 and 9 in acetone,
which correlates with the data of the spectroscopic studies performed and is explained by
the aggregation of molecules in solution, leading to fluorescence quenching (Table 2).

The fluorescence lifetime is the average time during which a molecule is in an excited
state before a direct transition to the ground state. The τf values were calculated using the
Strickler–Berg equation using the time-correlated photon counting (TCSPC) method, the
essence of which is to detect single photons emitted when a molecule is excited by periodic
light pulses. In the study, the decay curves of all studied complexes of rare earth elements
were described by a monoexponential function (Figure 4b). It is shown that the spatial
factor, namely the type of substitution in the central ring of the peripheral substituent of
the studied molecules, has practically no effect (within 1.7%) on the fluorescence lifetime of
the compounds. In turn, the change of the solvent from chloroform to acetone and then
tetrahydrofuran is accompanied by a successive decrease in the fluorescence lifetime, which
is apparently explained by an increase in the solvation of the molecule upon replacement
of the solvent in this series.
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3. Materials and Methods
3.1. Reagents and Equipment

Electronic absorption spectra in the spectral range 190–1100 nm were recorded using
UNICO2800 (United Productsand Instruments, Dayton, NJ, USA) and AvaSpec-ULS2048CL-
EVO (Avantes, Louisville, KY, USA) spectrophotometers in chloroform, tetrahydrofuran,
and acetone using quartz cuvettes with an optical path length of 1 cm. Fluorescent proper-
ties were studied on a Cary Eclipse Varian-Agilent instrument (Agilent, Santa Clara, CA,
USA). Fluorescence lifetimes were determined using a FluoTime 300 (PicoQuant, Berlin,
Germany) fluorescence spectrometer. Elemental analysis of the percentage of hydrogen,
carbon, nitrogen, and oxygen atoms was performed on a CHNS-OFlashEA, 1112 analyzer
(Thermo Quest, Milan, Italy). Time-of-flight matrix-activated laser ionization (MALDI
mass analysis) was performed on an Axima Confidence Time-of-Flight Mass-Spectrometer
(Shimadzu, London, UK) by preparing concentrated (about 10−3 mol/L) solutions of the
complexes in tetrahydrofuran, applying them to a matrix, and subsequent ionization.
α-cyanohydroxycinnamic acid was used as a matrix. IR spectra were recorded in the
range 450–4500 cm−1 on an IRAffinity-1S spectrometer (Shimadzu, Kyoto, Japan) from dry
ground powders of compounds without additional sample preparation.

Purification of the complexes was carried out using gradient column chromatography
with silica gel as a sorbent (200–400 mesh), as well as gel permeation chromatography on
Bio-Beads S-X1 beads (Bio-Rad, Hercules, CA, USA). The progress of the reactions and the
success of the purification were checked by thin layer chromatography.

Acetone, chloroform, tetrahydrofuran (THF), lutetium(III) acetate, erbium(III) acetate,
ytterbium(III) acetate, iso-amyl alcohol, ethyl alcohol (Sigma-Aldrich) were used without
extra purification.

4,4′-[1,3-phenylenebis(oxy)]phthalonitrile (2) and 4,4′-[1,4-phenylenebis(oxy)]phthalodinitrile
(3) were obtained by nucleophilic substitution in 4-nitrophthalonitrile (1) and characterized
according to [44].

3.2. Synthetic Part
General Route for Obtaining Complexes of Mono- Phthalocyaninates of Rare
Earth Elements

4,4′-[1,3/4-Phenylenebis(oxy)]phthalodinitrile (2, 3) and anhydrous acetate of the
corresponding metal (ErAc3, YbAc3, LuAc3) were mixed in a ceramic crucible and heated
to 190◦C for 30 min to complete transition of the reaction mass into the liquid phase. After
cooling, the product was successively washed on a Schott filter with ethanol, an aqueous
alkaline solution, and water, dried, and then washed off the filter with tetrahydrofuran.
Compounds were purified by column (SiO2, CHCl3-THF gradient) and gel permeation
(Bio-Beads S-X1, 2.5% ethanol in CHCl3) chromatography, each step was controlled by thin
layer chromatography.

Acetate tetrakis-4-[3-(3,4-dicyanophenoxy)phenoxy]phthalocyaninato erbium (4)
Yield: 40%. IR, νmax, cm−1 3057, 2917, 2851 (C-H), 2235 (C≡N), 1594, 1483 (C=C), 1252

(Ar-O-Ar). 1H-NMR (500 MHz, CDCl3): δ, ppm. 7.57–6.48 (m), 5.01 (m), 3.00–1.56 (m). MS
(MALDI-TOF): m/z 1675.70 [M]+, calcd. 1675.69. Calculated for C90H43N16O10Er: C 64.51,
H 2.59, N 13.37, O 9.55; found: C 64.50, H 2.58, N 13.37, O 9.57.

Acetate tetrakis-4-[3-(3,4-dicyanophenoxy)phenoxy]phthalocyaninato ytterbium (5)
Yield: 37%. IR, νmax, cm−1 3059, 2913, 2857 (C-H), 2233 (C≡N), 1591, 1484 (C=C), 1247

(Ar-O-Ar). 1H-NMR (500 MHz, CDCl3): δ, ppm. 7.61–6.39 (m), 5.18 (m), 3.11–1.62 (m). MS
(MALDI-TOF): m/z 1681.49 [M]+, calcd. 1681.49. Calculated for C90H43N16O10Yb: C 64.29,
H 2.58, N 13.33, O 9.51; found: C 64.28, H 2.58, N 13.32, O 9.53.

Acetate tetrakis-4-[3-(3,4-dicyanophenoxy)phenoxy]phthalocyaninato lutetium (6)
Yield: 25%. IR, νmax, cm−1 3055, 2916, 2850 (C-H), 2231 (C≡N), 1591, 1486 (C=C), 1252

(Ar-O-Ar). 1H-NMR (500 MHz, CDCl3): δ, ppm. 7.82 (s), 7.80 (s), 7.58 (t), 6.87 (t), 7.37–7.36
(dd), 7.35–7.33 (dd), 7.05–7.03 (dd). MS (MALDI-TOF): m/z 1683.40 [M]+, calcd. 1683.39.
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Calculated for C90H43N16O10Lu: C 64.21, H 2.57, N 13.31, O 9.50; found: C 64.21, H 2.56, N
13.30, O 9.52.

Acetate tetrakis-4-[4-(3,4-dicyanophenoxy)phenoxy]phthalocyaninato erbium (7)
Yield: 36%. IR, νmax, cm−1 3058, 2916, 2849 (C-H), 2230 (C≡N), 1595, 1483 (C=C), 1249

(Ar-O-Ar). 1H-NMR (500 MHz, CDCl3): δ, ppm. 7.55–6.39 (m), 5.21 (m), 3.16 -1.57 (m). MS
(MALDI-TOF): m/z 1675.70 [M]+, calcd. 1675.69. Calculated for C90H43N16O10Er: C 64.51,
H 2.59, N 13.37, O 9.55; found: C 64.50, H 2.57, N 13.37, O 8.52.

Acetate tetrakis-4-[4-(3,4-dicyanophenoxy)phenoxy]phthalocyaninato ytterbium (8)
Yield: 33%. IR, νmax, cm−1 3060, 2915, 2848 (C-H), 2233 (C≡N), 1594, 1480 (C=C), 1248

(Ar-O-Ar). 1H-NMR (500 MHz, CDCl3): δ, ppm. 7.63–6.52 (m), 5.32 (m), 3.16–1.67 (m). MS
(MALDI-TOF): m/z 1681.49 [M]+, calcd. 1681.49. Calculated for C90H43N16O10Yb: C 64.29,
H 2.58, N 13.33, O 9.51; found: C 64.30, H 2.58, N 13.32, O 9.51.

Acetate tetrakis-4-[4-(3,4-dicyanophenoxy)phenoxy]phthalocyaninato lutetium (9)
Yield: 20%. IR, νmax, cm−1 3057, 2912, 2852 (C-H), 2229 (C≡N), 1560, 1486 (C=C), 1254

(Ar-O-Ar). 1H-NMR (500 MHz, CDCl3): δ, ppm. 7.83 (s), 7.81 (s), 7.60 (t), 6.88 (t), 7.38–7.37
(dd), 7.36–7.34 (dd), 7.07–7.05 (dd). MS (MALDI-TOF): m/z 1683.40 [M]+, calcd. 1683.40.
Calculated for C90H43N16O10Lu: C 64.21, H 2.57, N 13.31, O 9.50; found: C 64.20, H 2.57, N
13.31, O 9.49.

3.3. Study of Spectroscopic and Aggregation Properties

The spectroscopic properties were studied by the spectrophotometric method, record-
ing spectra in the visible range. Electronic absorption spectra of compound solutions were
recorded in chloroform, acetone, and tetrahydrofuran in the concentration range from
5 × 10−6 to 5 × 10−5 M.

3.4. Study of Fluorescent Properties

The emission spectra were recorded for solutions of phthalocyaninates in chloroform,
acetone, and tetrahydrofuran upon excitation at the absorption maximum of the vibrational
satellite. The optical absorption density of solutions at the excitation wavelength did not
exceed 0.1 to avoid concentration quenching of fluorescence. Unsubstituted zinc phthalo-
cyaninate in pyridine (Φfluor = 0.3) was used as a standard [47]. Fluorescence lifetimes
were calculated using the EasyTau 2 software package (version 2.2.3293, PicoQuant, Berlin,
Germany) using LUDOX in water as a standard.

The fluorescence quantum yields of the complexes were calculated using the formula:

Φx =
AsFxn2

x
AxFsn2

s
Φs (1)

where Φx and Φs are the fluorescent quantum yields of the compound and standard, re-
spectively, As and Ax are the optical density values at the maximum fluorescence excitation
for the compound and standard, respectively, Fx and Fs are the area under the graph of
the obtained fluorescence spectra for the compound and standard, respectively, nx and
ns are the refractive indices of the solvent for the studied solutions of the compound and
standard, respectively.

4. Conclusions

Novel complexes of erbium(III), ytterbium(III), and lutetium(III) with
[3/4-(3,4-dicyanophenoxy)phenoxy]phthalocyanine ligands were obtained and charac-
terized. The template fusion method in the absence of a solvent has proven to be the most
efficient approach in obtaining compounds prone to polymerization. Lutetium compounds
showed the lowest yields as a result of the synthesis due to the smallest atomic radius of the
metal. It has been shown that 3/4-(3,4-dicyanophenoxy)phenoxy- substitution, along with
good solubility in organic media, imparts aggregation stability to molecules (limited in the
case of lutetium complexes in acetone) in them, which made it possible to study the spectral
properties in chloroform media, acetone and tetrahydrofuran—the values of absorption
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maxima in the visible region were determined, the molar coefficients of light absorption
were determined. It was found that such a substitution leads to an increase in the fluo-
rescence quantum yields of the complexes and their lifetime, which is uncharacteristic for
monophthalocyaninates of rare earth elements, which, together with high values of molar
light absorption coefficients, opens up prospects for the use of compounds as, for example,
promising dyes/fluorescent dyes or biomarkers. It has been determined that the transition
from complexes with meta-substitution in the central ring of the peripheral substituent to
para- is accompanied by a regular bathochromic shift of the electronic absorption spectra in
all studied media and also leads to a decrease (up to 10%) in fluorescence quantum yields,
however, the their fluorescence lifetime values remain virtually unchanged.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/molecules27134050/s1. Figure S1. Electronic absorption spectrum
of tetrakis-4-[3-(3,4-dicyanophenoxy)phenoxy]phthalocyaninato erbium acetate (4) in chloroform;
Figure S2. Electronic absorption spectrum of ytterbium tetrakis-4-[3-(3,4-dicyanophenoxy)phenoxy]-
phthalocyaninato acetate (5) in chloroform; Figure S3. Electronic absorption spectrum of lutetium
tetrakis-4-[3-(3,4-dicyanophenoxy)phenoxy]-phthalocyaninato acetate (6) in chloroform; Figure S4.
Electronic absorption spectrum of tetrakis-4-[3-(3,4-dicyanophenoxy)phenoxy]-phthalocyaninato
erbium acetate (4) in acetone; Figure S5. Electronic absorption spectrum of ytterbium tetrakis-4-[3-(3,4-
dicyanophenoxy)phenoxy]-phthalocyaninato acetate (5) in acetone; Figure S6. Electronic absorption
spectrum of lutetium tetrakis-4-[3-(3,4-dicyanophenoxy)phenoxy]-phthalocyaninato acetate (6) in
acetone; Figure S7. Electronic absorption spectrum of tetrakis-4-[3-(3,4-dicyanophenoxy)phenoxy]-
phthalocyaninato erbium acetate (4) in tetrahydrofuran; Figure S8. Electronic absorption spectrum of
tetrakis-4-[3-(3,4-dicyanophenoxy)phenoxy]-phthalocyaninato ytterbium acetate (5) in tetrahydrofu-
ran; Figure S9. Electronic absorption spectrum of lutetium tetrakis-4-[3-(3,4-dicyanophenoxy)phenoxy]-
phthalocyaninato acetate (6) in tetrahydrofuran; Figure S10. Electronic absorption spectrum of
tetrakis-4-[4-(3,4-dicyanophenoxy)phenoxy]-phthalocyaninato erbium acetate (7) in chloroform; Fig-
ure S11. Electronic absorption spectrum of ytterbium tetrakis-4-[4-(3,4-dicyanophenoxy)phenoxy]-
phthalocyaninato acetate (8) in chloroform; Figure S12. Electronic absorption spectrum of lutetium
tetrakis-4-[4-(3,4-dicyanophenoxy)phenoxy]phthalocyaninato acetate (9) in chloroform; Figure S13.
Electronic absorption spectrum of tetrakis-4-[4-(3,4-dicyanophenoxy)phenoxy]-phthalocyaninato er-
bium acetate (7) in acetone; Figure S14. Electronic absorption spectrum of ytterbium tetrakis-4-[4-(3,4-
dicyanophenoxy)phenoxy]-phthalocyaninato acetate (8) in acetone; Figure S15. Electronic absorption
spectrum of lutetium tetrakis-4-[4-(3,4-dicyanophenoxy)phenoxy]phthalocyaninato acetate (9) in
acetone; Figure S16. Electronic absorption spectrum of tetrakis-4-[4-(3,4-dicyanophenoxy)phenoxy]-
phthalocyaninato erbium acetate (7) in tetrahydrofuran; Figure S17. Electronic absorption spectrum
of tetrakis-4-[4-(3,4-dicyanophenoxy)phenoxy]-phthalocyaninato ytterbium acetate (8) in tetrahy-
drofuran; Figure S18. Electronic absorption spectrum of lutetium tetrakis-4-[4-(3,4-dicyanophenoxy)
phenoxy]phthalocyaninato acetate (9) in tetrahydrofuran; Figure S19. The structural formula of
Acetate tetrakis-4-[3-(3,4-dicyanophenoxy)phenoxy]phthalocyaninato erbium (4); Figure S20. The
structural formula of Acetate tetrakis-4-[3-(3,4-dicyanophenoxy)phenoxy]phthalocyaninato ytter-
bium (5); Figure S21. The structural formula of Acetate tetrakis-4-[3-(3,4-dicyanophenoxy)phenoxy]
phthalocyaninato lutetium (6); Figure S22. The structural formula of Acetate tetrakis-4-[4-(3,4-
dicyanophenoxy)phenoxy]phthalocyaninato erbium (7); Figure S23. The structural formula of Acetate
tetrakis-4-[4-(3,4-dicyanophenoxy)phenoxy]phthalocyaninato ytterbium (8); Figure S24. The struc-
tural formula of Acetate tetrakis-4-[4-(3,4-dicyanophenoxy)phenoxy]phthalocyaninato lutetium (9);
Figure S25. 1H NMR spectrum of Acetate tetrakis-4-[3-(3,4-dicyanophenoxy)phenoxy]phthalocyaninato
erbium (4) in CDCl3; Figure S26. 1H NMR spectrum of Acetate tetrakis-4-[3-(3,4-dicyanophenoxy)
phenoxy]phthalocyaninato ytterbium (5) in CDCl3; Figure S27. 1H NMR spectrum of Acetate tetrakis-
4-[4-(3,4-dicyanophenoxy)phenoxy]phthalocyaninato erbium (7) in CDCl3; Figure S28. 1H NMR spec-
trum of Acetate tetrakis-4-[4-(3,4-dicyanophenoxy)phenoxy]phthalocyaninato ytterbium (8) in CDCl3;
Figure S29. 1H NMR spectrum of Acetate tetrakis-4-[4-(3,4-dicyanophenoxy)phenoxy]phthalocyaninato
lutetium (9) in CDCl3. Table S1. FWHT determinations for compounds 4–9 in organic media.
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