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Abstract
Cognition and behavior are thought to emerge from the connections and interactions among brain regions. The precise
nature of these relationships remains elusive. Here we use tools provided by network control theory to determine how the
structural connectivity profile of brain regions may shape individual variation in cognition. In a cohort of healthy young
adults (n = 1066), we computed two fundamental brain regional control patterns, average and modal controllability, which
index the degree of influence of a region over others. We first established that regional brain controllability measures were
both reproducible and heritable. Regions with controllability profiles theoretically conducive to facilitating multiple
cognitive operations were over-represented in higher-order resting-state networks. Finally, variation in regional
controllability accounted for about 50% of interindividual variability in multiple cognitive domains. We conclude that
controllability is a biologically plausible property of the structural connectome and provides a mechanistic explanation for
how brain structural architecture may influence cognitive functions.
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Introduction
Among the most pressing and challenging questions in sys-
tems neuroscience, and its application to psychiatry and neu-
rology, is how the configuration of the human brain enables
the emergence of cognition and behavior. Network neuroscience

models the brain as a connectome—an intricate network of
brain regions that synchronize their activity via anatomical and
functional connections that can be mapped and quantitatively
characterized (Bassett et al. 2018; Breakspear 2017). The precise
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mechanisms that underpin structure–function relationships in
the brain remain the focus of intense research.

The application of graph theory has led to novel insights
into the topological organization of the brain by providing new
mathematical tools to model and quantify the pattern of inter-
connections between brain regions (Bullmore and Sporns 2009).
Graph theory analyses have demonstrated that the pattern of
anatomical connections of individual brain regions shows sig-
nificant variation, which constitutes the main influence on the
types of mental processes that can be supported (Misic and
Sporns 2016; Sporns et al. 2004). These mental processes arise
from continuous changes in functional brain states, which are
defined as the vector of the magnitude of the neurophysiological
activity across brain regions at a single time point (Gu et al. 2015;
Lynn and Bassett 2019). Network control theory is an emerging
multidisciplinary field of enquiry concerned with modeling how
anatomical connectivity influences transitions between brain
states (Betzel et al. 2016; Gu et al. 2015; Tang and Bassett 2018).
The underlying assumption is that transitions in brain states are
controllable, meaning that they occur along trajectories aiming
to attain a target brain state chosen for its utility in meeting
contextual demands (Gu et al. 2015; Lynn and Bassett 2019;
Pasqualetti et al. 2014). It further posits that the anatomical
connectivity of individual brain regions is critical in defining
their controllability, which refers to the degree of their influ-
ence in driving transitions towards a specific target brain state
(Gu et al. 2015; Lynn and Bassett 2019). The controllability of a
brain region is thus linked to its structural connectivity prop-
erties which can constrain or support transitions between dif-
ferent brain states. The controllability of each brain region can
be captured by two key metrics: average controllability (AC),
which quantifies the capacity of a brain region to facilitate
transitions to easy-to-reach states, and modal controllability
(MC), which quantifies the ease with which a brain region can
steer the brain into difficult-to-reach states (Gu et al. 2015; Lynn
and Bassett 2019). The ease or difficulty of reachability of a
specific brain state reflects the number of the required inter-
vening state transitions and the inferred cost associated with
these transitions (Gu et al. 2015; Pasqualetti et al. 2014). Thus,
examination of patterns of regional controllability could provide
an account of how the brain structural connectome may shape
patterns of brain activity. However, there are yet unanswered
questions regarding the controllability features of the structural
connectome of the brain with regard to their consistency across
large cohorts of healthy individuals, their sensitivity to genetic
influence, and their association with cognitive systems and
cognitive functions.

To address these knowledge gaps, we used publicly accessible
high-quality neuroimaging, genetic, and cognitive data from
1066 healthy participants of the Human Connectome Project
(HCP; https://www.humanconnectome.org/) to compute brain
regional AC and MC. We first sought to test the interscan reli-
ability of regional controllability in a subset of HCP participants
with repeat scans and then to evaluate the heritability of con-
trollability measures based on the HCP twin and sibling data.
The structural features and functional properties of the human
brain are known to be heritable (Blokland et al. 2012; Sinclair et
al. 2015; Strike et al. 2018). Thus, demonstrating that regional
controllability is also heritable is important for affirming its
biological relevance.

Further, in assessing the cognitive relevance of regional
controllability, we sought to test whether brain regions with
different controllability profiles are differentially located within
cognitive systems. The brain is functionally organized into

cognitive systems supported by spatially defined networks
(Fox et al. 2005; Power et al. 2011; Smith et al. 2009). Systems
mapping to the default mode, central executive and salience
networks are typically involved in diverse higher-order mental
functions (Doucet et al. 2011; Menon and Uddin 2010; Raichle
et al. 2001), while the auditory, visual, and sensorimotor
networks support specialized sensory and motor processing
(Damoiseaux et al. 2006; Smith et al. 2009). We would thus expect
that regions with high AC will be preferentially located within
higher-order cognitive systems where they could function to
facilitate transitions to diverse states associated with these
systems. Finally, we also sought to quantify the contribution
of regional controllability measures to interindividual variation
in higher-order cognitive functions in order to assess their
relevance for cognitive task performance.

Materials and Methods
Sample

We used neuroimaging, genetic, and cognitive data from 1066
healthy participants (490 men and 576 women; age range = 22–
37 years; mean age = 28.7 years) provided by the HCP (https://
db.humanconnectome.org/). The outline of the work flow is
shown in Figure 1. The reliability of the controllability mea-
sures was assessed using the intraclass correlation coefficient
(ICC) (Shrout and Fleiss 1979) using data from 44 HCP partic-
ipants (13 men and 31 women; age range = 22–35 years; mean
age = 30.4 years) who had two scans with an interscan interval of
2–11 months. Supplementary analyses were also conducted by
restricting the HCP sample to unrelated individuals only (n = 339)
to address confounds related to familiality.

Construction of the Structural Connectome

Details of acquisition and preprocessing protocols for diffusion
MRI (dMRI) in HCP have been provided in prior studies (Glasser
et al. 2013; Sotiropoulos et al. 2013; Van Essen et al. 2012) and are
also outlined in the Supplementary Material. In constructing the
structural connectome, we used an in-house image processing
pipeline that combines tools from DSI Studio (http://dsi-studio.
labsolver.org/) and validated custom routines written in MAT-
LAB (Mathworks) (Lee and Frangou 2017a, 2017b). The dMRI data
were reconstructed in DSI Studio using generalized q-sampling
imaging (GQI) (Yeh et al. 2010). GQI first reconstructs the spin
distribution functions (SDFs) within each voxel and computes
the quantitative anisotropy in native space. Whole-brain fiber
tractography was performed using a deterministic fiber tracking
algorithm that leverages information in SDFs (Yeh et al. 2013).
We generated a total of 1 000 000 whole brain streamlines for
each individual, with the anisotropy threshold of 0.05 and step
size of 0.9 mm, determined automatically in DSI Studio. The
angular threshold was 60◦. Fiber tracks with lengths less than
10 mm (approximately 35 000 tracks) were discarded to prevent
the tracking process from being overloaded with short associa-
tion fibers.

The areal parcellation was performed by warping the stan-
dard space to the subject space using the statistical paramet-
ric mapping nonlinear registration algorithm (Ashburner and
Friston 1999). We used a template derived from the automated
anatomical labeling template (Tzourio-Mazoyer et al. 2002) that
subdivides the brain into 512 cortical and subcortical regions
with approximately uniform volume as previously described
(Zalesky et al. 2010) (Supplementary Table S1). For each partici-
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Figure 1. Overview of the workflow. (a) We analyzed diffusion magnetic resonance imaging data obtained from 1066 healthy participants of the HCP. (b) Fiber
tractography was performed in each participant. The structural connectome was characterized using a parcellation of 512 brain regions. (c) A weighted structural
connectivity matrix of size 512 × 512 was constructed representing the streamline counts between pairs of regions. (d) Average (AC) and modal controllability (MC) at

each brain region were computed for each participant. (e) Test–retest reliability of regional AC and MC in a dataset of 44 HCP participants that had repeat scans was
assessed using the ICC. (f ) The heritability of regional AC and MC was computed. (g) Brain regions were clustered based on AC and MC measures. (h) Multivariate PLSs
was used to quantify the association between measures of regional controllability and multidomain cognitive measures.

pant, we generated a weighted, undirected structural connectiv-
ity matrix, A, each element of which, Aij, represents the number
of streamlines connecting any pair of regions i and j. We did not
binarize the structural connectivity matrix, A, since many real-
world networks, including human brain networks (Bassett and
Bullmore 2016), are better characterized by weighted graphs, in
which brain regions are represented by network nodes, and their
structural connections by weighted edges (Bassett et al. 2018).

Computation of Regional Average and Modal
Controllability

The procedures for computing regional controllability measures
have been previously detailed and are derived from established
mathematical formulations (Gu et al. 2015; Tang et al. 2017;
Wu-Yan et al. 2018). Specifically, the brain is represented as a
network of n nodes governed by the following noise-free, linear,
discrete-time, and time-invariant dynamics (Galan 2008; Honey
et al. 2009; Pasqualetti et al. 2014):

x (t + 1) = Ax(t) + Bu(t), (1)

where x(t) = {x1(t), . . . , xn(t)} denotes the state of nodes at time
t. The term A denotes a symmetric, weighted structural connec-
tivity matrix (of size n × n) in which element Aij represents the

number of white matter streamlines connecting nodes i and j.
The diagonal elements of A are set to zero (Aii = 0). To ensure
Schur stability, the matrix is divided by 1+ξ0 (A) , where ξ0 (A) is
the largest singular value of A. The term u(t)=

{
u1(t), . . . , up(t)

}
is referred to as the control energy and denotes a vector col-
lecting the p external inputs applied to the set of control nodes
indicated in B at time t. The input matrix B specifies the control
node(s) in the network, whose entry Bij is one, if the input uj(t)
affects the state xi(t), otherwise it is zero. According to the classic
Kalman rank condition (Chen 1999; Kalman 1963), the system
described by equation (1) is controllable if and only if

rank (C) = rank
([

B AB A2B . . . An−1B
]) = n, (2)

where C = [
B AB A2B . . . An−1B

]
is called the controllability

matrix (of size n × np) and has full row rank n. The controllability
of a network can be equivalently characterized by means of the
discrete controllability Gramian W, defined by

W =
∞∑

τ=0

AτBBT
(
AT

)τ

, (3)

where T denotes the transpose operation and τ indicates the
time step of the trajectory. The system is controllable if and
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only if W is positive definite or equivalently if the minimum
eigenvalue of W is strictly larger than zero (Chen 1999). We
chose to control nodes one at a time, and thus the input matrix
B in fact reduces to a one-dimensional vector, for example,
Bij = (1 0 0 . . . )T when the first brain region is the control node. In
general, the ease or difficulty of control is related to the structure
and eigenvalues of the controllability Gramian (Wu-Yan et al.
2018). Based on this theoretical foundation, the AC is computed
as the trace of the controllability Gramian matrix Wk,

ζ = Trace (Wk) , (4)

where Wk is the Gramian calculated from the node k and MC is
computed from the eigenvector matrix V = [vij] of the network
adjacency matrix A, defined by

φi =
∑

j

(
1 − ξ2

j (A)
)

v2
ij, (5)

as a scaled measure of the controllability of all N modes ξ1 (A),
. . . , ξN−1 (A) from brain region i.

We followed the procedures outlined above to compute the
AC and MC for each of the 512 brain regions in each participant.
Further, we confirmed the validity of these results (Supplemen-
tary Fig. S1), by comparing findings from the empirical data
to those obtained from null network models constructed by
randomly permuting the connection (edge) weights of the con-
nectivity matrix using either a strength- or degree-preserving
randomization scheme implemented in the Brain Connectivity
Toolbox (Rubinov and Sporns 2010).

Assessment of Heritability of Regional Controllability

Heritability estimates were calculated using Sequential Oli-
gogenic Linkage Analysis Routines software (Almasy and
Blangero 1998), which employs maximum likelihood variance
decomposition methods to determine the relative importance
of genetic and environmental influences by modeling the
covariance among family members as a function of genetic
proximity. Age, age2, sex, and their interactions (age × sex,
age2 × sex) were tested as covariates of interest by comparing
the likelihood of a model estimating the covariate effect to
the likelihood of a model where the covariate effect was
constrained to zero. See Supplementary Material for more
details.

Regional Controllability Profiles and Cognitive Systems

In order to evaluate the potential functional consequences of
the brain regional controllability, we tested whether regions that
differed in their controllability profile were differentially located
within known cognitive systems mapped to spatially defined
networks. Here, we focused on six large-scale networks, namely
the auditory (AUD), central executive (CEN), default mode (DMN),
salience (SAL), somatosensory (SMN), and visual (VIS) networks
which we defined using the template provided by Power and
colleagues (Power et al. 2011), which was originally derived from
the resting-state functional MRI data. We refer to these networks
as cognitive systems based on prior research which established
that the functional architecture of the brain at rest corresponds
to the functional networks mapped to cognitive domains in
activation studies (Cole et al. 2014; Smith et al. 2009). We

assigned each of the 512 brain regions to a single net-
work based on the closest Euclidian distance between each
region and the Power parcellation template (Supplementary
Table S2).

To identify clusters of regions with different controllability
profiles, we used data-driven hierarchical clustering using
Ward’s minimum variance method (Ward 1963) for Euclidean
distances between pairs of ranked controllability measures.
The optimal cluster number was determined using the Davies–
Bouldin (DB) index, which is the ratio of intracluster similarity
to intercluster differences for a given clustering solution (Davies
and Bouldin 1979). Lower DB index values indicate a better
clustering solution. We then computed the percentage of brain
regions in each cluster present from each of the six cognitive
systems. To correct for system size, we normalized the raw
percentage of brain regions located in a given cognitive system
by the total number of regions in a cognitive system. To confirm
the reproducibility of the findings, we repeated the analyses
using an alternative functional template provided by Yeo and
colleagues (Yeo et al. 2011).

Regional Controllability and Cognitive Function

We considered nine cognitive variables from the HCP database
that cover all aspects of cognition: crystallized cognition (NIMH
Toolbox Crystallized Cognition Composite), fluid intelligence
(Penn Matrix Test: Number of Correct Responses), working
memory (List Sorting Working Memory Test), sustained atten-
tion (Short Penn Continuous Performance Test Sensitivity and
Specificity), language comprehension (Picture Vocabulary Test),
cognitive flexibility (Dimensional Change Card Sort Scale Score),
inhibitory control (Flanker Inhibitory Control and Attention
Test), and emotion recognition (Penn Emotion Recognition:
Number of Correct Responses) (Supplementary Table S3).

We applied multivariate partial least squares (PLSs) to model
the associations between the cognitive variables detailed above
and regional average and MC (Krishnan et al. 2011; McIntosh
and Lobaugh 2004). PLS models the associations between two
sets of variables by means of latent variables (LVs) and was
chosen because it is a data-driven approach that has been
successfully used to identify associations between cognitive and
neuroimaging measures (Krishnan et al. 2011). The two main
advantages of PLS are its sensitivity in detecting subtle and
spatially distributed brain-cognition associations and its explicit
modeling of the effects of variables that are collinear or near-
linear, which is often the case with cognitive and brain imaging
measures.

The associations between cognition and AC or MC were
examined in two separate PLS analyses controlling for age and
sex or age2 and sex. The total brain volume was also entered as a
covariate in all models as it showed univariate correlations with
controllability measures at a nominal uncorrected significance
level. We created two controllability matrices: one for regional
AC and the other for regional MC (each controllability matrix:
size of 1066 × 512, representing, respectively, the number of
participants and the number of regions). We also constructed a
matrix for the cognitive data (cognitive matrix: size of 1066 × 9,
representing, respectively, the number of participants and the
number of cognitive variables included). The controllability and
cognitive data were z-scored across subjects prior to performing
the PLS analyses. We proceeded to compute the covariance
matrix between the controllability and cognitive matrices, and
then we decomposed the resulting covariance matrix into sets of
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Figure 2. Regional average (AC) and modal controllability (MC). The ranked mean value of the AC of each of the 512 brain regions in the (a) entire sample (n = 1066) and
in the (b) baseline and (c) repeat scans of a reproducibility subsample (n = 44). The ranked mean value of the MC of each of the 512 brain regions in the (d) entire sample
(n = 1066) and in the (e) baseline and (f ) repeat scans of a reproducibility subsample (n = 44). The ranked controllability values are projected onto the cortical surface for

ease of visualization. L: Left. Additional information is provided in Supplementary Figure S2 and Tables S4 and S5.

orthogonal LVs. Permutation testing and bootstrap resampling
were used to determine statistical significance for controllability
patterns and for the contribution of individual nodes to these
patterns, respectively. The significance of LVs was assessed
using permutation tests (1000 iterations) of the singular values
from singular value decomposition of controllability and cogni-
tive matrices. The reliability of each controllability estimate
to the LV was assessed using bootstrap resampling (3000
iterations). Bootstrapping also allowed us to estimate a bootstrap
ratio for each brain region, which is the ratio of the weight
of regional controllability over its estimated standard error,
where each ratio approximates a z-score for the contribution
of the controllability of each region to the association of interest
(Zimmermann et al. 2018). A high, positive bootstrap ratio indi-
cates that the corresponding region contributes positively and
reliably to the controllability–cognition relationship identified
by the LV correlation. In contrast, a high, negative bootstrap ratio
means that the corresponding region contributes negatively and
reliably to the controllability–cognitive relationship. For each
LV, we reported results with an absolute bootstrap ratio above
3, which corresponds to robustness at a confidence level of
approximately 99% (Garrett et al. 2013)

Results
Regional Average and Modal Controllability

Fig. 2a,d, respectively, show the AC and MC for each of the 512
regions averaged across 1066 participants (additional details in
Supplementary Fig. S2 and Tables S4 and S5). AC was highest
bilaterally in the medial prefrontal and anterior cingulate
gyri, the supplementary motor area, and the precuneus. MC

was highest bilaterally in the orbital prefrontal gyrus, the
somatosensory cortex, the supramarginal gyrus, the insula, the
medial temporal gyrus, and the thalamus. The results remained
the same when the analyses were restricted only to unrelated
study participants (Supplementary Fig. S3).

Reproducibility of Regional Controllability

Figure 2b-c,e-f , respectively, show the within-subject ICC of the
AC and MC for each of the 512 regions averaged across 44
HCP participants with two scanning sessions. The mean ICC for
regional AC and MC was, respectively, 0.71 ± 0.15 and 0.77 ± 0.09
(Supplementary Fig. 4). The ICC for AC was highest in the mid-
dle and inferior occipital gyri, the superior parietal gyrus, the
precuneus, and the middle temporal gyrus (additional details in
Supplementary Tables S6 and S7), and the ICC for MC was high-
est in the precuneus, the supplementary motor area, the inferior
and middle temporal gyri, the fusiform gyrus, and the inferior
parietal gyrus (additional details in Supplementary Tables S6
and S7).

Heritability of Regional Average and MC

Heritability estimates of AC and MC were generally high in
multiple cortical and subcortical regions (Fig. 3 and Supplemen-
tary Fig. S5). The thalamus, striatal regions, and ventral pre-
frontal regions had the highest values, while the lowest values
were noted in the medial superior frontal gyrus, the paracentral
lobule, the middle frontal gyrus, the postcentral gyrus, and
the supramarginal gyrus (additional details in Supplementary
Tables S8 and S9).
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Figure 3. Heritability of structural brain controllability. Heritability of (a) Average Controllability and (b) Modal Controllability for each of the 512 brain regions. L: Left.
Additional details are provided in Supplementary Figure S5 and Tables S8 and S9.

Regional Controllability Profiles and Cognitive Systems

Hierarchical clustering (Fig. 4a–d) identified two clusters of brain
regions: cluster 1 including regions with high AC and low MC
and cluster 2 comprising regions with low AC and high MC. As
shown in Figure 4e, regions with high AC/low MC were over-
represented in higher-order networks (DMN, CEN), while regions
with low AC/high MC were over-represented in lower-order net-
works (AUD, SMN) (χ2 = 41.1, P < 0.001). These findings remained
consistent when an alternative functional parcellation atlas was
used to define the cognitive systems (Supplementary Fig. S6).

Regional Controllability and Cognitive Function

The PLS model obtained for AC yielded two LVs, LV1 (P = 0.001,
50%) and LV2 (P = 0.001, 19%), which showed significant con-
tributions to the covariance (Fig. 5a–d and Supplementary Fig.
S7). The dominant LV1 exhibited positive weightings from all
of the cognitive variables (Fig. 5a). The corresponding AC profile
emphasized positive contributions primarily for the precuneus
and posterior cingulate gyrus and negative contributions for the
postcentral and supplementary motor area, the middle frontal,
and inferior parietal gyri (Fig. 5b; Supplementary Table S10). The
pattern for LV2 revealed smaller and more mixed associations
with the cognitive variables: the scores for crystalized cognition
and language comprehension showed negative weighting, while
the scores for cognitive flexibility, inhibitory control, sustained
attention, and emotion recognition showed positive weight-
ings (Fig. 5d). The corresponding AC profile highlighted positive
correlations from the anterior and middle anterior cingulate
gyri and negative contributions primarily from regions in the
motor and somatosensory cortex and the visual stream (Fig. 5d;
Supplementary Table S10). The results remained the same when
analyses were restricted only to unrelated HCP participants
(Supplementary Fig. S8).

The PLS model obtained for MC yielded two LVs, LV1 (P = 0.001,
48%) and LV2 (P = 0.012, 15%), which showed significant contri-
butions to the covariance (Fig. 5e–h and Supplementary Fig. S7).
The correlations of the cognitive variables with LV1 (Fig. 5e) and
LV2 (Fig. 5g) were the mirror image of those observed for the
respective LVs in the PLS for AC (Supplementary Table S11). For

the corresponding MC profile, the pattern of correlations with
LV1 (Fig. 5f ) and LV2 (Fig. 5h) identified similar brain regions to
those observed for the respective LVs in the PLS for AC (Sup-
plementary Table S11). The results remained the same when
analyses were restricted only to unrelated HCP participants
(Supplementary Fig. S8).

Discussion
The present study leveraged the data of the HCP to test the her-
itability and cognitive relevance of two regional metrics, AC and
MC, that quantify the influence individual brain regions might
be expected to have in facilitating or constraining transitions
between brain states based on their anatomical connectivity. We
demonstrated that the AC and MC of brain regions are reliable
and heritable properties of the human structural connectome
and are related to multidomain cognitive task performance.
We therefore argue that structural controllability measures pro-
vide a robust and biologically plausible mechanism for how
the human brain structural organization may shape individual
differences in brain function.

Reliability and Reproducibility of Brain Regional
Controllability

The application of a range of neuroimaging analyses has
increased the potential to yield novel metrics aiming to describe
the organizational properties of the brain. The reliability and
reproducibility of such measures are particularly important
when considering their biological plausibility and usefulness.
In this study, we showed high test-retest reliability of the AC
and MC in a subsample of participants with repeat scans. Our
results reinforce prior studies which found that the spatial
distribution of AC and MC shows remarkable consistency across
independent cohorts, MR acquisition parameters, and brain
parcellation methods (Cornblath et al. 2019; Gu et al. 2015;
Jeganathan et al. 2018). Across studies, the regions with the
highest AC reliably include the precuneus/posterior cingulate
gyrus, and the medial prefrontal/anterior cingulate cortex
(Cornblath et al. 2019; Gu et al. 2015; Jeganathan et al. 2018). We
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Figure 4. Regional controllability profiles and cognitive systems. (a) Dendrogram resulting from hierarchical clustering of 512 brain regions based on their AC and
MC. (b) A two-cluster solution was supported by the DB criterion. (c) Matrix of the controllability measures for the two-cluster solution (red and green). Each row is a
brain region and each column is a measure. (d) Violin plots of nodal AC and MC of the two different clusters. (e) Radar plots showing the percentage of brain regions
in each cluster localized in the cognitive systems. AUD, auditory network; CEN, central executive network; DMN, default mode network; SAL, salience network; SMN,

somatosensory network; VIS, visual network. L: Left.

note that these regions correspond to densely connected hubs
that form the core of the structural connectome (Hagmann et al.
2008). Similar interstudy reproducibility is noted for regions
showing high MC that consistently include the postcentral,
supramarginal, inferior parietal, and orbital and rostromedial
prefrontal regions, considered as nonhubs of the structural
connectome (Hagmann et al. 2008).

AC and MC Are Heritable

AC and MC showed substantial and largely bilaterally sym-
metric heritability for most brain regions, thus affirming their
biological relevance and supporting future investigations into
their molecular genetic correlates. The range of heritability esti-
mates for both types of controllability was generally higher
for subcortical regions and especially for the thalamus (range:
0.32–0.67) and the putamen (range: 0.21–0.60), followed by pre-
frontal regions for AC (range: 0.16–0.52) and posterior and sen-
sory regions (range: 0.04–0.51) for MC. These findings are aligned
with the range of values reported for other brain phenotypes.
In the HCP dataset, twin-based heritability estimates of corti-
cal thickness have been shown to range from nearly 0% for
orbitofrontal regions to 64% for the left superior frontal gyrus,
the left superior parietal cortex, and the right postcentral gyrus
(Strike et al. 2018). In a separate meta-analysis of twin studies
(Blokland et al. 2012), the heritability estimates were gener-
ally higher for subcortical volumes than for regional cortical
thickness, with the highest estimates (range: 78.4–81.6%) noted

for the putamen. The heritability estimates of controllability
were also comparable with those reported for brain topological
properties such as global efficiency (range: 0.52–0.64), clustering
coefficient (range: 0.47–0.59), and small-worldness (range: 0.51–
0.59) (Sinclair et al. 2015). These findings implicate genes or
genetic factors that influence variation in structural connectiv-
ity across multiple rather than discrete brain regions. This argu-
ment is similar to findings regarding the genetic architecture of
general intelligence versus that of discrete cognitive domains
(Bearden and Glahn 2017).

Regional Brain Controllability and Cognitive Systems

Using data-driven approach, we distinguished between a clus-
ter of regions with high AC/low MC and a cluster of regions
with low AC/high MC (Fig. 4). We hypothesized that regions
with high AC are likely to be control nodes in high-order sys-
tems where they are theoretically expected to play a crucial
role in “easing” transitions to the multiple brain states linked
with these systems. In line with this prediction, we note that
two known “flexible hubs” (Anderson et al. 2013; Cole et al.
2013; Crossley et al. 2013; van den Heuvel and Sporns 2013),
namely the medial prefrontal/anterior cingulate cortex and pre-
cuneus/posterior cingulate cortex, were assigned to the clus-
ter characterized by a high AC/low MC profile. Other regions
with high AC/low MC were also relatively over-represented in
higher-order systems and particularly the DMN and CEN. This
is consistent with prior evidence that these systems include a
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Figure 5. Regional controllability and cognitive function. AC (panels a–d): The PLSs model identified two significant LVs LV1 and LV2 which, respectively, accounts
for 50% and 19% of the covariance between AC and cognition. For each LV, (panels a and c) we show the correlations between AC scores and cognitive variables and
(panels b and d) we map the bootstrap ratios of the weights of AC of the corresponding regions. MC (panels e–h): The PLS model for MC identified two significant LVs

LV1 and LV2 which, respectively, account for 48% and 15% of covariance between MC and cognition. For each LV, (panels e and g) we show the correlations between
MC scores and cognitive variables and (panels f and e) we map the bootstrap ratios of the weights of MC of the corresponding regions. In all models, a region with
positive bootstrap ratio contributes positively to the controllability-cognition covariation, while a region with a negative bootstrap ratio contributes negatively to the

controllability-cognition covariation. Bootstrap ratios for all LVs were thresholded at bootstrap ratios| > 3, P < 0.01. The names of the cognitive variables as coded in the
HCP database are provided in Supplementary Table S3. L: left.

higher percentage of “flexible” brain regions whose functional
connectivity patterns can be rapidly updated to meet contex-
tual demands (Anderson et al. 2013; Cole et al. 2013; Crossley
et al. 2013; van den Heuvel and Sporns 2013). By contrast, brain
regions with low AC/high MC were over-represented in the low-
order sensory and motor systems (Fig. 4e). Regions within these
systems mostly have dense local connections consistent with
their known involvement in local, rather than wide-ranging
and circumscribed functions. Our findings suggest that a sub-
set of these regions has a high MC/low AC profile and thus
theoretically important in enabling these localized systems to
influence transitions to brain states beyond the boundaries of
their specialized functions.

Regional Brain Controllability and Individual
Variation in Cognition

The importance of regional AC and MC for individual variation
in cognitive task performance can be deduced from the pattern
of associations with cognition modeled by the dominant LVs
(LV1) in the PLS analyses for AC and MC. The PLS models for AC
and MC revealed, respectively, positive and negative associations
with individual variation in task performance across multiple
cognitive domains. Both PLS models reinforced the positive con-
tribution of regions with high AC/low MC to individual difference
in cognition.

In both PLS analyses, the second LV (LV2) revealed a mixed
pattern of positive and negative weightings indicative of a

dissociation between tests that map to specific, goal-directed
functions (working memory, inhibitory control, and cognitive
flexibility) (Stuss and Alexander 2000) and those that index
more global processes (composite crystalized cognition and
language comprehension). Of note, the pattern of correlations
for emotion recognition in the LV2 in both PLS analyses
followed that for executive functions; this is consistent with
recent meta-analyses that show convergence between the
superordinal networks for executive function and affect
processing, particularly in the anterior cingulate cortex and
portions of the visual cortex (Fusar-Poli et al. 2009; Lindquist
et al. 2016; Niendam et al. 2012).

Methodological Considerations

It is also important to acknowledge several methodological
limitations that could be addressed in future studies. Structural
connectivity in this study was estimated from dMRI data and
associated tractography algorithms using current standard
methods for mapping the structural connections of the human
brain (Stiso et al. 2018; Tang et al. 2017). This approach may
undersample long-range white matter tracts, particularly in
regions where fibers are densely populated, and show sharp
directional changes (Thomas et al. 2014). Emerging imaging
techniques such as diffusion spectrum imaging may improve
estimates of structural network architecture in future studies
(Baum et al. 2018; Betzel et al. 2016; Betzel et al. 2017; Gu
et al. 2015; Pestilli et al. 2014; Roalf et al. 2016). Evidence from

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhz293#supplementary-data
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this and previous studies suggests that average and MC may
increase during childhood and adolescence (Cornblath et al.
2019) and reaches a plateau in young adulthood. Larger studies
with more comprehensive coverage of the human lifespan are
needed to provide a definitive age-related trajectory of regional
controllability and its association with cognition. Future studies
involving functional MRI data will be important in elucidating
more precisely how different aspects of controllability con-
tribute to functional brain states and cognition.

In summary, we provide evidence that controllability that
models the dynamic properties of the brain as inferred from the
structural connectome is a biologically plausible metric that has
the potential to provide mechanistic insights into the relation-
ship between cognitive functions and the structural organiza-
tion of the human brain.

Supplementary Material
Supplementary material is available at Cerebral Cortex online.
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