
Tetraspanin CD151 plays a key role in skin squamous cell 
carcinoma

Qinglin Li1, Xiuwei H. Yang2, Fenghui Xu1, Chandan Sharma1, Hong-Xing Wang1, 
Konstantin Knoblich1, Isaac Rabinovitz3, Scott R. Granter4, and Martin E. Hemler1,5

1Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute and Harvard 
Medical School, Boston MA

2Department of Molecular and Biomedical Pharmacology, University of Kentucky, Lexington, KY

3Division of Cancer Biology and Angiogenesis, Department of Pathology, Beth Israel Deaconess 
Medical Center and Harvard Medical School, Boston MA

4Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston MA

Abstract

Here we provide the first evidence that tetraspanin CD151 can support de novo carcinogenesis. 

During two-stage mouse skin chemical carcinogenesis, CD151 reduces tumor lag time and 

increases incidence, multiplicity, size, and progression to malignant squamous cell carcinoma 

(SCC), while supporting both cell survival during tumor initiation and cell proliferation during the 

promotion phase. In human skin SCC, CD151 expression is selectively elevated compared to other 

skin cancer types. CD151 support of keratinocyte survival and proliferation may depend on 

activation of transcription factor STAT3, a regulator of cell proliferation and apoptosis. CD151 

also supports PKCα-α6β4 integrin association and PKC-dependent β4 S1424 phosphorylation, 

while regulating α6β4 distribution. CD151-PKCα effects on integrin β4 phosphorylation and 

subcellular localization are consistent with epithelial disruption to a less polarized, more invasive 

state. CD151 ablation, while minimally affecting normal cell and normal mouse functions, 

markedly sensitized mouse skin and epidermoid cells to chemicals/drugs including DMBA 

(mutagen) and camptothecin (topoisomerase inhibitor), as well as to agents targeting EGFR, PKC, 

Jak2/Tyk2, and STAT3. Hence, CD151 ‘co-targeting’ may be therapeutically beneficial. These 

findings not only support CD151 as a potential tumor target, but also should apply to other cancers 

utilizing CD151-laminin-binding integrin complexes.
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Introduction

Cell surface protein CD151, a tetraspanin protein family member, is expressed in epithelial, 

endothelial, Schwann and dendritic cells, and in skeletal, smooth and cardiac muscle (52). 

CD151 associates closely with laminin-binding integrins (i.e. α3β1, α6β1, α6β4, α7β1) and 

modulates their functions (8; 18; 32; 48; 51; 53–55; 70; 74; 75). CD151-null mice are 

mostly viable, healthy and fertile (68). However, humans and mice (in particular strains, and 

under specific conditions) lacking CD151 have kidney and skin deficiencies (6; 13; 30; 44). 

Absence of laminin-binding integrins also causes kidney and skin pathology (7), consistent 

with CD151 being functionally linked to laminin-binding integrins. CD151 may affect 

functions of laminin-binding integrins by regulating integrin diffusion (72), glycosylation 

(5), and/or internalization (67). Also, CD151 can recruit proteins such as phosphoinositide 

4-kinase, protein kinase C, and other tetraspanins (e.g. CD9, CD81, CD82, CD63) into 

complexes with laminin-binding integrins (12; 74; 76), which potentially affects integrin 

functions (26).

Because laminin and laminin-binding integrins contribute both negatively and positively to 

carcinogenesis (14; 24; 39; 63), CD151 conceivably also could play negative and/or positive 

roles. For example, integrin α6β4 suppresses tumor-initiating mouse skin cell growth (42) 

and induces apoptosis in carcinoma cells expressing p53 (4). Hence, while supporting α6β4, 

CD151 might inhibit early carcinogenesis stages. Alternatively, studies with cancer cell lines 

show CD151 contributing to epidermoid carcinoma cell migration and metastasis (77), 

breast cancer cell invasion and migration in vitro, and breast tumor xenograft growth in vivo 

(45; 73). Also, CD151 in host tissues facilitates tumor angiogenesis (57), and tumor cell 

CD151 supports ErbB2 drug resistance in cells plated on specific laminin isoforms (71). 

CD151 has not previously been reported to affect de novo carcinogenesis or specific stages 

of carcinogenesis (i.e. initiation, promotion, progression). Furthermore, there is little 

precedent from studies of related molecules (i.e. other tetraspanin proteins) for regulation of 

early carcinogenesis stages.

To evaluate CD151’s role during de novo carcinogenesis, we used two-stage skin chemical 

carcinogenesis (1). During skin tumor initiation, carcinogen DMBA is metabolized to 

reactive diol-epoxides that bind DNA and mutate target keratinocytes. Initiated cells 

escaping DNA repair and apoptosis may clonally expand during TPA-induced tumor 

promotion. This model is ideally suited for investigating CD151 functions in de novo 

carcinogenesis at specific carcinogenesis stages. Furthermore, mouse skin chemical 

carcinogenesis results are relevant to human skin SCC (1; 33). Among epidermoid 

carcinomas, squamous cell carcinoma (SCC) is one of the most common forms of cancer in 

the United States. There are ~250,000 new cases/year (2), with 2-9.9% metastasis incidence, 

which leads to poor long term prognosis (65).
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We show significant and selective CD151 upregulated on human skin SCC samples. Also 

CD151 knockout mice, subjected to skin chemical carcinogenesis, showed extended tumor 

latency and decreased tumor incidence, multiplicity and size. Furthermore, CD151 

contributed during skin tumor initiation, promotion, and progression stages, and supported 

chemical/drug resistance. Also we provide mechanistic insights involving CD151 effects on 

STAT3, PKCα and integrin α6β4. These results are relevant not only towards understanding 

human skin SCC, but also for other epithelial cancers similarly using CD151-integrin 

complexes.

Results

CD151 elevation in human skin SCC

To assess CD151 protein expression in human skin tumors, we examined 83 skin cancer 

microarray samples. Representative images (Figs. 1A–C) show abundant CD151 staining of 

human skin SCC samples, especially at cell surfaces, with also some intracellular staining 

(Fig. 1B). In normal human skin, CD151 is abundant only in basal and parabasal cell layers 

(Fig. 1C, left panel). Most human skin SCC samples showed elevated CD151 staining (67% 

with score of >1; Figure 1D.). Samples from grade II SCC trended towards more elevated 

CD151 staining (score =3, N=14), compared to Grade I SCC (score =2.35, N=36, p=0.1). 

Contrasting with skin SCC, other skin cancer types showed weak staining. Staining scores 

were =1 (Fig. 1D) for most basal cell carcinomas (BCC, 92%), metastatic melanoma (91%), 

and dermatofibrosarcoma protuberans (DFSP, 100%) samples. Overall, CD151 is selectively 

and significantly elevated in human skin SCC compared to other skin tumors (Fig. 1D; mean 

scores in right panel), and thus is well positioned for significant functional contributions.

Response of CD151 null mice to two-stage carcinogenesis

To address CD151 functions, we used a two-stage mouse chemical carcinogenesis protocol, 

which models human skin SCC initiation, promotion and progression (1). CD151 wild type, 

heterozygous, and null mice (129/Sv strain) were backcrossed four generations into FVB/N 

background, which is substantially more sensitive to skin tumor formation (27). Mice were 

treated once with initiating agent DMBA (100 nmole), and then weekly with 8 nmole TPA 

(12-O-tetradecanoyl phorbol 13-acetate). Figure 2A shows markedly reduced tumor 

development in CD151-null, compared to +/+ and +/− mice. Tumors appeared in most +/+ 

mice by 7 weeks, in significantly greater numbers (up to 14/mouse). By contrast, −/− mouse 

tumors appeared later (after 9 weeks) and less frequently (2–4/mouse) (Figs. 2A–C), and 

were smaller (Figure 2D). Tumor appearance, multiplicity and size were only partly 

impaired in CD151+/− compared to CD151 +/+ mice (Fig. 2A–D). After 20 weeks, 6.4% of 

+/+ mouse tumors showed conversion to malignant squamous cell carcinoma (SCC). By 

contrast, malignant conversion was significantly reduced for +/− (2.3%) and −/− (0%) 

mouse tumors, as judged by histological analysis (Table 1). In summary, CD151 contributes 

to mouse skin tumor appearance, multiplicity, size, and malignant conversion.

CD151 contributions during tumor initiation and promotion stages

Before treatment, +/+ and −/− mouse skin differed minimally in apoptosis (seen by caspase 

staining of epidermis; Figs. 3A,B), epidermal proliferation (Fig. 4C,D), and epidermal 
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STAT3 activation (Figs 5C,D). Also, morphology and epidermal thickness was essentially 

identical, as seen in H&E stained cross-sections of dermis and epidermis (Fig. 4A). In 

addition, untreated +/+ and −/− primary keratinocytes showed essentially identical 

background apoptosis (Fig. 3C).

To determine CD151 effects on keratinocytes during tumor initiation, we treated mouse skin 

with DMBA alone, and then intact skin sections were assessed for apoptosis by caspase 3 

staining. DMBA treatment stimulated more keratinocyte apoptosis in CD151 null mice 

(Figs. 3A, 3B). Cultured CD151-null keratinocytes also showed increased DMBA-induced 

apoptosis (Fig. 3C). Another type of DNA-damaging agent, camptothecin, also increased 

apoptosis in CD151-null keratinocytes (Fig. 3C). Thus, CD151−/− keratinocytes appear 

sensitized to chemical stress.

To study tumor promotion, mice were treated 4 times with TPA, over 2 weeks, without prior 

DMBA treatment. Epidermal thickness increased to a lesser extent in CD151−/− mice (Figs. 

4A,B). Likewise, CD151−/− mice incorporated 45% less bromodeoxyuridine (BrdU) (Figs. 

C,D). Thus, reduced tumor development in CD151-null skin may arise from changes in both 

DMBA-induced apoptosis and TPA-induced proliferation.

CD151 affects STAT3 activation

STAT3, a transcription factor constitutively active in many human malignancies (20), is 

essential for epidermal survival and proliferation during skin carcinogenesis leading to SCC 

(10; 11). Mouse skin cell lines derived from CD151−/− papillomas showed 40–60% less 

activated STAT3, while total STAT3 was unchanged (Fig. 5A). After 1 hr TPA stimulation, 

−/− skin cell lines also showed diminished increase in STAT3 activation (~1.5-fold, 

compared to 3-fold for +/+ cells) (Supp. Fig. S1A).

In unstimulated human A431 epidermoid carcinoma cells, CD151 knockdown minimally 

affected STAT3 activation (Fig. 5B, Supp. Fig. S1B). However CD151-ablated cells showed 

markedly less STAT3 activation after TPA 5–30 min stimulation, and showed almost 

complete STAT3 inactivation after 30–60 min. Total STAT3 levels were unchanged (Figs.

5B, Supp. Fig. S1B). These results suggest a possible combination of diminished kinase and 

enhanced tyrosine phosphatase activities affecting STAT3 in CD151−/− cells.

Following treatment with DMBA alone (as in Fig. 3A), mouse skin samples were lysed and 

analyzed for STAT3 activation. Again, STAT3 was less activated in samples from CD151−/

− mice (Fig. 5C), suggesting that loss of STAT3 activation contributes to increased 

apoptosis (Figs. 3A,B). After mouse skin treatment with TPA alone (as in Fig. 4), STAT3 

activation substantially increased in CD151+/+, but not CD151−/− mouse samples (Fig. 

5D). Thus, failure to increase STAT3 activation may contribute to diminished epidermal 

proliferation in CD151−/− skin. Presence or absence of CD151 minimally affected total 

STAT3 levels (Fig. 5C,D).

CD151-null cultured primary keratinocytes showed diminished proliferation (measured two 

different ways; Fig. 6A), likely due to diminished response to EGF in keratinocyte growth 

media. This difference disappeared upon cell treatment (for 2–3 days) with nifuroxazide, 
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which inhibits Jak2 and Tyk2 kinases immediately upstream of STAT3 (38), consistent with 

CD151 functions depending on STAT3. Results in Fig. 6B confirm that nifuroxazide indeed 

inhibits STAT3 activation in both CD151-null and control cells.

Next we found that CD151 affects the entire EGFR-Jak2/Tyk2-STAT3 signaling pathway, 

as evidenced by enhanced drug sensitivity in CD151-ablated cells, using a STAT3 activation 

readout. Indeed, in papilloma-derived mouse skin cell lines lacking CD151, potency of 

nifuroxazide inhibition of STAT3 activation was enhanced (Supp. Fig. S1A). To explore this 

further, we analyzed STAT3 activation in A431 cells. In untreated cells, CD151 ablation 

minimally affected STAT3 activation. However, CD151 absence markedly enhanced 

sensitivity to nifuroxazide. STAT3 activation in control A431 cells was relatively unaffected 

by 2–5 µM nifuroxazide (Fig. 6C, supplemental Fig.S2A). By contrast, CD151-ablated cells 

were sensitized, showing markedly diminished STAT3 activation, especially 5 hr after 

treatment at the higher nifuroxazide dose. Using EGFR inhibitor lapatinib (69), we again 

saw CD151 ablation increasing drug sensitivity, resulting in greater loss of constitutive 

STAT3 activation (Fig. 6D, top panel, lanes 4, 6). Total STAT3 levels were unaffected (2nd 

panel). Although EGFR activation decreased with higher lapatinib doses, this was 

unaffected by CD151 (Fig. 6D, 3rd panel). A direct inhibitor of STAT3, ST3-01 (36), again 

preferentially inhibited STAT3 activation in A431 cells lacking CD151 (Fig. 6E, 

supplemental Fig. S2B).

CD151 has been suggested to affect c-MET signaling, β4 integrin collaboration, and support 

of tumor xenograft growth (19), and c-MET may signal through STAT3 (56). However, 

using c-MET inhibitor su11274 (46), we did not see altered STAT3 activation ±CD151 

ablation (supplemental Fig. S3A). A consistent 25–30% decrease in c-MET activation 

affirms that su11274 is functional (Fig. S3A, 3rd panel). Furthermore, diminished 

stimulation of STAT3 activation in CD151-ablated cells (supplemental Figs. S3B,C, top 

panels) was not accompanied by altered c-MET activation (supplemental Figs. S3B,C, 3rd 

panels).

CD151 affects β4 integrin phosphorylation

Among laminin-binding integrins, α6β4 makes critical contributions during skin cancer 

progression to SCC (31; 42; 60). CD151 affects subcellular distribution of tumor cell α6β4 

(73). Indeed, within CD151−/− skin tumor cells, β4 integrin was considerably more punctate 

and/or distributed towards the cell periphery. By contrast, CD151+/+ cell β4 was distributed 

more diffusely (Fig. 7A). Also, CD151−/− cells were less well spread, and less tightly 

clustered (Fig. 7A). Similarly, cultured primary CD151−/− keratinocyte β4 was more 

distributed to the cell periphery (Fig. 7B).

During keratinocyte carcinogenesis, EGF/TPA stimulates β4 serine phosphorylation at key 

sites, including S1424 (22) and S1356 (31; 66). This enables β4 dissociation from the 

intermediate filament cytoskeleton, as hemidesmosomes are disrupted and epithelial cells 

lose polarity while becoming more invasive (22; 31; 66). Reagents were unavailable for 

analyzing mouse serine site-specific β4 phosphorylation. However in CD151-ablated human 

A431 cells, S1424 phosphorylation was notably impaired in response to TPA (38% of WT) 
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or EGF (51% of WT) (Fig. 7C). By contrast, β4 S1356 phosphorylation was similarly 

stimulated by TPA and EGF regardless of CD151 presence (Figure 7C, second row).

CD151 affects conventional PKC (cPKC) location and function

Phosphorylation of β4 at S1424 (22), but not S1356 (21) requires conventional PKC (cPKC) 

isoforms. Integrin β4 in A431 cells co-immunoprecipitated with a cPKC isoform (PKCα) 

after cell stimulation with phorbol ester or EGF for 5–60 min. However, PKCα-α6β4 

association was markedly diminished (especially 5 min after TPA or EGF stimulation) if 

CD151 was ablated, even though equal amounts of β4 and PKCα were retained (Figure 8A). 

These results are consistent with CD151 linking PKCα to α6β4. We also addressed cPKC 

effects on STAT3 activation. As indicated (Fig. 8B), cPKC inhibitor Go6976 markedly 

inhibited STAT3 activation in CD151-ablated A431 cells, but not in control cells. The PKC 

inhibitor did not affect total levels of STAT3 and PKCα.

Possible indirect effects of CD151 on skin tumor formation

Since CD151 can support tumor angiogenesis (57), we considered that CD151 ablation may 

diminish chemical carcinogenesis due to decreased angiogenesis. However, mouse skin 

tumor microarray analyses revealed no decrease, in CD151 null tumors, in VEGF or CD31 

expression (Supplemental Table 1). Furthermore, wild type and null tumor vessel densities 

did not differ.

Cytokines (e.g. IL-6, IL-12, IL-17, IL-23) play key roles in skin disease, SCC, and/or during 

STAT3 activation (15; 23; 28; 61; 62). However, levels of cytokines (IL-6, IL-12, IL-17, 

IL-23) in skin did not change upon CD151 ablation (Supplemental Table 2). Furthermore, 

CD151 ablation caused no decrease in IL-6-stimulated activation of TYK2 (Supplemental 

Fig. 1C), a major cytokine-responsive STAT3-activating kinase (47). Likewise, IL-6-

induced STAT3 activation was undiminished in mouse keratinocytes lacking CD151 

(Supplemental Fig. 1C). Hence, CD151 removal does not perturb major cytokine networks 

important for regulating STAT3 and skin carcinogenesis.

Discussion

Based on prior studies (see Introduction), it was unclear whether CD151 would positively or 

negatively affect de novo tumor formation. Here we show that during mouse chemical 

carcinogenesis CD151: reduced tumor lag time; promoted tumor incidence, multiplicity, size 

and progression to SCC; contributed to both tumor initiation and promotion stages; and 

markedly altered signaling through β4 integrin, EGFR, PKCα and STAT3.

CD151 and skin SCC

Although many epithelial tumor types upregulate CD151 (3; 43; 45; 64; 73), appearance on 

human skin SCC had not been reported. Tissue microarray data now show CD151 

selectively upregulated in human skin SCC, but not other human skin tumors (basal cell 

carcinoma, metastatic melanoma, dermatofibrosarcoma protuberans). Laminin-binding 

integrins are not known to play major roles in those other skin cancers, which may explain 

lack of CD151 upregulation. Although CD151 trended towards elevated expression in 
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higher grade skin SCC, patient prognosis data were unavailable. However CD151 associates 

with poor patient prognosis in breast cancer and other cancers (3; 43; 45; 64), and correlates 

with metastasis in esophageal SCC (19). CD151 is not only present, but also is a key 

contributor in the genesis of skin SCC, as seen using a mouse model that has previously 

yielded many results relevant to multistage genesis of human epithelial cancers, including 

skin SCC (1; 33).

CD151 effects during the tumor initiation stage

Absence of CD151 markedly enhanced apoptosis induced by DMBA (during carcinogenesis 

initiation) and by camptothecin (a chemotherapeutic agent). Thus, CD151 absence has a 

general sensitizing effect to different types of chemical agents. CD151 acts by modulating 

functions of laminin-binding integrins, including α6β4, which plays a particularly important 

role during skin SCC pathogenesis (42; 60). CD151 can affect α6 distribution (73), adhesion 

strengthening (35), diffusion mode (58), and sometimes cell adhesion (67). On CD151-null 

cultured mouse keratinocytes and tumor-derived cells, α6β4 became less diffusely 

distributed, while showing more punctate and/or peripheral staining. Changes in molecular 

organization of α6β4, possibly coupled with altered laminin adhesion, likely contribute to 

chemical sensitization. In this regard, integrins, including laminin-binding integrins (49; 71), 

support cell resistance to a variety of drugs/chemicals.

Increased DMBA-induced apoptosis in CD151-null keratinocytes was accompanied by 

decreased STAT3 activation. This result helps explain reduced CD151-null skin tumor 

formation, because STAT3 activation plays a major role during chemical carcinogenesis 

initiation (11). Decreased STAT3 activation accompanies decreased resistance to multiple 

types of cellular stresses (17). In this regard, CD151 removal enhanced sensitivity to DMBA 

(a mutagen), camptothecin (an inducer of DNA fragmentation), and to STAT3 pathway 

inhibitors, thus indicating general chemical stress sensitization. Decreased STAT3 activity 

in keratinocytes might arise not only from decreased activation, but also from enhanced de-

activation, due to phosphatases (34), which would be consistent with our results.

CD151 and tumor promotion

Mice (and cells) lacking CD151 showed major decreases in TPA-induced epidermal 

hyperplasia, epidermal cell proliferation and STAT3 activation, thus further explaining 

diminished tumor yield during 2-stage carcinogenesis. Mouse skin TPA responses require a 

functioning EGFR (9). Integrin α6β4 may associate physically and/or functionally with the 

EGFR (37), with CD151 also supporting EGFR functions (73). In this regard, CD151 

ablation diminished β4 phosphorylation responses to both TPA and EGF (Fig. 7C). Hence 

EGFR disruption, due to CD151 removal, may explain diminished TPA responses.

SCC tumor promotion during chemical carcinogenesis requires STAT3 activation (11). 

Thus, impaired TPA-induced STAT3 activation (and/or enhanced TPA-induced STAT3 

inactivation) may be central to diminished tumor promotion and skin tumor formation in 

CD151-null mice. Because the EGFR makes major contributions to STAT3 activation 

during tumor promotion (9), loss of CD151-integrin regulation of the EGFR should 

contribute to diminished STAT3 activation. Disrupted recruitment of PKCα also likely 
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contributes to diminished TPA induction of STAT3 activation in CD151-ablated cells (next 

section).

CD151 and tumor progression

CD151-null mice did not progress to SCC. Since activated STAT3 promotes malignant 

progression during chemical carcinogenesis (10), reduced STAT3 activation likely underlies 

absence of CD151-null tumor progression. SCC may arise from keratinocyte stem cells (29), 

implying that stem cell oncogenesis could be deficient in CD151-null mice. Since α6 

integrins serve as keratinocyte stem cell markers (59), CD151 is well positioned to possibly 

contribute to stem cell oncogenesis.

CD151 effects on PKCα

Besides disrupting α6β4-EGFR collaborations, CD151 ablation also impairs α6β4-PKC 

connections. TPA stimulation activates conventional PKC (cPKC) isoforms, such as PKCα 

in skin (25). Hence, PKCα dysregulation could underlie deficient TPA stimulation in 

absence of CD151. TPA (and EGF) stimulate PKCα-dependent phosphorylation of β4 at 

S1424 (22). Phosphorylation of β4 S1424 (and three other serines) contributes to β4 

dissociation from intermediate filament (IF) hemidesmosomes (HD’s), while switching to an 

actin-connected invasive state (31; 40; 66). Hence, diminished S1424 phosphorylation, due 

to CD151 absence, is consistent with maintenance of α6β4 in a more IF-anchored state, less 

susceptible to epithelial disruption and less likely to increase invasion. Shifting of β4 in 

keratinocytes and mouse tumor lines towards a peripheral/punctate staining pattern appears 

consistent with diminished HD association. Unfortunately, antibody specific for mouse β4 

S1424 was not available to confirm expected loss of S1424 phosphorylation in mouse cells.

Phosphorylation of β4 at S1356, which is independent of cPKC isoforms (21), was 

unaffected by CD151 absence, thus emphasizing selective CD151 support for PKCα 

function. Only when CD151 was present did we observe TPA stimulation of PKCα 

association with α6β4, thus supporting a role for CD151 in recruiting PKCα into proximity 

with α6β4. Previously CD151 was shown to recruit, upon TPA stimulation, conventional 

PKC isoform PKCβII into proximity with laminin-binding integrins (76). Selective loss of 

PKCα recruitment to α6 integrins could explain not only diminished β4 S1424 

phosphorylation, but also other impaired TPA-stimulated functions (i.e. epidermal 

proliferation and STAT3 activation – see Fig. 9).

CD151 and STAT3

CD151 had not previously been linked to STAT3 signaling. Integrin α6β4 may signal 

through STAT3 in ErBB2-driven breast cancer cells, but this did not involve proliferation or 

apoptosis (24). Hence, our results uncover a new link between CD151-α6β4 complexes and 

STAT3 signaling during the tumor initiation and promotion stages.

Several findings point to CD151 acting through STAT3 during skin tumor formation. First, 

activated STAT3 is essential for tumor progression in the DMBA/TPA model (10). Hence, 

decreased STAT3 activation, due to CD151 removal, must affect tumor progression. 

Second, inhibition of STAT3 eliminated CD151 effects on proliferation (see Fig. 6A), thus 
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linking CD151 functions to STAT3. Third, STAT3 is required for skin tumor initiation and 

tumor promotion (11). Therefore, diminished STAT3 activation caused by CD151 absence 

can explain contributions of CD151 during tumor initiation and tumor promotion stages.

Are CD151 effects ‘keratinocyte-specific’?

CD151 effects on skin tumor formation appear to be largely ‘keratinocyte-specific’. Decades 

of research show skin chemical carcinogenesis initiation and promotion occur entirely 

through keratinocyte mutation and selection (1; 33). Furthermore, CD151 ablation from 

purified epidermoid cell populations definitively alters cell survival, proliferation, STAT3 

activation, STAT3 drug sensitivity, integrin β4 distribution and phosphorylation, and β4-

PKC association (consistent with altered TPA response).

We considered that CD151 on other cell types might affect skin tumor formation by altering 

angiogenesis (57), immune cell functions (50), or cytokines that activate STAT3 (15; 23; 28; 

61; 62). However, key cytokine levels in skin were unchanged, and evidence obtained thus 

far does not support altered angiogenesis. In this regard, implanted melanoma cells did not 

show altered angiogenesis when CD151 was absent from the host (57, 58). Furthermore, 

immune cells in CD151-ablated tumor-bearing mice were unaltered with respect to tumor 

infiltration, subset sizes, activation, or trafficking (58). In conclusion, available data point to 

keratinocyte CD151 as being largely responsible for supporting chemical carcinogenesis.

Summary and broader implications

CD151 absence had no detectable effect on normal mouse skin morphology or histology, as 

seen previously (44; 68) and confirmed here. However, CD151 absence markedly 

diminished cell survival during tumor initiation, proliferation during the promotion phase, 

and progression to SCC. A pattern has emerged in which CD151 may be dispensable for 

normal physiologic processes, while contributing to pathologic events. For example, CD151 

is unnecessary for normal development of blood vessels and skin in C57Bl6 mice (57; 68), 

but plays a critical role during pathologic events such as tumor angiogenesis (57), skin 

wound healing (13), and skin tumor formation (shown here). Because CD151 effects are 

more obvious in pathological situations, CD151 prospects as a tumor target are enhanced.

Neoplastic transformation in many cell types is supported by activated STAT3 (20) and by 

α6 integrins (e.g. (24)), which invariably associate with CD151. Hence, CD151 should 

contribute to de novo tumor formation, progression and STAT3 activation in many other 

epithelial cancers. CD151 contributions to a) cell survival during tumor initiation, b) cell 

proliferation during tumor promotion, and c) tumor progression, represent major additions to 

the growing list of CD151 cancer roles, during angiogenesis (57), tumor metastasis (77), 

tumor xenograft growth (45; 73), and on stem-like prostate tumor initiating cells (41). 

Consequently, targeting CD151 should have multi-pronged anti-cancer effects. Also, 

because CD151 removal sensitizes tumor cells to agents targeting EGFR/ErbB2, STAT3, 

and PKCα, co-targeting of CD151 may enhance effectiveness of other agents directed at α6 

integrins and associated signaling pathways.
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Materials and Methods

Human tissue arrays

Paraffin sections containing 106 human skin tissue samples (SK483 and BC21011, US 

Biomax, Rockville, MD) were stained with anti-CD151 (clone RLM30) by Brigham and 

Women’s Hospital Histopathology Core. CD151 expression score (0–4) combines 

%CD151-positive tumor area and graded positive area intensity, each determined by blind 

visual inspection.

Cells, antibodies, chemicals and shRNA

A431 cells were maintained in DMEM, 10% fetal calf serum, at 37°C in humidified 5% 

CO2. Mouse tumor-derived cell lines were cultured in DMEM/F12, containing 5% fetal calf 

serum, 5µg/ml insulin, 100ng/ml Cholera toxin, 10mM HEPES, 1µg/ml Hydrocortisone and 

10ng/ml Epidermal Growth Factor. Anti-β-actin was from Sigma-Aldrich (St. Louis, MO), 

anti-STAT3 and anti-PKCα were from Santa Cruz Biotechnology (Santa Cruz, CA), and 

anti-pSTAT3(Tyr705) was from Cell signaling technologies (Beverly, MA). Monoclonal 

antibodies to CD151 were 5C11 (74), 1A5 (gift from A. Zijlstra), and RLM30 (Novacostra 

Co). Anti-phospho-EGFR (to activated EGFR) was from BD Biosciences, anti-c-MET was 

from Santa Cruz, and anti-pTyr antibody was from Millipore. Monoclonal and polyclonal 

anti-integrin β4 were from Chemicon, and polyclonal anti-β4 S1356, and β4 S1424 were 

described (22; 31). DMBA (7,12-dimethylbenz[α]anthracene), BrdU, camptothecin and 

TPA (12-O-tetradecanoylphorbol-13-acetate) were from Sigma-Aldrich. Nifuroxazide (38) 

and ST3-01 (also called ML116)(36) were from Dr. DA Frank, Dana-Farber Institute. 

Lapatinib was from LC Laboratories (Woburn, MA), and SU11274 was from Sigma 

Aldrich. CD151 was stably ablated from A431 cells as described (67). CD151-null cells 

were negatively selected by flow cytometry (using mAb 5C11). Knockdown efficiency was 

evaluated by flow cytometry and immunoblotting using mAb 1A5.

Skin carcinogenesis experiments and histologic examinations

CD151-null mice in Sv129 background (57), were crossed 4 generations onto FVB/N 

background, to increase chemical carcinogenesis sensitivity (27). CD151−/− mice were not 

further backcrossed into FVB/N to avoid kidney pathology complications (6). All mice used 

were viable, fertile, and lacked obvious defects in kidneys or elsewhere. Supplemental Fig. 

S4 shows representative diagnostic PCR image and primer sequences used for CD151 

genotyping. For two-stage carcinogenesis, 7-week-old female mouse dorsal skin was 

shaved, and after one week treated once with DMBA (100 nmol in 0.2 ml acetone). After 

another week, mice were treated with TPA (8 nmol in 0.2 ml acetone) twice-weekly for 19 

more weeks. Control mice were treated with 0.2 ml acetone for 20 weeks. Mice were 

examined weekly. Growths >1 mm diameter, persisting for ≥2 weeks, were recorded as 

tumors.

For “initiation only” experiments, mice were treated on dorsal skin once (DMBA, 100 nmol) 

or with acetone alone and sacrificed after 24 hrs. To assess apoptosis, skin sections were 

stained with anti-active caspase-3 (R&D Systems Inc.) followed by biotinylated anti-rabbit 

IgG and HRP-conjugated ABC reagent (Vector Laboratories Inc.). For “promotion only” 
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experiments, 8-week-old female mice were treated twice weekly for two weeks with TPA (8 

nmol) or acetone vehicle and sacrificed after another 24 hours. Some mice were injected 

intraperitoneally with BrdU (2 mg/mouse) in PBS 2 hr prior to sacrifice. Dorsal skin was 

formalin-fixed, paraffin-embedded, sectioned at 4 µm, stained with H&E and anti-BrdU 

antibody (BD Biosciences-Pharmingen), and then with biotinylated anti-mouse IgG and 

HRP-conjugated ABC reagent (Vector Laboratories Inc.). H&E stained skin thickness was 

measured by micrometer. To determine epidermal cell proliferation, BrdU-positive cells 

were counted, per unit area. Paraffin sectioning and H&E and immunohistochemical 

staining were performed by Harvard Medical School Histology Core. All treatments were 

approved by Dana-Farber Animal Care Committee and followed NIH guidelines.

In vitro tumor and keratinocyte cultures

To establish mouse tumor lines, specimens were collected (after 20 weeks DMBA/TPA 

treatment), minced, and resuspended in collagenase (Worthington Biochemical Corporation, 

CLS3 type; 200 U/ml) in Medium-199 plus gentamycin (5µg/ml). After 4 hr at 37°C, 

suspended cells were cultured in DMEM/F12 medium.

Mouse primary keratinocytes were isolated and cultured as described (16). Briefly, newborn 

mouse skin specimens were trypsinized (0.25% trypsin, Invitrogen) for 8–10 hr at 4°C, and 

epidermis was separated from dermis. Isolated keratinocytes were plated (60 cm dishes), 

precoated with collagen type I (BD Biosciences), and containing keratinocyte medium 

(EMEM; Fisher) supplemented with 0.1 mM monoethanolamine, 0.1 mM phosphoryl 

ethanolamine, 0.5 µM hydrocortisone at 37°C in 5% CO2. After 5 hours unattached cells 

were removed by PBS washing, and attached cells were further cultured in media minus 

growth factors. Twenty-four hours later, DMBA (30 nM) was added. Apoptosis was 

determined using Cell Death Detection ELISA kit (Roche Molecular Biochemicals, 

Mannheim, Germany) and proliferation was determined using MTT assay (Roche), and by 

cell counting (Countless™ automated counter, Invitrogen).

Protein lysates preparation

Cell lines were lysed in 50 mM HEPES, 150 mM NaCl, 5mM MgCl2, 1% Triton X-100 and 

protease inhibitor cocktail. Excised mouse dorsal skin (2×2 cm2) was placed on ice-cold 

glass, epidermis was removed with a blade, and then tissue was lysed in buffer containing 50 

mM Tris-HCl (pH 8.6), 1% NP-40, 0.25% Na-deoxycholate, 150 mM NaCl, 1 mM EDTA, 1 

mM PMSF and protease inhibitor cocktail (Roche Diagnostics, Indianapolis, IN). After 10 

min at 4°C, lysates were snap-frozen in liquid nitrogen, thawed, and centrifuged (14,000g, 

15 min, 4°C). Supernatant was resolved on 8–12% SDS/polyacrylamide gels, prior to 

immunoblotting.

Immunofluorescence microscopy

For confocal analyses, cells on coverslips were stained with primary, then secondary 

antibody (Alexa 488 or Alexa 594–conjugated goat anti-mouse or anti-rat) alone or 

combined (Invitrogen, Eugene, OR). Cells were visualized using Leica SP5X laser-scanning 

confocal microscope (Leica Microsystems, Chicago, IL).
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Figure 1. 
CD151 is elevated in human skin tissues. A, Staining of human skin SCC samples (5 left 

rows) and normal skin (right row). B, Enlarged CD151 staining of a human SCC sample. 

Red arrows indicate representative intracellular and peripheral CD151 staining. C, 

Immunohistochemical images show CD151 in normal skin (left panel) and skin SCC tumors 

with representative scoring = 1–4 (see Methods). D, Quantitation of results from a panel of 

different human skin cancer samples, such as shown in parts A and B. The right panel shows 
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mean scores for 51 skin SCC and 32 combined BCC, MM and DFSP samples ± 95% C.I. *, 

P < 0.0001; Mann Whitney U test.

Li et al. Page 16

Oncogene. Author manuscript; available in PMC 2013 October 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
CD151 contribution to mouse skin tumor formation. A, Skin tumors in CD151+/+, +/−, and 

−/− mice 20 weeks after DMBA initiation. B, Delayed tumor appearance in CD151−/− mice. 

*, P < 0.0001 (log rank test). C, Average tumor numbers per mouse are indicated (± 95% 

CI). For data obtained after 20 weeks: **, P < 0.0001; *, P = 0.002 (Mann-Whitney U test). 

D, For each mouse group, tumor sizes are separated into three categories. Statistical analyses 

are based on two categories (Large; Medium+Small). For WT vs Null, P = 0.001; For Het vs 

Null, P = 0.009 (Fisher exact test).
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Figure 3. 
DMBA-induced apoptosis in CD151 deficient mice. A, Representative active caspase-3 

staining of epidermis from (a) untreated +/+, (b) +/+ mice with DMBA, (c) untreated −/−, 

and (d) −/− mice with DMBA. Caspase-3 positive cells appear in both hair follicle bulge 

regions (arrows) and interfollicular epidermis (arrowhead); Bar = 50 um. B, Quantitation of 

caspase-3 positive cells per unit area from data as in panel A. Shown are means ± SEM, n = 

5; *, P < 0.001. C, Quantitation of keratinocyte apoptosis, after 4 hr of chemical treatment, 
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based on accumulation of cytoplasmic histone-associated DNA fragments (see "Materials 

and methods"). Shown are means ± SEM, n = 5; *, P < 0.005; **, P < 0.006 (students t test)
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Figure 4. 
TPA-induced epidermal proliferation. A, Mice (n = 5 per group) were treated with TPA and 

sacrificed 24 hrs after the last treatment. BrdU was injected 2 hr prior to sacrifice. H&E 

staining of epidermis from (a) untreated +/+, (b) +/+ treated with TPA, (c) untreated −/−, 

and (d) −/− mice treated with TPA. Bar = 50 um. B, Quantitation of epidermal thickness 

from wild type (black bar) and CD151 null mice (white bar). n = 5; *, P < 0.02. C, 

Immunohistochemical analysis of proliferation marker BrdU in dorsal skin after TPA 

treatment. D, Quantitation of BrdU positive cells in the epidermis of wild type (black bar) 

and CD151 null mice (white bar) after treatment with TPA. n = 5; *, P < 0.001
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Figure 5. 
CD151 influences STAT3 activation. A, Mouse derived skin cell lines were lysed in 1% 

Triton X-100, and blotted for pSTAT3 (Tyr705, mAb from Cell Signaling Co.), total STAT3 

(rabbit polyclonal Ab, Santa Cruz Co.), and β actin. B, CD151 was stably ablated in human 

A431 cells. Knockdown and control cells were treated with TPA (50 ng/ml) for indicated 

times, lysed, and then blotted as in part A. CD151 was detected using mAb 1A5. CD151 

knockdown was >90% (bottom panel). Bar graphs, based on densitometry scans, show 

relative STAT3 activation C, Epidermis from +/+ and −/− mice was isolated 24 hr following 

DMBA treatment, and lysate proteins were blotted for activated STAT3, total STAT3 and β 

actin. Bar graphs show relative STAT3 activation. N = 5; *, P < 0.01. D, Epidermis from 

+/+ and −/− mice was isolated 24 hr following the last TPA treatment, and lysate proteins 

were blotted for activated STAT3, total STAT3 and β actin. Bar graphs show relative 

STAT3 activation. N = 5; *, P<0.02
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Figure 6. 
CD151 and STAT3 inhibition effects. A, Equal numbers of freshly isolated primary mouse 

keratinocytes were cultured ± 5 µM nifuroxazide. After 2 days, cell proliferation was 

assessed using the MTT assay, which measures metabolic energy (left panel) and after 3 

days total cell numbers were counted (right panel). Bars represent mean +/− SD for 3 

independent experiments. *, P<0.05; **, P<0.001. B, STAT3 activation (pSTAT3-Y705) is 

shown for primary mouse keratinocytes treated for 2 days with 5 µM nifuroxazide. C, 

CD151 knockdown and control A431 cells were treated with nifuroxazide (2 µM or 5 µM) 

for indicated times, lysed, and then pSTAT3 (Y705) and total STAT3 were blotted, and 

ratios were determined from densitometric quantitation of blot intensities. See blots in 

supplemental Fig. S2A. D, A431 cells ± CD151 were treated with lapatinib, and then blotted 

for pSTAT3, total STAT3, pEGFR, and CD151 as indicated. Densitometric quantitation 

showed CD151 ablation causing pSTAT3/STAT3 ratios to decrease by 0%, 64%, and 84% 

(with 0, 1, 5 µM lapatinib, respectively). E, A341 cells ± CD151 were treated with STAT3 
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inhibitor ST3-01 (36), and then STAT3 activity was determined as indicated in supplemental 

Fig. S2B.
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Figure 7. 
CD151 affects β4 distribution and phosphorylation. A, Mouse tumor-derived cell lines were 

permeabilized and stained for integrin β4. B, Keratinocytes were isolated from wild type and 

null mice and then cultured for a few weeks before integrin β4 subunit staining. Bar = 5 µm. 

(A, B) Linear staining intensity, across the diameter of representative cells, was measured 

using the Image J program (from NIH). C, Human A431 cells, stably ablated for CD151, 

were treated with TPA (50ng/ml) or EGF (100ng/ml) for 5 min and 1 hr, and then blotted for 

the indicated proteins, using antibodies for β4-S1424, β4-S1356, and total β4.
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Figure 8. 
CD151 affects cPKC localization and function. A, A431 cells were stimulated with TPA 

(50ng/ml) or EGF (5 min and 1 hr), and then lysed in 1% Brij 56 detergent. PKCα and 

integrin β4 were immunoprecipitated (IP), followed by immunoblotting (IB) with antibodies 

to β4 and PKCα as indicated. WCL = whole cell lysates. *Numbers below the right panel 

represent mean density values for PKCα (associated with β4) from three independent 

experiments, including the one shown in the top right panel. B, A431 cells were stimulated 
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with cPKC inhibitor Go 6976 for 2 hr, and then cells were lysed and blotted for pSTAT3, 

total STAT3, total PKC and CD151.
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Figure 9. 
Scheme for CD151 contributions to chemical carcinogenesis in skin. Stimulation of 

epidermoid cells by EGF and TPA, through EGFR and PKCα, are enhanced when CD151 is 

present. Signaling is weakened when CD151 is absent, as evidenced by increased potency of 

agents inhibiting EGFR, PKCα, JAK2/TYK2, and STAT3. CD151 recruits PKC into 

proximity with β4 integrin. The β4 cytoplasmic tail has previously been linked to JAK2-

STAT3 activation (24). It remains to be determined the extent to which CD151- and PKCα-

dependent β4 S1424 phosphorylation directly contributes to STAT3 activation and skin 
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oncogenesis. Results obtained here support previously demonstrated links of STAT3 to skin 

tumor initiation, promotion, and progression (10; 11).

Li et al. Page 28

Oncogene. Author manuscript; available in PMC 2013 October 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Li et al. Page 29

Table 1

Histological analysis of skin tumors at 20 weeks

CD151 genotypes +/+ +/− −/−

Number of mice 19 32 20

Total tumors 235 306 66

Benign tumors 220 299 66

SCC tumors 15 7 0

SCC tumors/total tumors 6.4% 2.3% 0%

aP (+/+ vs. +/−, −/−) -- 0.026 0.048

aP (+/− vs. −/−) -- -- 0.61

a
Fisher’s exact test
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