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Abstract

Background: Rotator cuff tears are a common and frequent lesion especially in older patients. The mechanisms of
tendon repair are not fully understood. Common therapy options for tendon repair include mini-open or
arthroscopic surgery. The use of growth factors in experimental studies is mentioned in the literature. Nanofiber
scaffolds, which provide several criteria for the healing process, might be a suitable therapy option for operative
treatment. The aim of this study was to explore the effects of nanofiber scaffolds on human tendon derived
fibroblasts (TDF’s), as well as the gene expression and matrix deposition of these fibroblasts.

Methods: Nanofibers composed of PLLA and PLLA/Col-I were seeded with human tendon derived fibroblasts and
cultivated over a period of 22 days under growth-inductive conditions, and analyzed during the course of culture,
with respect to gene expression of different extra cellular matrix components such as collagens, bigylcan and
decorin. Furthermore, we measured cell densities and proliferation by using fluorescene microscopy.

Results: PLLA nanofibers possessed a growth inhibitory effect on TDF’s. Furthermore, no meaningful influence on the
gene expression of collagen I, collagen III and decorin could be observed, while the expression of collagen X increased
during the course of cultivation. On the other hand, PLLA/Col-I blend nanofibers had no negative influence on the
growth of TDF’s. Furthermore, blending PLLA nanofibers with collagen had a positive effect on the gene expression of
collagen I, III, X and decorin. Here, gene expression indicated that focal adherence kinases might be involved.

Conclusion: This study indicates that the use of nanofibers influence expression of genes associated with the extra
cellular matrix formation. The composition of the nanofibers plays a critical role. While PLLA/Col-I blend nanofibers
enhance the collagen I and III formation, their expression on PLLA nanofibers was more comparable to controls.
However, irrespective of the chemical composition of the fibres, the collagen deposition was altered, an effect
which might be associated with a decreased expression of biglycanes.

Background
The rotator cuff is a muscle coat that encloses the
shoulder and with its four parts, is responsible for the
movement and integrity of the glenohumeral joint.
Tears mainly occur in the supraspinatus tendon [1,2]. In
common literature, the frequency of rotator cuff tears in
anatomical studies varies between 17% and 72% [3,4].
The appearance of a rotator cuff lesion is related to and
increases with the patient’ age [5]. In 1911, E. A. Cod-
man published the first successful rotator cuff refixation
after open repair of a supraspinatus tendon using silk

sutures [6]. Compared to other injuries, rotator cuff
tears show no tendency towards healing, so that opera-
tive surgery is necessary in most cases. Rerupture due
to, osteoporoses, poor vascularization, degenerative
changings such as atrophy and fatty degeneration of the
muscle or the size of the original tear contribute to the
high failure rate [7-9]. Because of this, there is strong
clinical relevance towards methods which improve rota-
tor cuff tendon healing. It was also shown that rotator
cuff healing occurs by reactive scar formation rather
than regeneration of a histologically normal insertion
zone [10].
Tendons and ligaments are very similar connective tis-

sue. They are an essential component of the musculos-
keletal system. They provide stability and movement of
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joints. The strength of tendons and ligaments varies
depending on anatomic request and condition and they
are able to adapt to various conditions [11]. There are
few specific biochemical markers known for tendons
and ligaments [12,13].
The current literature provides promising results with

alternative methods for tendon repair using allogeneic
or xenogeneic grafts such as collagen-rich dermis and
small intestinal submucosa [14-17]. Besides tissue scaf-
folds the local application of growth factors such as
fibroblast growth factor-2 improves the rotator cuff
repair and accelerates the initial tendon-to-bone healing
[18,19]. Seeherman et al. showed that delivery of recombi-
nant human bone morphogenetic protein-12 (rhBMP-12)
in a collagen or hyaluronan sponge resulted in accelerated
healing of acute full-thickness rotator cuff repairs in a
sheep model [20].
In further studies, we showed that poly(l-lactic acid)

(PLLA) and collagen-I (Col-I) electrospun nanofibers are
applicable grafts for the reconstruction of large bony
defects by promoting growth and osteogenetic differen-
tiation of stem cells [21,22]. In this study we focused on
the effects of nanofiber scaffolds on human tendon
derived fibroblasts (TDF’s), gene expression and matrix
deposition of these fibroblasts.
Therefore, an ideal scaffold for tendon repair should

match several criteria. It has to be tolerated by the teno-
cytes, it must facilitate the colonialisation (promoting
either migration or proliferation of the cells) and
furthermore, it must enhance the formation of the extra
cellular matrix (ECM) during the healing process. Here,
scaffolds based on electrospun nanofibers, offer great
advantages. Such matrices show morphological similari-
ties to the natural ECM, characterized by ultrafine con-
tinuous fibers, high surface-to-volume ratio, high
porosity and variable pore-size distribution [23]. These
nanofibers can be produced by a broad spectrum of
polymers including biocompatible as well as biodegrad-
able polymers, such as poly(glycolic acid) (PGA), PLLA,
poly-ε caprolactone (PCL), polyurethanes, polyphospha-
zenes, collagen, gelatin, and chitosan as well as copoly-
mers from the corresponding monomers in various
compositions [24,25]. This allows the production of a
broad spectrum of nanofiber based scaffolds with differ-
ent mechanical and biophysical properties. Depending
on the polymer the nanofibers were tolerated by a vari-
ety of cell types including human mesencymal stem cells
(hMSC) and TDF’s.

Methods
Construction of nanofibers and characterization
A 4.5% (w/v) PLLA (Resomer L210, Boehringer Ingel-
heim Germany) solution in hexafluoroisopropanol
(HFIP) was prepared at room temperature by stirring

overnight until a homogenous solution was obtained.
Spinning process was performed at a flow rate of 14 μl/
min with an applied voltage of 10 - 18 kV and a dis-
tance of 15 cm.
The PLLA collagen-I (PLLA/Col-I) blend nanofibers

with a polymer ratio of 4:1 were fabricated as reported
earlier [22].
For cell culture experiments, all samples of nonwoven

nanofibers were prepared under aseptic conditions and
collected on 19 mm cover slips.
Static contact angles of water were measured using

the sessile drop method with a G10 Drop Shape Analy-
sis System (Krüss, Hamburg, Germany) and calculated
using Data Physics SCA20 Contact Angle Analyzer Soft-
ware. For scanning electron microscopy (SEM), samples
were splutter-coated with gold in an AUTO-306 (BOC
Edwards, Crawley, Sussex, U.K.) high-vacuum coating
system and examined in a SEM (S-4100, Hitachi Ltd.,
Tokyo, Japan) at an accelerating voltage of 5 kV in the
SE mode.

Human tendon derived fibroblasts: cell isolation and
culture
TDF’s were obtained from consenting patients with the
approval of the institutional review board. The indication
for surgery with tenotomy of the long biceps tendon was
instability of the tendon, tendonitis or incomplete rup-
ture of the long biceps tendon. The routinely removed
tendon was cut into pieces of approximately 5 mm and
subjected to collagenase digestion for a period of 30 min
at 37°C. After removal of the collagenase, pieces were
rinsed with phosphate puffered saline (PBS) and
explanted to culture flasks in Dulbecco’ modified eagles
medium (DMEM) containing 10% fetal calf serum (FCS)
and 1% penicillin/streptomycin. Within 1 week - when
cells migrated from the tendon and became attached to
the culture flask - tendon pieces were removed and the
cells were further cultured to confluence.
For experiments, TDF’s (passage 2) were seeded at a

density of 3 × 104 cells/cm2 on cover slips or cover slips
coated with either PLLA or PLLA/Col-I blend nanofi-
bers in growth medium (DMEM), with low glucose and
glutamine (PAA, Linz, Austria) supplemented with 10%
FCS from selected lots (Stem Cell Technologies, Van-
couver, Canada) and 1% penicillin/streptomycin. In
order to facilitate the deposition of collagen, 0.05 mM
ascorbic acid-2-phosphate was added to the medium.
The medium was replaced every second day of culture
during the experiments.

Vitality staining
Vitality staining was performed using fluoreszein-diazetat
(FDA). After 4 days of incubation, cover slips were
removed from culture, rinsed with PBS and stained with
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FDA at a concentration of 5 μg/mL. Fluorescence micro-
scopy was done using a Leica DM5000. Microphoto-
graphs of at least three different areas were made at a
primary magnification of 20 fold high power field (HPF).
Area of fluorescence was determined using Quips analy-
sis software.

Gene expression analysis
RNA was extracted from cell layers at days 4, 9 and 22
of culture using RNeasy Mini Kit (Qiagen GmbH, Hil-
den, Germany) according to the manufacturer and
quantified spectrometrically. The cDNA was synthesized
using Omniscript reverse transcriptase and oligo-dT pri-
mer in the presence of dNTP (Qiagen GmbH, Hilden,
Germany). Quantitative RT-PCR was performed and
monitored using a Mastercycler® ep realplex Detection
System (Eppendorf, Hamburg, Germany) and RealMa-
ster Mix CyberGreen (Eppendorf, Hamburg, Germany).
Genes of interest were analyzed in cDNA samples (5 μl
for a total volume of 25 μl/reaction) using DeltaDeltaCt
method and CyberGreen. Primers cycle temperatures
and incubation times for collagens I, III and X as well
as decorin and biglycan were published by Molloy et al.
[26]. Focal adhesion kinase-1 (FAK) was analyzed using
forward primer 5’ACC TCA GCT AGT GAC GTA
TGG -3’ and reverse primer 5’CGG AGT CCC AGG
ACA CTG TG 3’ (gen bank L0518666). For the protein-
tyrosine kinases (PYK) analyzation, the following pri-
mers were used: forward 5’CAG CAG TAC GCC TCG
CTC AG3’ and reverse 5’TCA GCC TCT GCT AGG
GAT GAG3’ (gen bank U3328466). Phosphoinosytol-3-
kinase (PI3K) was measured by using the forward pri-
mer 5’CCT GAT CTT CCT CGT GCTG CTC3’ and
reverse primer 3’ATG CCA ATG GAC AGT GTT CCT
CTT5’. Cyclin D 1 (CCND) was analyzed using forward
primers 5’ACG AAG GTC TGC GCG TGT T3’ and
reverse 5’CCG CTG GCC ATG AAC TAC CT3’ (Uni-
Gene Hs.523852).

Immunofluorescence microscopy of collagen I
Samples obtained at day 22 were fixed in aceton/metha-
nol, washed with PBS (3×), and exposed to blocking buf-
fer (1% donkey serum albumin PBS) for a further 30
min at room temperature in order to minimize non-spe-
cific absorption of the antibodies. After another wash in
PBS (3×), the cells were incubated with primary antibo-
dies against Col-I (Abcam, Ab6308, Cambridge, United
Kingdom).
Visualization was done after washing in PBS (3×) using

cy-3-conjugated secondary antibody (Dianova, Hamburg,
Germany) at room temperature (1 hour). The slices were
stained with DAPI (4.6-diamino-2-phenylindole) and
embedded in mounting medium. Fluorescence microscopy
was done using a Leica DM5000. Microphotographs of at

least three different areas were made at a primary magnifi-
cation of 20 HPF. Intensity of fluorescence was deter-
mined using Quips analysis software. Total cell count of
DAPI stained nuclei, were obtained.

Statistics
All values were expressed as mean ± standard error of
three different patients analyzed at least in duplicate and
compared using students’ t-test or ANOVA with Bon-
ferroni as a post hoc test. Values of p < 0.05 were con-
sidered to be significant.

Results
Characterisation of nanofiber scaffolds
Scanning electron microscopy PLLA nanofibers revealed
a 3-D non-woven network with a mean diameter of
0.754 ± 295 μm. Fibers were smooth in structure (figure
1A), and had a contact angle of 118.4°. In contrast,
blending with collagen I resulted in a decrease in fibre
diameter (0.238 ± 93 μm) (figure 1B). Furthermore, the
fibre scaffolds were more hydrophilic with a contact
angle of less then 30°.

Influence of PLLA and PLLA/Col-I nanofibers on cell
vitality and proliferation
In order to describe the biological effects, we first ana-
lyzed the effect of PLLA and PLLA/Col-I blend nanofi-
bers scaffold on the vitality of TDF’s. As shown in
figure 2, the presence of PLLA/Col-I nanofibers had no
effect on cell densities after 4 days of cultivation (p =
1.000). On the other hand, significantly less living cells
were detected on PLLA nanofibers at the same time
(p = 0.001). This was accompanied by a down regulation
of CCND (cyklin1D) gene expression (p = 0.001). CCND
promotes progression through the G1-S phase of the
cell cycle.

Influence of PLLA and PLLA/Col-I nanofibers on matrix
formation of hMSC
Fibroblast production and deposition of type I collagen
of TDF’s cultured on PLLA and PLLA/Col-I blend
nanofiber scaffolds was evaluated using time dependent
gene expression analysis after 4, 9 and 22 days of culti-
vation as well as immunofluorescence analysis after 22
days of culture. As shown in figure 3, the presence of
PLLA nanofibers had little effect on the expression of
collagen I gene compared to cover slip control. Conse-
quently, immunostaining of collagen I was similar to
that obtained on cover slip control. Although there was
a broad inter patient variability, the expression of col-
lagen-I increased about 37 times compared to controls
when TDF’s were cultured in the presence of PLLA/
Col-I blend nanofibers (p = 0.009). Although this
increase was not stable over time, immunostaining of
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collagen I was more compact in structure and more
intense in fluorescence compared to PLLA scaffolds or
cover slip control when analyzed after 22 days.
Although the PLLA nanofibers did not influence the

expression of collagen I gene, the presence of PLLA had
a notable impact on the deposition of collagen. While
TDF’s on glass deposited the collagen in fiber bundles,
on nanofibers the distribution was more equal (figure

3B-D) and similar to that obtained on PLLA/Col-I blend
nanofibers.
Due to the fact that during tendon repair, besides col-

lagen I, the collagens III and X have been reported to
play an important role and their gene expression was
analyzed in a time dependent manner as well (figure 4).
Similar to the gene expression of collagen I, the pre-
sence of PLLA nanofibers had only little effect on the

Figure 1 Fiber characterization. SEM analysis of PLLA (A) and PLLA/Col-I nanofibers (B).

Figure 2 Influence of PLLA and PLLA/Col-I nanofibers on growth of TDF’s. Area of FDA positive cells cultured over a period of 4 days (A)
and relative CCND expression (B). Immunofluorescence microphotographs of FDA staining of TDF’s cultured on glass (C), PLLA (D) and PLLA/Col-
I (E) nanofiber scaffolds.
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collagen III gene expression, while the presence of
PLLA/Col-I blend nanofibers resulted in a 5 to 100 fold
increase depending on the cells (p = 0.009). Further-
more, this increase was prolonged and detectable over
the whole period of culture (p = 0.038, day 9; p = 0.682,
day 22).
Focusing on the gene expression of collagen X, both

the presence of PLLA as well as PLLA/Col-I nanofibers
resulted in a stable up regulation of the observed time.
However statistical significance was reached only in case
of PLLA/Col-I nanofibers at day 4 of cultivation
(p = 0.021).
Due to the fact that besides collagen, glucosaminogly-

canes play an important role in tendon formation and
function, we analyzed the gene expression of decorin
and biglycan. As shown in figure 5, gene expression of
decorin showed a comparable pattern to the expression
of collagen I. Here, the initial increase on PLLA

nanofibers was about 2 fold and on PLLA/Col-I nanofi-
bers 4 fold, with statistical significance in case of PLLA/
Col-I (p = 0.010). Focusing on the expression of bigly-
can, different results were obtained. The presence of
nanofibers down regulated the gene expression irrespec-
tive of the nanofiber polymer composition. Significance
was reached only during late time of cultivation (PLLA
nanofibers: p = 0.031, day 9; p = 0.030, day 22; PLLA/
Col-I nanofibers: p = 0.004, day 22).

Influence of PLLA and PLLA/Col-I nanofibers on genes
associated with the integrin signalling pathway
Because elevated expression of integrins has been asso-
ciated with healing tendons [27] and ligaments [28] it is
likely that this signalling pathway is involved in the
effects elicited by nanofiber scaffolds - especially when
blended with collagen. Indeed, when cultured on these
nanofiber scaffolds we found an increased expression of

Figure 3 Influence of PLLA and PLLA/Col-I nanofibers on gene expression Col-I deposition of TDF’s. Time course of collagen-I gene
expression of TDF’s on nanofibers compared to cover slips control (A). Immunofluorescence microphotographs of Col-I (red) deposition after 22
days of culture cover slip control (B), PLLA nanofibers (C) and PLLA/Col-I nanofibers (D).
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FAK, PYK and phosphoinositide 3-kinase (PI3K) gene
(figure 6) compared to PLLA scaffolds or cover slip con-
trol. However we found no significance due to a broad
inter-patient variability.

Discussion
PLLA is a biocompatible, biodegradable and by the Food
and Drug Administration approved polymer [29,30]. In
bone reconstructive surgery it is commonly used in
pins, screws or membranes [31-34]. With respect to

tendon repair, Koh et al. used PLLA patches to repair
infraspinatus tears in a sheep model with good results
[35]. When electrospun to nanofibers, these scaffolds
were stable over a period of 30 days in aqueous solu-
tions [25,36] or in the presence of cells - although there
was some loss in maximum load and strain [36].
Furthermore, several cell types like neural stem cells

(NSCs) [37,38], osteoblast like cell lines [39-41],
endothelial cells [42] or mesenchymal stem cells [36]
can be cultured on PLLA nanofibers.

Figure 4 Influence of PLLA and PLLA/Col-I nanofibers on gene expression Col-I deposition of TDF. Time course of collagen-III (A) and
collagen-X (B) gene expression of TDF’s cultured on PLLA and PLLA/Col-I nanofibers as compared to cover slips control.
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In this study we first examined the ability of TDF’s to
grow on PLLA nanofiber scaffolds. Compared to glass
surfaces, a significantly reduced number of cells were
found. One reason might be that the high hydrophobic
surfaces of PLLA nanofibers prevent the cell attachment.
However, gene expression of CCND at this time point
decreased indicating that PLLA nanofibers influence the
proliferation of TDF’s. This suggestion is supported by

earlier studies using hMSC, where a decrease in mono-
clonal antibody Ki67 positive cells was detected com-
pared to glass surfaces [43,44].
This inhibitory effect of PLLA polymer [45,46] and

PLLA nanofibers [12] on cell densities was equalized
when PLLA was blended with collagen or gelatine. As
described for hMSC [22,47] we found no differences in
cell densities of TDF’s. This finding was accompanied

Figure 5 Influence of PLLA and PLLA/Col-I nanofibers on gene expression proteoglycanes. Time course of decorin (A) and biglycan
(B) gene expression of TDF’s cultured on PLLA and PLLA/Col-I nanofibers as compared to cover slips control.
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by a normalisation of CCND expression. If so, this
might indicate that the collagen component equalized
the negative effects of PLLA on proliferation.
With respect to tendon replacement, besides growth,

the formation of an extra cellular matrix plays an
important role. Therefore, an ideal scaffold should sup-
port the formation of collagen I, the main component of
the tendon, which is responsible for tensile strength
[37,48,49]. When TDF’s were cultured on PLLA/Col-I
nanofibers, gene expression as well as the deposition of
collagen I increased while the use of PLLA nanofibers
alone had no or only minimal effect. These findings
support earlier studies showing that PLLA/Col-I
blend nanofibers increase the collagen expression in
hMSC [22].
However, it is notable that the PLLA nanofibers influ-

ence the pattern of collagen deposition. The reason for
this is unclear but it can be speculated that there is a
link to the integrin pathway as seen in the expression of
integrin in osteoblasts or stem cells on different nanofi-
bers [50].
Within this context, the collagen integrin signalling

may play an important role. Although not significant is
that - due to broad inter-patient variability-TDF’s
expressed FAK, PYK and PI3K in higher levels when
cultured on PLLA/Col-I blend nanofibers compared to
PLLA nanofibers or glass surfaces. However, a part of
this effect could be imputed to the nano-structured

scaffold itself. In TDF’s [51] as well as in other cell
types, like osteoblasts [27], this effect was linked to
increased a2 and b1 as well as av and b3 integrins and
an up regulation of phospho-paxillin and phospho-FAK
in cell lysates compared to solid surfaces.
However, besides collagen I, other components of the

extra cellular matrix are important for a proper tendon
repair. With respect to scar formation, the collagens III
and X have been reported to play an important role
[52]. Especially collagen III is expressed in higher
amounts during tendon healing. This has implications
for the stability of repaired tendons [53,54]. Taking this
for granted, the PLLA/Col-I blend nanofibers have to be
seen critically due to their prolonged increase in col-
lagen III expression. Here, further studies are needed in
order to clarify whether this effect is compensated by
the collagen I production.
As well as these aspects, tendon formation depends on

the presence of proteoglycanes [55,56] which are
involved in the formation of collagen fibrils, especially
in the fibril diameter [49]. The different deposition pat-
tern of collagen observed on nanofiber scaffolds might
be associated with a down regulation of biglycan and
may result in weaker tendons. However, the interaction
between collagen I and biglycan is not yet completely
understood [57]. Therefore further studies were needed
in order to elucidate the interaction of nanofiber scaf-
folds and matrix formation.

Figure 6 Influence of PLLA and PLLA/Col-I nanofibers on gene expression genes involved in integrin signalling. Gene expression of FAK,
PYK and PI3K after 4 days of incubation PLLA and PLLA/Col-I as compared to cover slip control.
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Conclusion
Taken together, this study indicates that the use of
nanofibers influences the gene expression of genes asso-
ciated with the extra cellular matrix formation. Here,
the composition of the nanofiber plays a critical role.
While PLLA/Col-I blend nanofibers enhance the col-
lagen I and III formation, their expression on PLLA
nanofibers was more comparable to controls. However,
irrespective of the chemical composition of the fibres,
the collagen deposition was altered, an effect which
might be associated with a decreased expression of
biglycanes.
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