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Abstract

Transporters mediate the movement of compounds across the membranes that separate

the cell from its environment and across the inner membranes surrounding cellular compart-

ments. It is estimated that one third of a proteome consists of membrane proteins, and

many of these are transport proteins. Given the increase in the number of genomes being

sequenced, there is a need for computational tools that predict the substrates that are trans-

ported by the transmembrane transport proteins. In this paper, we present TranCEP, a pre-

dictor of the type of substrate transported by a transmembrane transport protein. TranCEP

combines the traditional use of the amino acid composition of the protein, with evolutionary

information captured in a multiple sequence alignment (MSA), and restriction to important

positions of the alignment that play a role in determining the specificity of the protein. Our

experimental results show that TranCEP significantly outperforms the state-of-the-art pre-

dictors. The results quantify the contribution made by each type of information used.

Introduction

Transmembrane proteins are gates that organize a variety of vital cellular functions including

cell signaling, trafficking, metabolism, and energy production. It is estimated that, on average,

one in every three proteins in a cell is a membrane protein [1, 2]. Any defective or misregu-

lated membrane protein can disturb the organism’s functioning, giving rise to disease [3].

About one-half of the drug targets today are membrane proteins, such as transporters or

related receptors [4]. While the amino acid sequence of many membrane proteins is available,

they are among the least characterized proteins in terms of their structure and function. For

example, only 3% of the structures in the Protein Data Bank [5] are transmembrane proteins.

Numerous genome projects have produced an abundance of protein sequences, many of

which remain uncharacterized. Transmembrane proteins are among the least characterized
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proteins, because experimental characterization of their structure and function is exception-

ally difficult, owing to their hydrophobic surfaces and their lack of conformational stability.

Consequently, there is an urgent need for computational approaches in which the available

data is used to distinguish and characterize transmembrane proteins. Yet, this area of

research is still in its early stages, and the researchers are far from finding a definitive

solution.

Existing tools for the annotation of transporters that predict the substrate of the transport

reaction lag behind tools for other kinds of proteins such as enzymes for metabolic reactions.

Most tools predict the type of substrates [6–10], chosen from a small subset of substrate types,

without attempting to predict the specific substrate, or predict the family or subfamily [9, 11–

13] of the protein within the transporter classification (TC) [14–16], and again without

attempting to predict the specific substrate. For network modeling in systems biology [17, 18],

we require tools to process the complete proteome and predict each transport reaction; this

means identifying the transport protein and the specific substrate.

Many tools rely simply on homology or orthology to predict transporters. This includes

metabolic network tools merlin [19], and Pantograph [20], as well as our system TransATH

[21]. Amongst the tools for de novo prediction of substrate class, the Transporter Substrate

Specificity Prediction (TrSSP) [10] claims to be the state-of-the-art.

Our previous efforts [22] for de novo prediction of specific substrates for sugar transport-

ers in fungi were not successful. However, from it we learned how much depends on very

few residues of the transporter; often three or so residues, and often internal to different

helix transmembrane segments (TMSs) of the transporter [23]. These residues are far apart

in the linear protein sequence, but are close to each other in the three-dimensional structure

of the protein when integrated in the membrane. In looking forward to how we might

improve on approaches that rely on the amino acid composition of the protein, we devel-

oped a roadmap, whereby the composition information would be combined with evolution-

ary information as captured by an MSA, and by positional information [24] about the

residues responsible for determining the specificity of the transporter. This roadmap is a

schema for a large number of possible algorithms due to the many choices for encoding of

amino acid composition, MSA algorithms, and algorithms for specificity determining sites

[25]. We also realized the importance of the alignment preserving the TMS positions, since

the important residue positions seem to be located there. There are a number of such MSA

algorithms [26–29].

We therefore conducted a preliminary study, which indicated that the combination of

information about protein composition, protein evolution, and the specificity determining

positions had a significant impact on our ability to predict the transported substrates. We

chose the methodology and datasets of TrSSP [10] as our baseline, and varied this to illustrate

the impact of each of the factors: compositional, evolutionary, and positional information. Our

best approach, which defines the predictor we call TranCEP (an abbreviation of transporter

substrate prediction using compositional, evolutionary, and positional information), involves

utilizing the pair amino acid composition (PAAC) encoding scheme, the TM-Coffee [27]

MSA algorithm, and the transitive consistency score (TCS) [30] algorithm for determining

informative positions in the MSA, to build a suite of support vector machine (SVM) classifiers,

one for distinguishing between each pair of classes of substrates.

Background

For most of the work done on the prediction of transport proteins [3], there is no available

software, so it is difficult to reproduce the work and to compare the results of different articles.

TranCEP: Predicting the substrate class of transmembrane transport proteins
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Pathway tools includes the Transport Inference Parser (TIP) [31], which analyses keywords

in a gene annotation to assign gene-protein-reaction associations to transport reactions in

MetaCyc [32].

The Genome-Blast (G-Blast) [33] screens proteins against all the entries in Transporter

Classification Database (TCDB) [34] using Blast to retrieve the top hit, and HMMTOP [35] to

determine the TMS for the query and the hit sequence. It is an integral part of a manual proto-

col of Saier’s lab to predict the transport proteins for a genome [36].

The Zhao Lab has developed three methods: a nearest neighbour approach [37]; Trans-

portTP [12]; and TrSSP [10]. The nearest neighbour approach achieved a balanced accuracy of

67.0%.

The TransportTP [12] is a two-phase algorithm that combines homology and machine

learning to predict the TC family of one or more proteins. For training and cross-validation

testing, TransportTP used the yeast proteome. When testing, it used 10 genomes from the

TransportDB database [38] of annotated prokaryote transporters. As an independent test,

TransportTP was trained on the proteome of A. thaliana and then used to predict the trans-

porters in four other plant proteomes. TransportTP achieved a balanced accuracy of 81.8%.

Compared with the SVM-Prot classifier [39], on the five TC superfamilies and three families

used by SVM-Prot, TransportTP achieved better recall and precision.

The TrSSP [10] is a web server utilized to predict membrane transport proteins and their

substrate category. The substrate categories are: (1) oligopeptide (amino acid), (2) anion, (3)

cation, (4) electron, (5) protein/mRNA, (6) sugar, and (7) other. TrSSP makes a top-level pre-

diction of whether the protein is a transporter, or not. An SVM is applied, with the highest

accuracy being reported when using amino acid index (AAindex) and position-specific scoring

matrix (PSSM) features.

The disc_function system [11] uses amino acid composition and neural networks to dis-

criminate channels/pores, electrochemical and active transporters, with an accuracy of 68%.

When augmented with PSSM profiles and amino acid physicochemical properties it gained

5–10% in discrimination accuracy [13]. They also considered six major families in TCDB [13]

with an average accuracy of 69%.

The TTRBF [7] considers four major classes of substrates: (1) electron, (2) protein/mRNA,

(3) ion, and (4) other. It is an ensemble system combining amino acid composition, dipeptide

composition, physicochemical properties, PSSM profiles and radial basis function (RBF)

networks.

Schaadt et al. [6] used amino acid composition, characteristics of amino acid residues

and conservation to detect transporters based on four classes of substrate: (1) amino acid,

(2) oligopeptide, (3) phosphate, and (4) hexose. The number of characterized transporters

in A. thaliana for the four substrates was from 13 to 17. They constructed a vector for each

protein using various types of amino acid composition, and used Euclidean distance from

the query protein’s vector to the known vectors to rank the substrate categories. They found

that the PAAC performed as well as the more complicated features, yielding an accuracy of

over 90%.

Schaadt and Helms [8] compared the similarity of transporters in the TCDB and annotated

transporters in A. thaliana using amino acid composition and classified the proteins into three

families. By distinguishing the amino acid composition of TMS and non-TMS regions, they

could classify four different families with an accuracy of 80%.

Barghash and Helms [9] performed a comparison of three different approaches (homology,

HMMER, MEME) to predict the substrate category and predicting TC family. They used four

substrate categories, namely metal ions, phosphate, sugar, and amino acid; and the 29 TC

families with the most examples. The datasets were from E. coli, S. cerevisiae, and A. thaliana,

TranCEP: Predicting the substrate class of transmembrane transport proteins
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consisting of the 155, 158 and 177 proteins, respectively, that had both a substrate annotation

and TC family annotation that were experimentally determined.

The merlin [19] system for the reconstruction of metabolic networks handles eukaryote

genomes, and includes the determination of transport gene-protein-reaction associations, as

well as the localization of reactions across a number of cellular compartments: mitochondrion,

endoplasmic reticulum (ER), and Golgi apparatus. In merlin, transport proteins are predicted

based on the existence of TMS as predicted by TMHMM, and by similarity to entries in the

TCDB using the Smith-Waterman algorithm [40]. The association of transport reactions and

specific substrates for the predicted transport proteins were originally taken from a manually

curated database of some 4,000 TCDB entries originally. It now incorporates Transport Reac-
tions Annotation and Generation (TRIAGE) [41], with information for 5,495 TCDB entries.

The merlin software is available as open source Java code (http://www.merlin-sysbio.org).

The Pantograph [20] is designed for the metabolic pathway reconstruction of yeasts such as

Yarrowia lipolytica [42], which accumulates lipids in the peroxisome of the cell. It specifically

models the cellular components and the transport across the membranes in a reference tem-

plate, called the scaffold model. The Pantograph method relies on a database of profile HMMs

for fungal protein families and their annotations, which is maintained at Génolevures in Bor-

deaux. The Pantograph algorithm first assigns gene-protein-reaction associations, and then

decides which compartments and reactions to include in the draft model based on these asso-

ciations. The scaffold model, which is the reference template for Pantograph, was manually

curated to include 421 transport reactions. The associated transport protein families of ortho-

logs were manually identified for Génolevures collection. The Pantograph software, written in

Python, is available at http://pathtastic.gforge.inria.fr/. The distribution includes the scaffold

model in Systems Biology Markup Language (SBML).

The Transporters via Annotation Transfer by Homology (TransATH) [21] is a system that

automates Saier’s protocol based on sequence similarity. The TransATH includes the compu-

tation of subcellular localization and improves the computation of TMSs. The parameters of

TransATH are chosen for optimal performance on a gold standard set of transporters and

non-transporters from S. cerevisiae. A website http://transath.umt.edu.my for TransATH is

available for use.

The SCMMTP [43] has a novel scoring card method (SCM) that utilizes the dipeptide com-

position to identify putative membrane transport proteins. The SCMMTP method first builds

an initial matrix of 400 dipeptides and uses the difference between compositions of positives

and negatives as an initial dipeptide scoring matrix. This matrix is then optimized using a

genetic algorithm. SCMMP achieved an overall accuracy of 76.11% and Matthews correlation

coefficient (MCC) of 0.47 on the independent dataset.

Li et al [44] tool uses an SVM model to predict substrate classes of transmembrane trans-

port proteins by integrating features from PSSM, amino acid composition, biochemical prop-

erties and gene ontology (GO) [45] terms. The tool achieved an overall accuracy of 80.45% on

the independent dataset.

Materials and methods

Datasets

We used the same training dataset and test dataset as TrSSP by Mishra et al. [10] which are

available at http://bioinfo.noble.org/TrSSP. This benchmark dataset was collected from the

Swiss-Prot database (release 2013-03). The dataset initially contained 10,780 transporter, car-

rier, and channel proteins that were well characterized at the protein level and had clear sub-

strate annotations. Then, Mishra et al. removed the transporters with more than two substrate

TranCEP: Predicting the substrate class of transmembrane transport proteins
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specificities, sequences with biological function annotations based solely on sequence similar-

ity, and sequences with greater than 70% similarity. Mishra et al.’s final transporter dataset

contains 900 transporters divided into seven substrate classes: amino acid, anion, cation, elec-
tron, protein/mRNA, sugar, and other. The latter refers to transporters that do not belong to

any of the previous six classes. Table 1 shows the dataset details with the size of each class.

Databases

We used the Swiss-Prot database when searching for similar sequences. When construct-

ing MSAs, we used TM-Coffee [27] with the UniRef50-TM database, which consists of the

entries in UniRef50 that have keyword transmembrane.
The TrSSP dataset was derived from the Swiss-Prot database, so we made sure to

remove all entries in dataset from the two databases that we used.

Algorithm

Fig 1 illustrates the steps of TranCEP. The sequence (a) in this case, according to TM-Coffee,

has four TMSs, as shown by the gray shading. The example focuses on the first TMS, and

abbreviates the middle section of the sequence. Part (b) shows an MSA conserving the TMS

structure constructed by TM-Coffee, where the gray shading indicates the TMS location. Part

(c) shows the colour coding of the reliability index of each column as determined by TCS, and

shows how gaps replace unreliable columns in the filtered MSA. Part (d) shows a part of the

400-dimensional vector of dipeptide frequencies (PAAC) from the filtered MSA.

The template for combining evolutionary, positional, and compositional information is

presented in Algorithm 1. In this work, we used TM-Coffee to compute the MSA that con-

serves the TMSs, and TCS to determine a reliability index for each position (column) in the

MSA. We experimented with three composition schemes: amino acid composition (AAC),

pairwise amino acid composition (PAAC), and pseudo-amino acid composition (PseAAC), as

well as the optional use of TM-Coffee (TMC) and the transitive consistency score (TCS).

Algorithm 1. Template for constructing the composition vector.
function COMP_VEC(seq s)
// Evolutionary (E) Step, optional
Construct an MSA from s
// Positional (P) Step, optional
Determine the informative positions (columns) in the MSA
Filter the uninformative positions from the MSA
// Composition (C) Step, mandatory
return vector encoding composition of the filtered MSA

end function

Table 1. The dataset.

Substrate class Training dataset Test dataset

Amino acid 70 15

Anion 60 12

Electron 60 10

Cation 260 36

Protein/mRNA 70 15

Sugar 60 12

Other 200 20

Total 780 120

https://doi.org/10.1371/journal.pone.0227683.t001
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A template for the algorithm showing the role of evolutionary (E), positional (P), and com-

position (C) information. Note that the use of evolutionary (E) and positional (P) is optional;

and that if positional (P) information is used then it requires evolutionary (E) information in

the form of Multiple Sequence Alignment (MSA). Note that if Step (E) is not done, then Step

(C) encodes the sequence s. Note that if Step (E) is done but Step (P) MSA is not done, then

Step (C) encodes the MSA.

Algorithm 2 shows the composition vectors being used to build a set of classifiers; SVM

classifiers in this case. Algorithm 3 shows the prediction algorithm.

Algorithm 2. Build SVM classifiers.
Require: a training set T of sequences labelled with classes C1, . . ., Cn
Ensure: a set of SVM’s svm(i, j) distinguishing class Ci and Cj
procedure BUILD_SVMS(T: set of seq; svm: set of SVM)
for all seq s in T do
v(s)  COMP_VEC(s)

end for
for all pair (Ci, Cj) of classes do
svm(i, j)  SVM.build({v(s): s 2 T \ (Ci [ Cj)})

end for
end procedure

Fig 1. Example of steps of TranCEP. The figure illustrates the steps of TranCEP. Note that we abbreviated the middle section of the sequence. Part (a) shows the

sequence the four TMSs in gray shading. Part (b) shows an MSA constructed by TM-Coffee. Gray shading indicates a TMS. Part (c) shows the color coding of the

reliability index of each column as determined by TCS, and shows gaps in unreliable columns in the filtered MSA. Part (d) shows a 400-dimensional PAAC vector

from the filtered MSA.

https://doi.org/10.1371/journal.pone.0227683.g001
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The algorithm to build a set of SVM classifiers to distinguish between each pair of classes

in the training set. The actual construction of each SVM was done by an SVM package’s build

function.

Algorithm 3. Prediction.
Require: test sequence s
Require: a set of SVM’s svm(i, j) distinguishing classes Ci and Cj
Ensure: result is predicted class Cp
function PREDICT_CLASS(seq s)
v  COMP_VEC(s)
for all pair (Ci, Cj) of classes do
c(i, j)  svm(i, j) applied to v

end for
p  mode of c(i, j) for all pairs (i, j)
return Cp

end function
The prediction algorithm that applies each of the SVMs, and takes the class that is predicted

most often by the set of SVMs.

Encoding amino acid composition

The properties of the amino acids at each position in the protein sequence can be encoded into

vectors that summarize the overall composition of the protein. Three approaches to encoding

amino acid composition were implemented in this study: AAC, PAAC, and PseAAC.

The amino acid composition (AAC) is the normalized occurrence frequency of each amino

acid. The fractions of all 20 natural amino acids are calculated as:

ci ¼
Fi
L

i ¼ ð1; 2; 3; . . . 20Þ ð1Þ

where Fi is the frequency of the ith amino acid in sequence P, and L is the length of the

sequence. The AAC is represented as a vector of size 20:

AACðPÞ ¼ ½c1; c2; c3; . . . ; c20� ð2Þ

where ci is the composition of ith amino acid.

The pair amino acid composition (PAAC) is the normalized frequency of each pair of amino

acids. The PAAC is calculated as

di;j ¼
Fi;j

L � 1
i; j ¼ ð1; 2; 3; . . . 20Þ ð3Þ

where Fi,j is the frequency of the ith and jth amino acids as a pair (dipeptide) adjacent to each

other in the sequence P, and L is the length of the sequence. The PAAC is represented as a vec-

tor of size 400 as follows:

PAACðPÞ ¼ ½d1;1; d1;2; d1;3; . . . ; d20;20� ð4Þ

where di,j is the dipeptide composition of the ith and jth amino acid.

The pseudo-amino acid composition (PseAAC) [46] combines the 20 components of AAC

with a set of sequence order correlation factors that incorporates some biochemical properties.

Given a protein sequence P = R1R2R3R4. . .RL of length L, a set of descriptors called sequence

TranCEP: Predicting the substrate class of transmembrane transport proteins
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order-correlated factors are defined as:

y1 ¼
1

L � 1

XL� 1

i¼1

YðRi;Riþ1Þ

y2 ¼
1

L � 2

XL� 2

i¼1

YðRi;Riþ2Þ

y3 ¼
1

L � 3

XL� 3

i¼1

YðRi;Riþ3Þ

:

:

:

yl ¼
1

L � l

XL� l

i¼1

YðRi;RiþlÞ

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð5Þ

The parameter λ is chosen such that (λ< L). A correlation function is given by:

YðRi;RjÞ ¼
1

3
f½H1ðRjÞ � H1ðRiÞ�

2
þ ½H2ðRjÞ � H2ðRiÞ�

2
þ ½MðRjÞ � MðRiÞ�

2
g ð6Þ

where H1(Ri) is the hydrophobicity value, H2(Ri) is the hydrophilicity value, and M(Ri) is the

side chain mass of the amino acid Ri. Those quantities are converted from their original values.

For example, for hydrophobicity, H1(R) is derived from the average hydrophobicity value

H�

1
ðRiÞ, as follows:

H1ðRiÞ ¼

H�

1
ðRiÞ �

1

20

X20

k¼1

H�

1
ðRkÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X20

y¼1

H�

1
ðRyÞ �

1

20

X20

k¼1

H�

1
ðRkÞ

" #2

20

v
u
u
u
u
t

ð7Þ

The original hydrophobicity value H�

1
ðRiÞ is taken from Tanford [47]. The original hydrophi-

licity value H�

2
ðRiÞ for the amino acid Ri is taken from Hopp and Woods [48].

PseAAC is represented as a vector of size (20 + λ) as follows:

PseAACðPÞ ¼ ½s1; . . . ; s20; s21; . . . ; s20þl� ð8Þ

where si is the pseudo-amino acid composition

si ¼

fi
P20

r¼1
fr þ o

Pl

j¼1
yj

1 � i � 20

oyi� 20
P20

r¼1
fr þ o

Pl

j¼1
yj

20 < i � 20þ l

8
>>>>>>><

>>>>>>>:

ð9Þ

where fi is the normalized occurrence frequency of the ith amino acid in the protein sequence,

θj is the jth sequence order-correlated factor calculated from Eq 5, and ω is a weight factor for
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the sequence order effect. The weight factor ω puts weight on the additional PseAAC compo-

nents with respect to the conventional AAC components. Any value from 0.05 to 0.7 can be

selected for the weight factor. The default value given by Chou [46] is 0.05, which we selected

in this study.

Multiple sequence alignment

We adopted the MSA-AAC approach [6] that combines amino acid composition with the evo-

lutionary information available from the MSA. This is done by first retrieving homologous

sequences of each protein sequence in the dataset, then building an MSA for the correspond-

ing protein, and then taking the counts for computing the composition information using all

the residues in the MSA.

In [6], the researchers only utilized the AAC encoding, whereas we also applied the

approach to the PAAC and PseAAC encodings. Another difference was that we made use of

TM-Coffee [27] (Version-11.00.8cbe486) to compute alignments, rather than ClustalW [49] as

done in [6], because we felt it was important to align the TMSs.

Other differences included searching the Swiss-Prot [50] database and retrieving a

maximum of 120 homologous sequences, instead of searching the non-redundant database nr
and retrieving 1,000 sequences. This was done to make the computational time more manage-

able, because the TM-Coffee algorithm requires more memory usage and execution time.

Furthermore, all exact hits of the test sequences were removed from the Swiss-Prot
and UniRef50-TM databases to maintain independence between the MSA and the test data.

Our alignment command was the following:

t_coffee mysequences. fasta −mode psicoffee

−protein_db uniref50 −TM \

−template_file PSITM

where mysequences.fasta is the file that contains the 120 similar sequences retrieved by

Blast search on the Swiss-Prot database.

Positional information

In order to focus on those positions in the protein that determine specificity, we needed a

method to determine those positions, and then to filter our MSA. The MSA was filtered by

setting the entries for all other positions to null, that is, the symbol ‘-’ so that it was ignored

when gathering counts for the amino acid composition.

We applied the transitive consistency score (TCS) algorithm [30] to the alignment to deter-

mine the informative positions. The TCS is a scoring scheme that uses a consistency transfor-

mation to assign a reliability index to every pair of aligned residues, to each individual residue

in the alignment, to each column, andto the overall alignment. This scoring scheme has been

shown to be highly informative with respect to structural predictions based on benchmarking

databases. The reliability index ranges from 0 to 9, where 0 is extremely uncertain and 9 is

extremely reliable. Columns with a reliability index of below 4 were removed using the follow-

ing command:

t_coffee −infile myMSA. aln −evaluate

−output tcs_column_filter4. fasta

where myMSA.aln is the MSA file, tcs_column_filter4.fasta is the filtered file in

FASTA format.
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Training

Following TrSSP [10], we used a multi-class SVM with RBF kernel, as implemented in the R

e1071 library version 1.6-8, using a one-against-one approach in which 21 = (7 × 6)/2 binary

classifiers were trained. The predicted class was determined through a voting scheme in which

all the binary classifiers were applied and the class that got highest number of votes was the

result. Both the cost and gamma parameters of the RBF kernel were optimized by performing

a grid search using the tune function in the library (range of cost: 2 . . . 16, range of gamma:

2e-5 . . . 1).

Methods

We adopted three approaches to encode the amino acid composition: AAC, PAAC, as done

by TrSSP [10], and PseAAC. This was followed by training using SVM to form the prediction

methods AAC, PAAC, and PseAAC respectively.

By combining the amino acid composition and the evolutionary information obtained

using TM-Coffee, followed by SVM, we implemented the prediction methods: TMC-AAC,

TMC-PAAC, and TMC-PseAAC respectively.

Filtering was incorporated by applying TCS after TM-Coffee, then computing the

amino acid composition vectors, and applying SVM to implement the prediction methods:

TMC-TCS-AAC, TMC-TCS-PAAC, and TMC-TCS-PseAAC respectively.

The method of TranCEP is TMC-TCS-PAAC, the method with the best performance dur-

ing cross-validation.

Performance measurement

Four statistical measures were considered to measure the performance:

sensitivity which is the proportion of positives that are correctly identified:

Sensitivity ¼
TP

TP þ FN
ð10Þ

specificity which is the proportion of negatives that are correctly identified:

Specificity ¼
TN

TN þ FP
ð11Þ

accuracy which is proportion of correct predictions made amongst all the predictions:

Accuracy ¼
TP þ TN

TPþ FN þ TN þ FP
ð12Þ

Matthews correlation coefficient (MCC) which is a single measure taking into account true

and false positives and negatives:

MCC ¼
ðTP � TN � FP� FNÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTP þ FPÞ � ðTP þ FNÞ � ðTN þ FPÞ � ðTN þ FNÞ

p ð13Þ

where TP is the number of true positives, TN is the number of true negatives, FP is the number

of false positives, and FN is the number of false negatives.

We used the MCC because it is less influenced by imbalanced data and is arguably the

best single assessment metric in this case [51–53]. The MCC value ranges from 1 to −1,

where 1 indicates a perfect prediction; 0 represent no better than random; and −1 implies total
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disagreement between prediction and observation. A high MCC value means the predictor has

high accuracy on both positive and negative classes, and also low misprediction on both.

When dealing with multiclass classification, it is often desirable to compute a single aggre-

gate measure that reflects the overall performance. There are two methods to compute the

overall performance, namely micro-averaging and macro-averaging [54]. Macro-averaging

computes a simple average performance of individual classes’ performances. Micro-averaging

computes an overall performance by globally counting the total true positives, false negatives

and false positives. Depending on the class distribution the difference between the two meth-

ods can be large. Macro-averaging gives equal weight to each class, whereas micro-averaging

gives equal weight to each individual classification decision [54]. The overall accuracy of the

tool is often calculated as the fraction of the correct predictions by the total number of predic-

tions as follows:

Accuracyoverall ¼
XK

k¼1

TPk
N

ð14Þ

where TPk is the number of true positives in class k, K is the number of different classes, and N
is the total number of predictions.

Another way to compute the accuracy is to take the macro-average accuracy of the individ-

ual classes:

Accuracymacro ¼
1

K

XK

k¼1

Accuracyk ð15Þ

where Accuracyk is the accuracy of class k, and K is the number of different classes.

Similarly, the overall MCC is calculated in terms of the confusion matrix C of dimension

K × K [55]:

MCCoverall ¼

P
k

P
l

P
mCkkClm � CklCmkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

kð
P

lCklÞð
P

k0 jk0 6¼k

P
l0Ck0 l0 Þ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
kð
P

lClkÞð
P

k0 jk0 6¼k

P
l0Cl0k0 Þ

q ð16Þ

Or as a macro-average MCC:

MCCmacro ¼
1

K

XK

k¼1

MCCk ð17Þ

where MCCk is the accuracy of class k, and K is the number of different classes.

Because the number of samples in each class of the dataset is imbalanced, we used the over-

all accuracy as in Eq 14 and overall MCC as in Eq 16 to evaluate and compare different meth-

ods. It is explicitly stated when the macro-average was used.

Experiments

The performance of each method was determined using five-fold cross-validation whereby the

training dataset was randomly partitioned into five equal sized sets. A single set was kept as

the validation data and the remaining four sets were used to train the SVM model. This model

was then tested using the validation set. The cross-validation process was repeated four times;

where each of the sets was used once as the validation data. The performance of each model

was averaged to produce a single estimation and the variation in performances was captured

by computing the standard deviation. In addition, we ran leave-one-out cross-validation

(LOOCV) on different methods to evaluate their robustness and compared the results with
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those obtained by five-fold cross-validation. Furthermore, the independent dataset was used to

test the final models. The data in the independent dataset was not used, nor considered, during

the training process and completely unknown to the different models.

The performance of TranCEP on the test dataset was compared to the performance of

TrSSP, as reported in their paper [10].

Statistical analysis

In this analysis, the average number of informative residues, as determined by TCS scores,

in different segments of a protein sequence was computed. For each substrate class, pairwise

comparisons between means of important positions in different segments were performed.

Since the sample size of each substrate class is >30, based on the the central limit theorem

[56], the Student t-test (two tailed, paired) was applied. The difference was considered statisti-

cally significant when the Student t-test significance level P (P-value) was less than 0.0001.

Results and discussion

Methods evaluation

The performance of the nine methods was evaluated using five-fold cross-validation. Table 2

presents the overall accuracy and MCC of the SVM models for the nine methods, sorted from

the best to the worst MCC. Details of the performance for each method is available in S1 File;

the comparison between the different methods among the seven classes in MCC, accuracy,

sensitivity, and specificity is presented in Fig 2.

All the SVM models that utilized evolutionary data notably performed better than the SVM

models that did not. In addition, the top two models, TMC-TCS-PAAC and TMC-TCS-

AAC, integrated positional and evolutionary information. The highest MCC was obtained

by TMC-TCS-PAAC, which is the method chosen for our predictor TranCEP. This method

incorporates the use of PAAC with evolutionary data in the form of MSA with positional

information, in which columns that have a reliability below 4 are filtered out. We found that

the performance peaked using this threshold and started to decline when filtering columns

with a higher reliability index. The TMC-TCS-PAAC method yielded an overall MCC of 0.63.

The detailed performance of TMC-TCS-PAAC on five-fold cross-validation is presented in

Table 3, The MCC was 0.82, 0.61, 0.62, 0.58, 0.46, 0.52, and 0.69 for amino acid, anion, cation,

electron, protein/mRNA, sugar, and other, respectively.

Table 2. Overall cross-validation performance of the methods.

Method Accuracy MCC

TMC-TCS-PAAC 69.23± 06.1 0.63±0.122

TMC-TCS-AAC 65.13± 03.2 0.58±0.125

TMC-PAAC 63.33± 04.4 0.51±0.129

TMC-AAC 63.08± 03.6 0.50±0.092

TMC-TCS-PseAAC 63.30± 05.5 0.49±0.129

TMC-PseAAC 61.79± 02.9 0.49±0.131

PseAAC 47.69± 02.4 0.27±0.104

PAAC 45.89± 03.1 0.25±0.101

AAC 45.38± 03.3 0.22±0.099

For each method, the table presents accuracy and MCC as m±d, where m is the mean and d is the standard deviation

across the five runs of the cross-validation.

https://doi.org/10.1371/journal.pone.0227683.t002
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The performance evaluation using LOOCV and independent testing prediction yielded

similar patterns (available in S2 and S3 Files, respectively). A comparison of the results

obtained by five-fold cross-validation, LOOCV, and the independent testing is presented in

Fig 3.

Fig 2. Performance of different methods. (a) MCC, (b) accuracy, (c) sensitivity, and (d) specificity. The dotted line represent

the performance of TranCEP, which is TCS-TMC-PAAC.

https://doi.org/10.1371/journal.pone.0227683.g002

Table 3. Cross validation performance for TMC-TCS-PAAC.

Class Specificity Sensitivity Accuracy MCC

Amino acid 98.82±00.4 80.84±05.4 96.06±01.7 0.82±0.042

Anion 99.30±00.7 47.89±19.9 93.33±01.4 0.61±0.119

Cation 86.66±02.2 79.70±04.3 81.50±03.9 0.62±0.081

Electron 96.58±03.0 63.13±11.8 92.01±01.9 0.58±0.098

Protein 97.21±01.8 52.00±08.7 90.93±03.1 0.46±0.036

Sugar 98.19±01.9 70.51±10.5 94.39±02.1 0.52±0.192

Other 83.02±03.5 67.23±19.8 76.43±06.8 0.69±0.178

Overall 69.23±06.1 0.63±0.122

The table presents the five-fold cross-validation results for TranCEP, which is TCS-TMC-PAAC. For each substrate class, the table indicates specificity, sensitivity,

accuracy and MCC as m±d, where m is the mean and d is the standard deviation across the five runs of the cross validation.

https://doi.org/10.1371/journal.pone.0227683.t003
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Table 4 shows the confusion matrix for TranCEP when run on the independent test set.

Most of the confusion occurred between a substrate class and the class other.

Comparison

Table 5 compares the performance of TranCEP to TrSSP [10] on the independent test set.

TranCEP scored higher for all the substrate classes in terms of accuracy, specificity, and MCC.

For the true positive rate as measured by sensitivity, TranCEP performed better on the cation
and other classes, and TrSSP either matched or outperformed TranCEP on the other five clas-

ses. In TranCEP, the overall accuracy was computed as in Eq 14, and the MCC as in Eq 16.

The performance of TrSSP was computed as macro-average accuracy and macro-average

MCC. When we adopted the same method as TrSSP, the macro-average accuracy of TranCEP

is 91.23% and the macro-average MCC is 0.69. Interestingly, the MCC score was not effected

when using the overall and the macro-average, which further highlights its robustness when

dealing with imbalanced data.

Fig 3. Methods overall performance. (a) overall accuracy, and (b) overall MCC. The asterisk (�) symbol refers to the performance of TranCEP, which is

TCS-TMC-PAAC.

https://doi.org/10.1371/journal.pone.0227683.g003

Table 4. Confusion matrix for TranCEP.

Actual\Predicted Amino acid Anion Cation Electron Protein Sugar Other Total

Amino acid 9 0 2 0 0 0 4 15

Anion 1 7 1 0 0 0 3 12

Cation 0 0 34 0 1 0 1 36

Electron 0 0 1 8 0 0 1 10

Protein 0 0 3 0 10 0 2 15

Sugar 0 1 0 0 0 8 3 12

Other 1 3 2 0 0 1 13 20

The table presents the number of proteins in an actual substrate class that are predicted by TranCEP to fall in each substrate class. The independent test set is used.

https://doi.org/10.1371/journal.pone.0227683.t004
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Overall, TranCEP obtained an MCC of 0.69 which is 68% higher than that of TrSSP.

Impact of factors

Table 6 shows the impact of evolutionary information and positional information on the over-

all MCC from the five-fold cross-validation.

The use of evolutionary information in form of MSA on the composition encodings AAC,

PAAC, and PseAAC improved the MCC by an average of 104% with the highest improvement

being on AAC by 127%. The further use of positional information by filtering out the unreli-

able columns from the MSA showed an average improvement of 132% to the baseline compo-

sitions. The impact of positional information over that already achieved by evolutionary

information was an average of 13%. The highest impact is on TMC-PAAC, where the MCC

improved by 24% in TMC-TCS-PAAC.

It is difficult to isolate the exact residues that are key to inferring the substrate class; the

results suggest that evolutionary information, obtained by MSA, is the main source of achiev-

ing high prediction performance. In addition, the TCS informative positions (with TCS

score� 4) can help to filter out the unnecessary noise and get a clearer signal to further

Table 5. Comparing TranCEP and TrSSP.

Class Specificity Sensitivity Accuracy MCC

TrSSP TranCEP TrSSP TranCEP TrSSP TranCEP TrSSP TranCEP

Amino acid 82.42 98.10 93.33 60.00 83.33 91.75 0.49 0.66

Anion 69.05 96.30 75.00 58.33 69.44 90.82 0.23 0.56

Cation 74.31 89.29 75.00 94.44 74.44 89.00 0.41 0.78

Electron 91.78 100.0 80.00 80.00 91.11 97.80 0.50 0.88

Protein 82.42 99.07 93.33 66.67 83.33 93.68 0.49 0.75

Sugar 76.79 99.07 91.67 66.67 77.78 94.68 0.38 0.74

Other 73.13 86.00 60.00 65.00 71.67 80.91 0.23 0.44

Overall NA 74.17 NA 0.69

Macro-average 78.88 91.23 0.41 0.69

The table presents the performance of TranCEP built with the complete training set and run on the independent test set. The corresponding results for TrSSP are taken

from their original paper. The table shows specificity, sensitivity, accuracy and MCC for each of the seven substrate types; the overall accuracy and MCC, and the macro-

average accuracy and MCC. The overall accuracy was calculated by TranCEP as the proportion of correct predictions divided by the total number of predictions, and the

overall MCC was calculated from the confusion matrix as in Eq 16. The TrSSP performance was calculated as the average across the seven classes (macro-average); if we

adopt the same method the macro-average accuracy of TranCEP is 91.23% and the macro-average MCC is 0.69. NA: not available.

https://doi.org/10.1371/journal.pone.0227683.t005

Table 6. Impact of factors on performance.

Encoding MCC TMC-X to X TMC-TCS-X to X TMC-TCS-X to TMC-X

X X TMC-X TMC-TCS-X Delta Percent Delta Percent Delta Percent

AAC 0.22 0.50 0.58 0.28 127% 0.36 164% 0.08 16%

PAAC 0.25 0.51 0.63 0.26 104% 0.38 152% 0.12 24%

PseAAC 0.27 0.49 0.49 0.22 81% 0.22 81% 0.00 0%

Average 0.25 104% 0.32 132% 0.07 13%

The table notes the difference in MCC, the delta, and the percentage improvement in MCC, the percent, of the cross-validation performance for the introduction of

evolutionary information using TM-Coffee, and positional information using TCS. The use of evolutionary information in the form of an MSA on the composition

encodings AAC, PAAC, and PseAAC improved the MCC by an average of 104%. The further use of positional information by filtering out the unreliable columns from

the MSA boosted the MCC of the composition encodings by an average of 132%.

https://doi.org/10.1371/journal.pone.0227683.t006
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improve the prediction. Using TCS informative positions filtered out an average of (35% ±
7%) of the sequence. However, when we tried to filter out more positions (by taking a stricter

the TCS score cut-off), the performance started to deteriorate.

To visualize the informative positions relative to the hydropathy scale of amino acids, the

hydropathy scale proposed by [57] was utilized and the average hydropathy of each column in

the MSA was computed. Higher positive scores indicate that amino acids in that region have

hydrophobic properties and are likely to be located in a transmembrane alpha-helix segment.

The TCS score of each column in the alignment is noted on the hydropathy plot through color

coding. Fig 4 shows diverse examples. The red shades correspond to the informative columns

(TCS score� 4), while the gray and white shades correspond to non-informative columns

Fig 4. Average Kyte-Doolittle hydropathy of the MSA with TCS scores. The figure indicates that the columns

highlighted in red are informative and used by TranCEP. The TranCEP considers a column to be informative if it has a

TCS score of at least 4 (shades of red), and filters out the other columns (gray and white). In (a) P39515 contains 158

residues, and the alignment of P39515 with other homologous sequences has 1203 columns, only 128 of them are

informative (highlighted in shades of red). In (b) P10870 contains 884 residues, and the alignment of P10870 with

other homologous sequences has 1312 columns, only 402 of them are informative. In (c) P11551 contains 438 residues,

and the alignment of P11551 with other homologous sequences has 1753 columns, only 343 of them are informative.

In (d) P0AAT4 contains 415 residues, and the alignment of P0AAT4 with other homologous sequences has 1653

columns, only 274 of them are informative.

https://doi.org/10.1371/journal.pone.0227683.g004
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that are filtered out by TranCEP. In Fig 4(a) and 4(b), the regions with high positive average

hydropathy values appear to be more informative compared to the ones with lower values.

However, in Fig 4(c) and 4(d), the difference between the informative positions with high and

low hydropathy values is not as clear.

To be able to measure the informative positions relative to different segments of the protein

sequence, we divided the protein sequence positions into those in the TMS and those not in

the TMS. Those in the TMS were divided into the interior one-third positions, and the remain-

ing exterior positions in the TMS. The non-TMS positions were divided into those near a

TMS, that is, within 10 positions, and the remaining positions far from a TMS. The location

of the TMS was predicted using TOPCONS2 [58] to predict the α-helical TMS and PRED-

TMBB2 [59] for β-barrel TMS. Table 7 shows a breakdown of where the informative positions,

as determined by TCS, are located with respect TMS regions.

For instance, in Fig 4(b), 45.47% of the residues of the sequence with UniProt-ID P10970

are informative (i.e., correspond to informative columns in the alignment); thus 54.53% of this

sequence is filtered out. In this case, the residues in the TMSs of this protein are indeed more

informative, where 96.42% of them are informative. On the other hand, only 25% of the resi-

dues on non-TMSs are informative. However, this does not always hold true as in the sequence

with UniProt-ID P0AAT4 in Fig 4(d), for example. Details of the sequences in the figure are

presented in Table 8. Details of all the sequences in all of the examined segments are found in

the open source repository.

Table 9 presents a pairwise comparison between informative positions in TMS and non-

TMS regions. The sequences in amino acid, anion, cation, sugar, and other, substrate classes

have significantly more informative positions in the TMS regions compared with non-TMS

regions. However, the difference is not significant in the sequences that belong to protein/
mRNA and electron substrates. This could be because these two classes have fewer TMSs per

sequence, and TCS did not capture their conservation. The same difference in significance

positions close to TMSs and positions far from TMSs is found, as shown in Table 10. In con-

trast, there is no difference between classes for interior and exterior segments of the TMSs, as

presented in Table 11.

Table 7. Positional information.

Class SeqLth TMS TMSLth Positions TMS non-TMS

Num %Seq Num Interior Num Exterior Num Num Close Num Far Num

Amino acid 535 10 214 340 60.91 173 59 114 153 85 68

Anion 632 10 199 480 68.95 180 61 119 278 98 180

Cation 644 7 148 443 61.29 131 44 87 287 72 215

Electron 352 3 57 281 41.59 51 17 34 124 28 96

Protein 592 2 38 350 32.04 26 9 17 136 20 116

Sugar 467 10 215 345 70.37 193 65 128 143 80 63

Other 580 7 155 419 60.23 129 43 86 249 69 180

The table presents information on the sites retained by the TCS filtering step. For each class of substrates in the dataset, the table presents the average sequence length

(SeqLth), the average number of TMS regions (TMS), and the average total number of residues in the TMS regions (TMSLth). It also presents the average of the

number of positions retained by the filtering (Positions:Num), and that number as a percentage of the total sequence length (Positions:%Seq). It notes the total number

of sites that occur in the TMS regions (TMS:Num), and the non-TMS regions (non-TMS:Num). For the TMS regions, it presents the average number of sites that occur

in the interior central one-third of the TMS regions (TMS:Interior:Num), and in the remaining exterior regions outside the central one-third of the TMS regions (TMS:

Exterior:Num). For the non-TMS regions, it presents the average number of sites that occur close to the TMS regions (within 10 positions of the TMS) (non-TMS:

Close:Num), and the remaining sites far from the TMS regions (non-TMS:Far:Num).

https://doi.org/10.1371/journal.pone.0227683.t007
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Table 8. Examples of the informative residues distribution with respect to TMS and non-TMS.

UniProt-ID SeqLth TMS TMSLth Positions TMS non-TMS

Num %Seq Num %Seq Num %Seq

P39515 158 4 80 113 71.51 73 91.25 40 51.28

P10870 884 12 252 402 45.47 243 96.42 159 25.15

P11551 438 12 252 252 57.53 148 58.73 94 55.91

P0AAT4 415 5 105 208 50.12 41 39.05 167 53.87

The table shows the details of Fig 4 individual sequences. The table presents the sequence length (SeqLth), the number of TMS regions (TMS), and the total number of

residues in the TMS regions (TMSLth). It also presents the number of informative positions retained by the filtering (Positions:Num), and that number as a percentage

of the total sequence length (Positions:%Seq). It notes the total number of informative sites that occur in the TMS regions (TMS:Num), and that number as a

percentage of the total TMS length (TMS:%Seq). In addition, It notes the total number of informative sites that occur in the non-TMS regions (non-TMS:Num), and

that number as a percentage of the total non-TMS length (non-TMS:%Seq).

https://doi.org/10.1371/journal.pone.0227683.t008

Table 9. Statistical analysis of informative position rates in TMS and non-TMS regions.

Class TMS non-TMS P-value

Amino acid 74.61±27.28 50.06±21.61 <0.0001

Anion 82.16±30.35 60.94±26.93 <0.0001

Cation 76.51±34.41 55.71±28.63 <0.0001

Electron 37.62±44.12 41.44±43.56 0.050

Protein 32.66±39.83 30.92±35.30 0.414

Sugar 84.68±23.27 57.24±19.46 <0.0001

Other 67.53±38.21 54.52±31.17 <0.0001

All the data are reported as the sample mean ± the standard deviation (SD). The location of the TMS regions was

predicted using TOPCONS2 [58] for the α-helical TMS and PRED-TMBB2 [59] for β-barrel TMS regions. There are

statistically (P-value <0.0001) significant informative positions in TMS regions compared to non-TMS regions, in

the sequences that belong to amino acid, anion, cation, sugar, and other classes.

https://doi.org/10.1371/journal.pone.0227683.t009

Table 10. Statistical analysis of informative position rates close to TMS regions and far from TMS regions.

Class Close Far P-value

Amino acid 62.59±24.73 39.08±23.08 <0.0001

Anion 72.53±28.28 53.86±28.19 <0.0001

Cation 66.20±32.40 51.35±28.91 <0.0001

Electron 36.67±44.05 41.67±43.76 0.035

Protein 32.38±39.47 29.96±34.54 0.313

Sugar 68.89±19.89 47.30±20.06 <0.0001

Other 62.84±35.31 48.91±30.90 <0.0001

All the data are reported as the sample mean ± the standard deviation (SD). For the non-TMS regions, there are

statistically (P-value <0.0001) significant informative positions that occur close to the TMS regions (within 10

positions of the TMS) compared to other far regions, in the sequences that belong to amino acid, anion, cation, sugar,
and other classes.

https://doi.org/10.1371/journal.pone.0227683.t010
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Conclusion

We have developed a novel method TranCEP for de novo prediction of substrates for mem-

brane transporter proteins that combines information based on amino acid composition,

evolutionary information, and positional information. TranCEP incorporates first, the use of

evolutionary information taking 120 similar sequences and constructing a multiple sequence

alignment using TM-Coffee, second, the use of positional information by filtering to reliable

positions as determined by TCS, and third, the use of pair amino acid composition. TranCEP

achieved an overall MCC of 0.69, which is a 68% improvement over the state-of-the-art

method TrSSP that uses the primary sequence alone. In addition, we evaluated the impact on

performance of each factor: incorporating evolutionary information and filtering the unreli-

able positions. We observed that using amino acid composition alone does not obtain strong

performance. The enhanced performance came mainly from incorporating evolutionary and

positional information. We learned that certain positions in the alignment have greater signifi-

cance, and identifying them helped to boost the performance.
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Table 11. Statistical analysis of informative position rates in the interior TMS regions and exterior TMS regions.

Class Interior Exterior P-value

Amino acid 75.92±27.55 74.35±27.31 0.007

Anion 82.67±30.70 82.25±30.33 0.290

Cation 77.18±35.50 76.40±34.22 0.028

Electron 37.69±44.51 37.70±44.17 0.983

Protein 31.99±40.55 33.12±40.10 0.278

Sugar 86.16±24.51 84.37±22.96 0.011

Other 67.88±38.48 67.51±38.31 0.317

All the data are reported as the sample mean ± the standard deviation (SD). For the TMS regions, there is no

difference between the informative positions in the interior central one-third of the TMS regions and the remaining

exterior regions, in all sequences that belong to all substrate classes.

https://doi.org/10.1371/journal.pone.0227683.t011
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