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Abstract Background: Both hypoxia and long non-coding RNAs (lncRNAs) contribute to
the tumor progression in hepatocellular carcinoma (HCC). We sought to establish a
hypoxia-related lncRNA signature and explore its correlation with immunotherapy
response in HCC.

Materials and Methods: Hypoxia-related differentially expressed lncRNAs (HRDELs)
were identified by conducting the differential gene expression analyses in GSE155505 and
The Cancer Genome Atlas (TCGA)- liver hepatocellular carcinoma (LIHC) datasets. The
HRDELs landscape in patients with HCC in TCGA-LIHC was dissected by an
unsupervised clustering method. Patients in the TCGA-LIHC cohort were stochastically
split into the training and testing dataset. The prognostic signature was developed using
LASSO (least absolute shrinkage and selection operator) penalty Cox and multivariable
Cox analyses. The tumor immune microenvironment was delineated by the single-sample
gene set enrichment analysis (ssGSEA) algorithm. The Tumor Immune Dysfunction and
Exclusion (TIDE) algorithm was applied to evaluate the predictive value of the constructed
signature in immunotherapeutic responsiveness.

Results: A total of 55 HRDELs were identified through integrated bioinformatical analyses
in GSE155505 and TCGA-LIHC. Patients in the TCGA-LIHC cohort were categorized into
three HRDELs-specific clusters associated with different clinical outcomes. The prognostic
signature involving five hypoxia-related lncRNAs (LINC00869, CAHM, RHPN1-AS1,
MKLN1-AS, and DUXAP8) was constructed in the training dataset and then validated
in the testing dataset and entire TCGA-LIHC cohort. The 5-years AUC of the constructed
signature for prognostic prediction reaches 0.705 and is superior to that of age, AJCC
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stage, and histopathological grade. Patients with high-risk scores consistently had poorer
overall survival outcomes than those with low-risk scores irrespective of other clinical
parameters status. The low-risk group had more abundance in activated CD8+ T cell and
activated B cell and were predicted to bemore responsive to immunotherapy and targeted
therapy than the high-risk group.

Conclusion: We established a reliable hypoxia-related lncRNAs signature that could
accurately predict the clinical outcomes of HCC patients and correlate with
immunotherapy response and targeted drug sensitivity, providing new insights for
immunotherapy and targeted therapy in HCC.

Keywords: hypoxia, lncRNA (long non-coding RNA), hepatocellular carcinoma, prognostic signature, tumor immune
microenvironment, immunotherapy response

INTRODUCTION

Liver malignancy is the sixth frequent malignant disease with a
growth of 905,677 new cases in 2020 and becomes the third
leading cause of tumor-associated death worldwide (Sung, et al.,
2021). Hepatocellular carcinoma (HCC) occupies nearly 90% of
patients with primary liver cancer (Forner, et al., 2018). Owing to
lacking apparent symptoms in the initial stage, many cases were
diagnosed in the advanced stage in HCC and lost the curative
surgeon opportunity. Targeted therapy such as sorafenib
represents the first-line strategy for advanced-stage cases.
However, the overall clinical outcomes are still far from
satisfactory owing to the emerged resistance of sorafenib (Zhu,
et al., 2017). In recent years, immunotherapy based on immune
checkpoint inhibitors has brought favorable treatment benefits in
several solid tumors (Darvin, et al., 2018), including
hepatocellular carcinoma (El-Khoueiry, et al., 2017).
Nevertheless, only a subgroup of HCC patients responded to
immunotherapy and most of them died of tumor recurrence and
metastasis. It is of paramount importance to explore new
prognostic biomarkers and potential predictors of
immunotherapeutic response for HCC.

Hypoxia is a specific feature in solid tumors (Pouysségur, et al.,
2006). Owing to the fast expansion of tumor cells and abnormal
vascularization, the tumor microenvironment suffers from
insufficient oxygen and nutrition. The hypoxia-inducible
factor-1 alpha (HIF-1α) signaling plays a momentous role in
the regulation of tumor development, metastasis, recurrence, and
drug resistance in the hypoxic tumor microenvironment (LaGory
and Giaccia, 2016; Rankin and Giaccia, 2016). HIF-1α can
enhance the stemness of HCC cell lines in hypoxia exposure,
and the knockdown of HIF1α in HCC cells can effectively
downturn the extracellular acidification rate under hypoxic
conditions (Ling, et al., 2020).

Evidence has suggested that lncRNAs are involved in the
dysregulation of gene expression and signaling pathways
closely linked to tumor initiation, progression, and distant
metastasis (Slack and Chinnaiyan, 2019). Recently, many
studies have revealed that lncRNAs also participate in the
hypoxia-response process of cancer cells (Choudhry, et al.,
2016; Huan, et al., 2020), and the interplay between hypoxia

and lncRNAs is connected with tumor aggression and metastasis
(Wang, et al., 2021). In HCC, hypoxia exposure promotes
epithelial-to-mesenchymal transition (EMT) and distant
metastasis of HCC cells with overexpression of lncRNA
AGAP2-AS1, while the knockdown of AGAP2-AS1 can
reverse the aggressive phenotype (Liu, et al., 2019). Thus, we
speculate that hypoxia-related lncRNAs tightly affect the
progression of HCC and have a substantial influence on the
clinical outcomes of HCC patients. Moreover, the hypoxic tumor
microenvironment can drive cancer cells to an immune resistance
phenotype and contribute to the resistance to immunotherapy
(Abou Khouzam, et al., 2020). To our knowledge, there is still a
lack of hypoxia-related lncRNAs signature that can accurately
predict the prognosis and immunotherapeutic responsiveness
in HCC.

In the current study, we sought to microdissect the hypoxia-
related lncRNAs landscape in HCC and establish a hypoxia-
related lncRNAs prognostic signature in HCC patients in the
TCGA-LIHC cohort. We also in-depth investigated the
association of the prognostic signature with tumor immune
infiltration pattern, targeted-drug sensitivity, and
immunotherapy response. Our findings may improve the
prognostic prediction and personalized treatment management
of immunotherapy in HCC.

MATERIALS AND METHODS

Data Preparation
The FPKM profiles of the transcriptome sequencing data of HCC
patients in the TCGA -LIHC cohort were publicly obtained from
TCGA database. We then transformed the FPKM values into the
log2-transformed TPM (Transcripts Per Million) values for
further analysis. The microarray dataset GSE155505 consisting
of human HCC cells treated with hypoxia or normoxia was
publicly obtained from Geo Expression Ombimus (GEO)
database.

The TCGA-LIHC project comprises 374 primary HCC tumor
samples and 50 normal specimens, and their clinical data were
publicly obtained from the cBioPortal database (Cerami, et al.,
2012). Patients were included in the present study based on the
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following criteria: 1) patients had the complete overall survival
(OS) time and status; 2) patients with OS time <30 days were
excluded for the reason that these patients probably died of other
coexisting diseases; 3) patients had detailed histopathological
grade information. In the end, 337 patients in the TCGA-
LIHC cohort match the above criteria, with a detailed list
shown in Supplementary Tables S1, S2. Particularly, Mx
denotes the uncertain status of the pathological metastasis and
it ranges from M0 to M1, and Nx represents the uncertain status
of the pathological nodes and it ranges fromN0 to N1. A previous
study (Hong, et al., 2021) merged the pathological M1 and Mx
(defined as M1+Mx) and established a nomogram to predict the
clinical outcomes of patients with HCC in TCGA-LIHC.
Analogously, we merged patients with pathological N1 and NX

(defined as pathological N+), and also merged patients with
pathological M1 and MX (defined as pathological M+),
respectively. All the 50 normal tissues were included to
conduct further differential gene expression analyses. The total
design of the current study was shown in Supplementary
Figure S1.

Identifying Hypoxia-Related Differential
Expressed lncRNAs
We utilized the “SeqMap” software (Jiang and Wong, 2008) to
re-annotate the lncRNA expression matrix in GSE155505
with the annotation file “gencode.v30. transcripts.fa”
(FASTA format, 03-April-2019), publicly obtained from
the “GENECODE” database (https://www.gencodegenes.
org/). The analyses of differentially expressed lncRNAs
(DELs) in GSE155505 and TCGA- LIHC datasets were
conducted by the R “limma” package (Ritchie, et al., 2015),
respectively. The criteria of DELs were set at |fold change| >1.
5 and corrected p-value < 0.05. HRDELs were identified as the
intersection of DELs in the GSE155505 and TCGA- LIHC
datasets.

Identification of HRDELs-Related HCC
Clusters With Different Clinical
Characteristics
All the 337 cases in the TCGA-LIHC project were
unsupervisedly clustered into different groups according to
the expression levels of HRDELs, using the “K-means”
method in the “ConsensusClusterPlus” package. The
“survival” package was employed to perform the survival
analysis among different HCC clusters. Kaplan-Meier
curves were plotted and the log-rank test was conducted to
determine the survival difference. We further analyzed the
correlation between the HRDELs-specific clusters and the
corresponding clinical characteristics of each patient with
HCC, including overall survival status, age, sex, Alpha-
fetoprotein (AFP) level, pathological T, pathological N,
pathological M, American Joint Committee on Cancer
(AJCC) stage, tumor histopathological grade, and
“Progressed (Yes/No)”.

Development of the HRDELs-Derived
Prognostic Signature
The prognostic signature was identified as the following steps:1)
337 cases in the entire TCGA-LIHC dataset were randomly
divided into a training dataset (236 cases) and another
independent testing dataset (101 cases) at the ratio of 7:3 via
the R package “caret”, and particularly the testing dataset was
only applied to verify the prognostic model; 2) Univariable Cox
analysis was employed to select for the prognostic lncRNAs in the
training dataset (p-value < 0.05); 3) The LASSO penalty Cox
regression was employed to remove the less contributive variables
via the “glmnet” package; 4) Stepwise multivariable Cox analysis
was utilized to develop an optimal signature according to the
minimal AIC (Akaike information criterion). The final risk score
formula is defined as follows: risk score � ∑n

i�1 expipcoefi,
where the expi represents the expression of the specific
prognostic lncRNA and the coefi represents its corresponding
multivariate Cox regression coefficient.

Evaluating and Validating the Prognostic
Signature
The risk scores of HCC patients in the training dataset (236
cases), independent testing dataset (101 patients), and the entire
TCGA-LIHC cohort (337 patients) were computed by the
constructed formula. We split HCC patients into different
hypoxia-related risk groups according to the optimal threshold
value estimated by the “survminer” package in R. Survival
analyses were carried out through the “survival” package, with
the survival difference determined by the log-rank test. The time-
dependent ROC (receiver operating characteristic) curve and the
AUCs (areas under the curve) methods were employed to judge
the prognostic value of the signature via the “timeROC” package.

Relationship Between the HRDELs-Derived
Signature and Clinical Characteristics
To further test the predictive ability of the HRDELs-derived
signature, the overall survival difference analysis between the
high-risk and low-risk group in the entire TCGA-LIHC cohort
was performed using the Kaplan-Meier curve and log-rank test,
according to different clinical subgroups including age (≥65 or
<65 years), sex (male or female), AFP level (high ≥400 ng/ ml or
low <400 ng/ ml), T (T1-2 or T3-4), M (M0 or M+), N (N0 or
N+), AJCC stage (stage Ⅰ-Ⅱ or stage Ⅲ-Ⅳ), tumor
histopathological grade (G1-2 or G3-4). In addition,
comparisons of the distribution differences of the hypoxia-
related risk groups among the different clinical characteristics
were also carried out.

Estimating the Independent Prognostic
Value of the HRDELs-Derived Signature
Univariable Cox analysis and multivariable Cox analysis were
carried out to identify whether the HRDELs-derived signature
served as an independent prognostic factor when adjusting for
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other clinical parameters. We further incorporated these
independent prognostic factors to construct a clinical
nomogram via the “rms” package. Calibration curves and
decision curve analysis (DCA) (Vickers and Elkin, 2006) were
utilized to evaluate the calibration and clinical net benefits of the
predictive model.

GOandKEGG function enrichment analysis.
Pearson correlation was applied to explore the coexpression genes
of the five key lncRNAs (LINC00869, CAHM, RHPN1-AS1,
MKLN1-AS, and DUXAP8), according to the threshold
standard of |r| > 0.3 and p < 0.05. Subsequently, GO and
KEGG function enrichment analyses of the above coexpression
genes were conducted to unravel the fundamental mechanism of
the five HRDELs via the R “clusterProfiler” package (Yu, et al.,
2012).

Somatic Variant Analysis
Somatic variants profiles calculated by the “Mutect2” software in
the TCGA-LIHC cohort were downloaded from the TCGA
database, and the “maftools” package (Mayakonda, et al.,
2018) was employed to analyze and visualize the somatic
variant landscape.

GSEA
We conducted differential gene expression analyses between
the hypoxia-related high- and low-risk groups in the TCGA-
LIHC cohort by the “limma” package (Ritchie, et al., 2015).
All genes were ranked as a gene list according to their log2
fold change (log2FC) value. GSEA (gene set enrichment
analysis) (Subramanian, et al., 2005), which calculates the
enrichment score and the corresponding adjusted p-value of a
predefined gene set according to the pre-ranked gene list
based on transcriptomic expression profiles, was employed to
determine the differently enriched pathways in hallmark gene
sets (“h.all.v7.4. entrez.txt”) and KEGG pathways gene sets
(“c2. cp.kegg.v7.4. entrez.txt”) publicly downloaded from the
MsigDB database (Liberzon, et al., 2015) (http://www.gsea-
msigdb.org/gsea/msigdb) via the R “clusterProfiler” package
(Yu, et al., 2012). A set value of adjusted p-value <0.05
represents a statistical significance.

Analyzing the Landscape of Tumor Immune
Microenvironment
The single-sample gene set enrichment analysis (ssGSEA)
(Yi, et al., 2020), which can estimate the relative score of a
specific type of immune cell at the level of a single sample, was
utilized to evaluate the relative abundance of 28 immune cells
according to the specific gene signatures curated from the
previously published literature (Charoentong, et al., 2017) via
the R package “GSVA”. The ssGSEA is a popular
bioinformatics algorithm, which was extensively utilized in
cancer-related studies (Liu, et al., 2021a; Liu, et al., 2021b;
Liu, et al., 2021c; Liu, et al., 2021d; Liu, et al., 2021e; Liu, et al.,
2021f; Liu, et al., 2021g).

Correlation Between HRDELs-Derived Risk
score and Stemness, HIF-1A mRNA Level,
and Immune Checkpoint Expression.
RNAss (RNA-based stemness scores) and DNAss (DNA
methylation-based stemness scores) of HCC patients in the
TCGA-LIHC cohort were publicly downloaded from the
UCSC Xena database (https://pancanatlas.xenahubs.net),
curated by the previously published literature (Malta, et al.,
2018). Correlations between HRDELs-derived risk score and
stemness, HIF-1A mRNA expression (representing the HIF-1α
mRNA level), and immune checkpoint expression for each HCC
patient were examined by Pearson correlation analysis,
respectively.

Prediction of Immunotherapy
Responsiveness and Targeted Drug
Sensitivity
Prediction of immunotherapy response in HCC patients was
conducted using the TIDE (Tumor Immune Dysfunction and
Exclusion) method (http://tide.dfci.harvard.edu/) (Jiang, et al.,
2018). Drug sensitivities for HCC patients were estimated via the
Genomics of Drug Sensitivity in Cancer (GDSC) database (Yang,
et al., 2013). Drug sensitivity was assessed according to the IC50

(half-maximal inhibitory concentration) values of HCC patients
estimated by the “pRRophetic” package (Geeleher, et al., 2014).

Statistical Analysis
R software was employed to conduct the statistical analyses.
Continual variable differences between the two groups were
determined by the Wilcoxon test. Comparisons among more
than two groups were performed by the Kruskal-Wallis test. The
frequency differences in category variables were examined via the
chi-square test or Fisher’s exact test. Survival differences were
determined by the log-rank test. A threshold of two-sided p-value
< 0.05 was set to indicate statistical significance. For multiple
testing, the Benjamini–Hochberg method was employed to
correct the p-value.

RESULTS

Identification of the HRDELs in HCC
A previous study has established a hypoxia-related gene signature
from public datasets consisting of hypoxia and normoxia HCC
cells to predict the diagnosis and prognosis of HCC patients
(Zhang, et al., 2020). Analogously, by conducting differential gene
expression analyses between the hypoxia and normoxia HCC
cells in GSE155505, we acquired 2312 DELs (|fold change| > 1.5
and adjusted p-value < 0.05) and defined them as HCC-specific
hypoxia-related lncRNAs (Supplementary Table S3), including
1249 up-regulated and 1063 down-regulated lncRNAs
(Figure 1A). With the same threshold criteria in the TCGA-
LIHC cohort, we obtained 926 DELs (829 up-regulated and
97 down-regulated lncRNAs) in HCC tumor tissues compared
with normal samples (Figure 1B; Supplementary Table S4). To

Frontiers in Genetics | www.frontiersin.org November 2021 | Volume 12 | Article 7851854

Tang et al. Hypoxia-Related lncRNA Signature in HCC

http://www.gsea-msigdb.org/gsea/msigdb
http://www.gsea-msigdb.org/gsea/msigdb
https://pancanatlas.xenahubs.net/
http://tide.dfci.harvard.edu/
http://www.baidu.com/link?url=eFjFvPOVgXCGst92uRF-4rREfGu-yirnc18Rs8nPM8evDCh1nVSPCIToEZnxLcrRmAzrOuU97mTt2pGrpv5lF9VaewkMgqYPtDWpGh206tVS4GTB5uwLJtBHOzMf6j2W
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


further select the most contributive hypoxia-related lncRNAs in
the carcinogenesis of HCC, we obtained a total number of 55
HRDELs by intersecting the HCC-specific hypoxia-related
lncRNAs in GSE155505 with the DELs in TCGA-LIHC
(Figure 1C; Supplementary Table S5). Of note, the majority
of those HRDELs possessed elevated expression levels not only in
hypoxia-treated HCC cells in GSE155505 (Supplementary
Figure S2) but also in the HCC tumor tissues in TCGA-LIHC
(Figure 1D), indicating that the above 55 HRDELs substantially
contribute to the tumorigenesis of HCC.

Microdissection of the HRDELs-Related
Clusters in HCC
The HRDELs landscape in patients with HCC in the TCGA-
LIHC cohort was microdissected by unsupervised clustering
according to the expression levels of the 55 aforementioned
HRDELs, via the “K-means” algorithm in the
“ConsensusClusterPlus” package. We selected 3 as the optimal
k value because that the k value of 3 could simultaneously possess

a high cumulative distribution function (CDF) value and a clear
separation of the consensus matrix (as shown in Figure 2A;
Supplementary Figures S3A–D). Therefore, all cases were
assigned into three groups according to the unsupervised
clustering results (Figure 2A). In brief, cluster 1, cluster 2, and
cluster 3 include 83, 181, and 73 cases, respectively
(Supplementary Table S6). Cluster2 showed the lowest
mRNA expression level of HIF1A compared with cluster 1
(Figure 2B, p � 2.7e−09) and cluster 3 (p � 0.0043). Notably,
there were significant OS differences among the three clusters
(Figure 2C, global p � 3.76e−07). Cluster 2 possessed a longer
median OS time than cluster 1 (p � 2.107e−08) and cluster 3 (p �
0.011), while there was no significant OS difference between
cluster 1 and cluster 3 (p � 0.051). Survival analysis also showed
that cluster 2 exhibited better disease-free survival (DFS)
outcomes (Figure 2D, global p � 0.001) than cluster 1 (p �
4.41e-04) and cluster 3 (p � 0.015), whereas no statistical
significance was shown between cluster 1 and cluster 3 (p �
0.493). These results indicate that cluster 2 with the lowest HIF1A
mRNA expression level represents the least hypoxic exposure in

FIGURE 1 | Identification of HRDELs in HCC. Volcano plots for DELs in GSE155505 (A) and TCGA-LIHC cohort (B). (C) Venn diagram of hypoxia-related lncRNAs
from GSE155505 and TCGA-LIHC cohort. (D)Heatmap of the expression levels of 55 HRDELs between HCC tumor and adjacent normal tissues in TCGA-LIHC cohort.
HRDELs: hypoxia-related differentially expressed lncRNAs. DELs: differentially expressed lncRNAs. HCC: hepatocellular carcinoma. TCGA: The Cancer Genome Atlas.
LIHC: liver hepatocellular carcinoma.
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HCC and has the best survival outcomes. Thus, we conclude that
the hypoxia-related lncRNA landscape indeed correlates with the
clinical outcomes of HCC patients.

Clinical Correlation Analysis of
HRDELs-Related Clusters
We further comprehensively analyzed the association of the
HRDELs-related clusters and clinical characteristics in the
TCGA-LIHC cohort. Results showed that there were
significant distributive differences in overall survival status,
pathological T, AJCC stage, and “Progressed (Ye/No)” among
HRDELs-related clusters (Figure 3A). Cluster 2 has a lower death
rate of patients with HCC (25%) compared to cluster1 (53%), and

cluster3 (40%), as shown in Figure 3B (p � 5.1e−05). Cluster 2
had a higher proportion of patients with pathological T1 (65%),
stage Ⅰ (65%), and “Progressed (No) (49%)” than cluster 1 (42, 45,
and 31%, respectively) and cluster 3 (21, 20, and 37%,
respectively), as shown in Figures 3C–E. The above evidence
suggests that HRDELs-related clusters are closely associated with
tumor progression in HCC.

Construction of the HRDELs-Derived
Prognostic Signature
All 337 patients in the TCGA-LIHC cohort were randomly
assigned into the training dataset (236 cases) and the testing
dataset (101 cases). The prognostic signature was developed in

FIGURE 2 | Microdissection of the hypoxia-related lncRNA landscape in TCGA-LIHC cohort. (A) the Consensus matrix plot of HCC patients by unsupervised
clustering (K-means method) according to the expression levels of 55 HRDELs, when k � 3 representing the optimal cluster number. (B) Comparison of HIF1A mRNA
expression among the HRDEL-specific clusters. (C)Overall survival difference and (D) DFS difference among hypoxia-specific clusters. HCC: hepatocellular carcinoma.
HRDELs: hypoxia-related differentially expressed lncRNAs. DFS: disease-free survival.
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the training dataset. We utilized the univariable Cox regression to
yield 21 significant prognostic hypoxia-related lncRNAs
(Figure 4A). Subsequently, 10 prognostic lncRNAs were
retained after filtering the variables by LASSO penalty Cox
analysis according to the “lambda. min” standard (Figures
4B,C; Supplementary Table S7). Furthermore, the stepwise
multivariable Cox regression model was employed to establish
the optimal signature (Figure 4D; Supplementary Table S8).
Ultimately, five hypoxia-related lncRNAs were selected and
incorporated into the final model: risk score �
0.26120*LINC00869 expression+0.37141*CAHM
expression+0.28394*RHPN1-AS1 expression +0.48183*
MKLN1-AS expression +0.49900*DUXAP8 expression.

Evaluating and Validating the Performance
of the Prognostic Signature
Applying the above formula, we computed the hypoxia-related
risk score for each patient in the training dataset (Supplementary

Table S9). All these cases were assigned into a high-risk (71
patients) or low-risk group (165 patients) based on the optimal
threshold value (2.3033). The high-risk group showed an adverse
prognosis compared with those in the low-risk counterpart (p <
0.001, Figure 5A). The AUCs of the risk scores for the 1-, 3-, and
5-years survival predictions were 0.746, 0.702, and 0.726
(Figure 5D), respectively, indicating a good predictive value.
We further tested the prognostic model in the testing dataset
(Supplementary Table S10) and the entire TCGA-LIHC dataset.
With the same threshold, cases in the testing dataset and the
entire TCGA-LIHC dataset were assigned into different hypoxia-
related risk groups, respectively. Analogously, the high-risk group
consistently showed a poorer clinical outcome than the low-risk
group, with p � 0.002 in the testing dataset (Figure 5B) and p <
0.001 in the entire TCGA-LIHC dataset (Figure 5C), respectively.
The AUCs for the 1-, 3-, and 5-years prognostic prediction in the
testing dataset were 0.755, 0.684, and 0.686, respectively
(Figure 5E), and the AUCs of the entire TCGA-LIHC cohort
were 0.746, 0.697, and 0.712 for 1-, 3-, and 5- year survival

FIGURE 3 | Clinical correlation analysis of HRDELs-specific clusters in TCGA-LIHC cohort. (A) Distribution landscape of HRDELs-specific clusters among clinical
characteristics. Comparison of distribution difference of overall survival status (B), pathological T (C), AJCC stage (D), and “Progressed (Yes/No)” (E) among HRDELs
-specific clusters. HRDELs: hypoxia-related differentially expressed lncRNAs. AJCC: American Joint Committee on Cancer. ***, p < 0.001; **, p < 0.01; *, p < 0.05.
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prediction, respectively (Figure 5F). These results demonstrate
the robustness and reliability of the prognostic signature.

We further sought to search for an external validation dataset
in the International Cancer Genome Consortium (ICGC)

database or GEO database, but unfortunately, there was no
other public dataset of HCC patients with matched lncRNA
expression profiles and complete survival information. Finally,
we chose the HCC dataset GSE14520-GPL3921 as the external

FIGURE 4 | Construction of hypoxia-related lncRNA signature in the training dataset. (A) Forest plot of 21 significant prognostic lncRNAs determined by the
univariate Cox regression. (B) LASSO penalty coefficients of the above 21 prognostic lncRNAs. (C)Cross-validation of the LASSOCox regression model, the left vertical
dashed line represents the “lambda. min” standard. (D) Forest plot of the optimal model determined by the stepwise multivariate Cox analysis according to the minimal
AIC value (783.95). LASSO: least absolute shrinkage and selection operator. AIC: Akaike information criterion. ***, p < 0.001; **, p < 0.01; *, p < 0.05.
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FIGURE 5 | Identification and validation of the hypoxia-related lncRNAs signature. Kaplan-Meier curves and log-rank test p-value of the training dataset (A), testing
dataset (B), and entire TCGA-LIHC cohort (C), respectively. The AUCs of the time-dependent ROC curves for the training dataset (D), testing dataset (E), and entire
TCGA-LIHC cohort (F), respectively.
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FIGURE 6 | Identifying the hypoxia-related lncRNA signature as an independent prognostic factor. Forest plot of the corresponding p-values of the univariate Cox
regression analysis (A) and multivariate Cox regression analysis (B). Comparisons of the expression levels of CAHM (C), DUXAP8 (D), LINC00869 (E), MKLN1-AS (F),
and RHPN1-AS1 (G) between HCC tumor and adjacent normal tissues in TCGA-LIHC cohort. TCGA: The Cancer Genome Atlas. LIHC: liver hepatocellular carcinoma.
***, p < 0.001; **, p < 0.01; *, p < 0.05.
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FIGURE 7 | (A) Distribution landscape of the hypoxia-related risk groups among clinical parameters and the heatmap of the expression levels of the five key
lncRNAs in HCC patients in the TCGA-LIHC cohort. The color blue denotes a low expression level and red represents a high expression level. (B) AUCs of the time-
dependent ROC curves for risk score, HIF1A mRNA expression, age, stage, and tumor grade in HCC patients. (C) AUCs for the 5-years prognostic prediction of risk
score, HIF1A mRNA expression, age, stage, and tumor grade in HCC patients. AUC: area under the curve. ROC: receiver operating characteristic curve. HCC:
hepatocellular carcinoma. ***, p < 0.001; **, p < 0.01; *, p < 0.05.
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validation dataset and re-annotated all the probe sequences using
the “SeqMap” software to obtain the lncRNA expression profiles.
However, only three lncRNAs (LINC00869, RHPN1-AS1, and
MKLN1-AS) in the hypoxia-related lncRNA signature were re-
annotated in GSE14520-GPL3921 and thus we had to calculate
the risk score through the following formula: risk score �
0.26120*LINC00869 expression+0.28394*RHPN1-AS1
expression + 0.48183* MKLN1-AS expression. GSE14520-
GPL3921 comprises 225 HCC tissues and 220 non-tumor
specimens, and 221 tumor samples with detailed survival data
were enrolled as the validation dataset. We calculated the risk
score for each HCC patient (Supplementary Table S11) and
categorized patients into different risk groups based on the
optimal threshold (9.753). In the same manner, Kaplan-Meier
curves demonstrated that patients in the high-risk group had
poorer clinical outcomes than those in the low-risk counterpart
(Supplementary Figure S4A, p � 0.032). ROC analyses showed
that The AUCs for the 1-, 3-, and 5-years prognosis prediction
were 0.510, 0.570, and 0.534, respectively (Supplementary Figure
S4B). The unsatisfactory AUC values in GSE14520-GPL3921
might be caused by the lack of expression profiles of CAHM
and DUXAP8, and further complete external validation will still
be needed in the future. Collectively, the external validation
results further confirmed that the hypoxia-related lncRNA
signature was closely associated with adverse clinical outcomes
in HCC.

Subgroup Survival Analysis of the
HRDELs-Derived Signature
We further stratified the entire TCGA-LIHC cohort into different
subgroups according to the clinical characteristics including age
(≥65 or <65 years), sex (male or female), AJCC stage (stage Ⅰ-Ⅱ or
stage Ⅲ-Ⅳ), pathological T (T1-2 or T3-4), pathological M (M0
or M + ), pathological N (N0 or N+), tumor histopathological
grade (G1-2 or G3-4), AFP level (high ≥400 ng/ml or low
<400 ng/ ml). Strikingly, patients with high-risk scores
consistently had poorer clinical outcomes than those with low-
risk scores, no matter which subgroups they are in
(Supplementary Figures S5–S7). This further confirms the
reliable prognostic value of the hypoxia-related lncRNA
signature in predicting the clinical outcomes of patients
with HCC.

Identifying the Independent Prognostic
Value of Hypoxia-Related lncRNA Signature
Univariable and multivariable Cox analyses consistently
demonstrated that hypoxia-related risk scores and the AJCC
stage were independent prognostic indicators in HCC (Figures
6A,B). Moreover, the risk score was tightly associated with
pathological T, AJCC stage, and “Progressed (Yes/No)”
(Figure 7A). The high-risk group has a higher proportion of
patients with T3-4, stage Ⅲ-Ⅳ, and “Progressed (Yes)” than the
low-risk counterpart (Supplementary Figures S8A–C). Time-
dependent ROC illustrates that the 5-years AUC of hypoxia-
related risk scores for the prognostic prediction reaches 0.705 and

is superior to that of age, AJCC stage, pathological grade, and
HIF1A mRNA expression (Figures 7B,C), indicating the good
performance of the hypoxia-related lncRNA signature.
Furthermore, The five lncRNAs in the prognostic signature
(CAHM, DUXAP8, LINC00869, MKLN1-AS, and RHPN1-AS1),
all had a significantly higher expression level in HCC tumor
samples than normal samples in the TCGA-LIHC cohort
(Figures 6C–G), implying that they probably act as oncogenic
lncRNAs in the tumorigenesis of HCC.

Construction of a Clinical Nomogram to
Improve Prognostic Prediction
To test the clinical practicability of the hypoxia-related lncRNA
signature, the two independent prognostic indicators yielded by
the multivariable Cox analyses, hypoxia-related risk score and
AJCC stage, were incorporated to develop a hybrid nomogram to
facilitate the prognostic prediction. Patients were given a total risk
score based on each factor level in the nomogram (Figure 8A).
Statistical analysis showed that the concordance index (C-index)
of the nomogram reached 0.718 (95% confidence interval:
0.666–0.770). Calibration curves showed that the nomogram-
predicted OS probability was consistent with the observed OS
probability (Figure 8B). DCA curves further suggested that the 5-
years clinical net benefit of the combined nomogramwas superior
to that of other individual models (Figure 8C).

Functional Annotation of Five Key
Prognostic lncRNAs in HRDELs-Derived
Signature
To investigate the underlying mechanism of the signature, we
used the Pearson correlation analysis to select potential targeted
genes of the five key lncRNAs. We finally obtained 1678, 3427, 79,
6720, and 3359 coexpression genes for CAHM, DUXAP8,
LINC00869, MKLN1-AS, and RHPN1-AS1, respectively (|r| >
0.3 and p < 0.05). These corresponding coexpression genes for
each key lncRNA were subjected to GO and KEGG function
enrichment analysis. With the GO biological process (BP) term
enrichment, four of the five key lncRNAs except for LINC00869
were consistently enriched in the tumor proliferation process
including DNA replication, RNA splicing, nuclear division,
mitotic nuclear division, and nuclear transport (Figure 9A).
We also noticed that LINC00869 had a significant enrichment
in “mitochondrial gene expression,” and “mitochondrial
respiratory chain complex assembly” (Figure 9A), suggesting
that LINC00869 was closely related to mitochondrial energy
metabolism. For the KEGG pathway, CAHM, DUXAP8,
MKLN1-AS, and RHPN1-AS1 were all enriched in these
tumor proliferation-related pathways such as Spliceosome, Cell
cycle, DNA replication, and RNA transport (Figure 9B),
suggesting their important role in the tumorigenesis. However,
there was no significantly enriched KEGG pathway associated
with LINC00869. Owing to the fewer coexpression genes for
LINC00869 in HCC tissues, we further compared the expression
level of LINC00869 between the HCC tumor samples and non-
tumor samples in GSE14520-GPL3921. Notably, LINC00869 also
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FIGURE 8 | Construction of a clinical predictive nomogram to improve the prognostic prediction in HCC. (A) The hybrid nomogram combining the hypoxia-related
risk score with the AJCC stage. Patients were given a total risk score based on each factor level in the nomogram. (B) Calibration curves show the consistency between
the nomogram-predicted OS probability and the observed OS probability. (C)DCA curves illustrate the 5-years clinical net benefit of the combined nomogram compared
with other individual models. HCC: hepatocellular carcinoma. OS: overall survival. DCA: decision curve analysis.
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FIGURE 9 | Functional annotation of CAHM, DUXAP8, LINC00869, MKLN1-AS, and RHPN1-AS1. Significantly enriched terms in the GO biological process terms
(A) and KEGG pathway (B), according to the corresponding coexpression genes of the above five key lncRNAs. GO: Gene Ontology. KEGG: Kyoto Encyclopedia of
Genes and Genomes.
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FIGURE 10 | Somatic variants analysis of patients in TCGA-LIHC cohort. (A) Somatic variants landscape of the top 20 frequently mutational genes in the two risk
groups. (B)Comparison of mutational frequency differences of TP53 between hypoxia-related high-risk and low-risk groups. (C) Survival analyses of the different clinical
subgroups stratified by TP53 status and hypoxia-related risk score. TP53-MUT: TP53-mutant. TP53-WT: TP53-wild type. H-risk score: high-risk score. L-risk score:
low-risk score.
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possessed a significantly higher expression level in tumor tissues
in comparison with non-tumor tissues (Supplementary Figure
S8D, p � 4.964e−20), confirming the critical role of LINC00869 in
the carcinogenesis of HCC. We speculate that the reason for the
fewer coexpression genes may be due to the unique expression
pattern and molecular mechanism of LINC00869, and this
phenomenon is worth further study.

Distinct Molecular Patterns Among the
Hypoxia-Related Risk Groups
On account of the significant survival difference between the two
groups, GSEA was performed to elucidate the underlying
molecular mechanism. With the hallmark gene sets, the high-
risk group possessed significantly enriched scores in the “G2M_
CHECKPOINT,” “MITOTIC_SPINDLE,” “PI3K_AKT_MTOR_
SIGNALING,” “WNT_BETA_CATENIN_SIGNALING,” and
“EPITHELIAL_MESENCHYMAL_TRANSITION” pathways
which were strongly associated with tumor cell proliferation
and aggression (Supplementary Figure S9A). In particular,
the “HALLMARK_HYPOXIA” pathway was also significantly
enriched in the high-risk cohort, confirming a strong correlation
between the hypoxia-related lncRNA signature and hypoxic
exposure in HCC. In the case of the KEGG pathway gene sets,
the high-risk cohort displayed significantly enriched scores in the
“CELL_CYCLE,” “SPLICEOSOME,” “PATHWAYS_IN_
CANCER,” and “ADHERENS_JUNCTION” pathways
(Supplementary Figure S9B). Furthermore, the high-risk
cohort showed a higher level of the RNAss (RNA-based
stemness scores), DNAss (DNA methylation-based stemness
scores), and HIF1A expression level compared with the low-
risk counterpart (Supplementary Figures S10A–C). The
hypoxia-related risk score also had a significant positive
correlation with RNAss, DNAss, and the HIF1A mRNA
expression level (Supplementary Figures S10D–F), supporting
the pivotal role of hypoxia in promoting the stemness in HCC.
Collectively, the hypoxia-related lncRNA signature indeed
reflects the hypoxic exposure in HCC, and hypoxia-related
lncRNAs also contribute to the stemness and tumor
progression of HCC.

Somatic Variants Analysis
In total, we obtained the somatic variants profiles of 324 HCC
patients enrolled in our study by matching the patient identity
number. The distributive landscape of the top 20 frequently
mutated genes between the two groups was depicted in
Figure 10A, and TP53, CTNNB1, and TTN ranked as the top
three mutative genes. Studies have reported that mutant TP53 can
cooperate with hypoxia to promote tumor progression (Amelio,
et al., 2018; Zhang, et al., 2021). Thus, we focus on the relationship
between the TP53 mutational status and the hypoxia-related
lncRNA signature. The Chi-square test showed that TP53 had
a significantly higher mutative ratio in the high-risk group than in
the low-risk counterpart (54 versus 20%, p � 8.55e−09,
Figure 10B). With respect to the comparisons of the mutative
ratio of CTNNB1 and TTN, there was no significant difference
between the two groups (Supplementary Figures S11A–B).

Subgroup survival analysis further indicated that patients with
low-risk scores consistently had better OS survival outcomes than
those with high-risk scores irrespective of the TP53 status
(Figure 10C, global p-value < 0.001). Moreover, patients with
a wild type of TP53 in the high-risk or low-risk group showed
better clinical outcomes than patients with a mutant type of TP53
in the corresponding group. In the case of CTNNB1 and TTN,
subgroup survival analyses showed the same results as TP53
(Supplementary Figures S11C–D). These results support that
hypoxia contributes to genome instability and the crosstalk
between these frequently mutated genes (TP53, CTNNB1, and
TTN) and hypoxia has a substantial impact on the prognosis of
patients with HCC.

Correlation Between the Hypoxia-Related
lncRNA Signature and Tumor Immune
Microenvironment
A previously published study has already classified more than
10,000 tumor samples across 33 cancer types in TCGA into six
classical immune subtypes (immune C1, C2, C3, C4, C5, and C6)
and found that patients in the immune type C3 (inflammatory
type) have the best survival outcomes (Thorsson, et al., 2018).
Thus, we further investigated the association of the hypoxia-
related lncRNA signature and the classical immune subtypes. In
total, 330 out of the 337 HCC patients in our study matched the
immune subtype information (17, 39, 125, 148, and 1 patient for
immune C1, C2, C3, C4, and C6, respectively). We excluded the
immune C6 with only one patient from further analysis to avoid
potential bias. Fisher’s exact test revealed that the low-risk group
had a significantly higher proportion of immune C3 than the
high-risk group (45 versus 21%, p � 2.7 e−06, Figure 11A).
Furthermore, the immune C3 showed the lowest risk scores
compared with other immune subtypes (Figure 11B). The
alluvial plot showed that the immune C3 was mainly derived
from HRDELs-specific cluster 2 and the majority of immune C3
was attributed to the low-risk group which had a favorable
prognosis in HCC (Figure 11C). These results indicated that
the hypoxia-related low-risk group had a different tumor
immune infiltration pattern from the high-risk group.

We then calculated the relative scores of 28 immune cells for
each patient with HCC using the ssGSEA algorithm
(Supplementary Table S12, detailed method is described in
the “Materials and methods” part). Notably, The low-risk
group possessed a higher abundance in activated CD8+ T cell,
activated B cell, monocyte, neutrophil, while the high-risk group
had a higher fraction in activated CD4+ T cell and immature
dendritic cell, and activated dendritic cell (Figure 12A). We
further explored the correlation between the abundance of 28
immune cells and the expression levels of the five key lncRNAs in
the hypoxia-related lncRNA signature by Pearson correlation
analysis (Supplementary Figure S12). Interestingly, MKLN1−AS
was significantly positively correlated with several types of
immune cells such as Activated CD4 T cell, Immature
dendritic cell, Effector memory CD4 T cell, Plasmacytoid
dendritic cell, and Type 2 T helper cell. CAHM, DUXAP8,
and RHPN1−AS1 were positively correlated with Activated
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CD4 T cells. These results indicated that the hypoxia-related
lncRNA signature might be mainly expressed in the above
immune cells.

Hypoxia has been reported to up-regulate the expression level
of immune checkpoints such as PDL1 to induce immune escape
(Lequeux, et al., 2019). Hence, we also investigated the correlation

between the hypoxia-related risk score and the expression levels
of several critical immune checkpoints. Results showed that the
mRNA expression levels of PD1 (PDCD1), PDL1 (CD274),
CTLA4, LAG3, and TIGIT were consistently elevated in the
hypoxia-related high-risk group in comparison with the low-
risk counterpart (Supplementary Figures S13A–E). Meanwhile,

FIGURE 11 | Correlation between the hypoxia-related lncRNA signature and classical immune subtypes. (A) Comparison of the distributive difference of the
immune subtypes between the two risk groups. (B)Comparisons of the hypoxia-related risk scores among different immune subtypes. (C) The alluvial plot illustrating the
relationship between the HRDELs-specific clusters, classical immune subtypes, hypoxia-related risk groups, and overall survival status. HRDELs: hypoxia-related
differentially expressed lncRNAs.

Frontiers in Genetics | www.frontiersin.org November 2021 | Volume 12 | Article 78518517

Tang et al. Hypoxia-Related lncRNA Signature in HCC

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


FIGURE 12 | Correlation between the hypoxia-related lncRNA signature and tumor immune microenvironment. (A) Comparisons of the abundance of 28 immune
cells between the high- and low-risk group using ssGSEA. (B) Chord diagram of the correlation between hypoxia-related risk score and the expression levels of
PD1(PDCD1), PDL1(CD274), CTLA4, LAG3, and TIGIT. The color red denotes the positive correlation and blue represents the negative correlation. ssGSEA: single-
sample gene set enrichment analysis. ****, p < 0.0001; ***, p < 0.001; **, p < 0.01; *, p < 0.05; ns: no significance.
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the risk score was significantly positively correlated with the
mRNA expression of PD1(PDCD1), PDL1(CD274), CTLA4,
LAG3, and TIGIT (Figure 12B). the above evidence
demonstrates that hypoxia indeed contributes to the tumor
immune dysfunction and immune exclusion in HCC.

Prediction of Immunotherapy
Responsiveness and Targeted Drug
Sensitivity
Accumulative evidence suggests that hypoxia can drive cancer
cells to an immune resistance phenotype and is associated with

resistance to immunotherapy (Abou Khouzam, et al., 2020).
Hypoxia is also involved in the acquired chemoresistance
during cancer chemotherapy (Akman, et al., 2021).
Therefore, we investigated the association of the hypoxia-
related lncRNA signature with immunotherapy response and
targeted drug sensitivity in HCC. The low-risk group was
predicted to hold a higher proportion of immunotherapeutic
responders compared with the high-risk counterpart (56
versus 29%, chi-square test p � 9.3 e−07, Figure 13A;
Supplementary Table S13). Patients with low-risk scores
had lower TIDE scores, which means more responsive to
the immunotherapy, compared with those with high-risk

FIGURE 13 | Prediction of immunotherapy response and targeted-drug sensitivity. (A) Comparison of predicted immunotherapeutic responder proportion and (B)
TIDE score between the high- and low-risk groups. (C) Correlation between hypoxia-related risk score and TIDE score in TCGA-LIHC cohort. Comparisons of the IC50

values between the high- and low-risk groups for Axitinib (D), Dasatinib (E), Erlotinib (F), Gefitinib (G), Lapatinib (H), and Sorafenib (I), respectively. TIDE: Tumor Immune
Dysfunction and Exclusion. IC50: half-maximal inhibitory concentration.
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scores (p � 1.3 e−07, Figure 13B). Moreover, the hypoxia-
related risk score has a significant positive correlation (r � 0.3
and p � 3.3 e−08) with the TIDE score (Figure 13C). These
results demonstrated that the hypoxia-related lncRNA
signature could distinguish the immunotherapeutic
responders in HCC and had the potential to serve as a
predictor of the immunotherapy response in patients with
HCC. The drug sensitivity analyses revealed that patients in
the low-risk group exhibited a significantly lower IC50 value
of the several drugs including axitinib, dasatinib, erlotinib,
gefitinib, and lapatinib (except for sorafenib) in contrast with
the high-risk group (Figures 13D–I), suggesting a potential
treatment sensitivity of these patients towards above drugs.
According to these results, we conclude that the HRDELs-
derived signature has the potential predictive ability of
immunotherapy response and targeted drug sensitivity.

DISCUSSION

HCC accounts for approximately 90% of liver malignancies
and possesses high mortality (Forner, et al., 2018). It is urgent
to explore new prognostic biomarkers and potential
therapeutic predictors of immunotherapeutic response for
HCC. Studies have demonstrated that the hypoxic tumor
microenvironment promotes tumor progression,
metastasis, recurrence, and drug resistance (LaGory and
Giaccia, 2016; Rankin and Giaccia, 2016). Another study
(Zhang, et al., 2020) established a hypoxia-related gene
signature connected with unfavorable prognosis and
elevated recurrence rate in HCC. However, there is still a
lack of hypoxia-related lncRNAs prognostic signature in
HCC. lncRNAs play a crucial role in the hypoxia-response
process of cancer cells (Choudhry, et al., 2016; Huan, et al.,
2020), and the interplay between hypoxia and lncRNAs
associates with tumor growth and metastasis (Wang, et al.,
2021). Thus, we for the first time microdissected the hypoxia-
related lncRNA landscape in HCC and identified three
hypoxia-specific clusters which are strongly related to OS
and DFS outcomes. We further established a robust and
reliable hypoxia-related lncRNA signature associated with
a poor prognosis in HCC. Time-dependent ROC curves
illustrate that the constructed model is superior to age,
AJCC stage, tumor pathological grade, and HIF-1A mRNA
expression in the prognostic prediction of HCC. More
importantly, we constructed a clinical nomogram including
the HRDELs-derived signature and AJCC stage, and the
nomogram model showed good discrimination, calibration,
and clinical net benefit. These results demonstrated that the
hypoxia-related lncRNA signature can improve the prognosis
prediction in HCC and has good clinical practicability.

The prognostic signature comprises five hypoxia-related
lncRNAs, which are all associated with poor clinical
outcomes in HCC and their expression levels are elevated
in HCC tumor tissues. DUXAP8 promotes the growth and
proliferation of HCC cell lines by suppressing Krüppel-like
factor 2 (KLF2) expression (Jiang, et al., 2019). (Gao, et al.,

2020) revealed that MKLN1-AS promoted HCC progression
by acting on miR-654-3p, and down-regulation of MKLN1-
AS inhibits the aggressive phenotype of HCC cells. RHPN1-
AS1 enhances the proliferation and invasion process of HCC
cells by targeting miR-7-5p (Song, et al., 2020). The above
evidence is consistent with our results and confirms that
DUXAP8, MKLN1-AS, and RHPN1-AS1 are crucial
oncogenic lncRNAs in HCC. Notably, CAHM and
LINC00869 have not been reported in HCC yet and their
role in HCC is worth further study to explore novel treatment
targets.

Subsequently, we analyzed the underlying molecular
mechanism related to the hypoxia-related lncRNAs.
Unsurprisingly, the high-risk group exhibited increased HIF-
1A mRNA expression compared to the low counterpart. HIF-
1α plays a key role in the regulation of tumor progression,
metastasis, and recurrence under hypoxic conditions (LaGory
and Giaccia, 2016; Rankin and Giaccia, 2016). Hence, the
constructed signature indeed reflects the hypoxia exposure
level of HCC tissues. The risk score is also positively
correlated with both the RNAss and DNAss, indicating the
crucial role of hypoxia in contributing to the enhanced tumor
stemness in HCC (Cui, et al., 2017). In addition, GSEA displays
that the high-risk cohort exhibits more enriched scores in the
“WNT_BETA_CATENIN_SIGNALING”,
“PI3K_AKT_MTOR_SIGNALING”, and
“EPITHELIAL_MESENCHYMAL_TRANSITION” pathways
than the low-risk cohort. Hypoxia has been reported to
promote EMT in HCC to induce immunosuppression and
facilitate tumor metastasis (Ye, et al., 2016). Thus, we
speculate that hypoxia-related lncRNAs may exert their action
through the above oncogenic pathways to regulate the
progression of HCC.

Tumor immune infiltration pattern contributes greatly to the
progression of HCC. The CD8+ T cell is critical for anti-tumor
immunity in HCC and can directly induce the death of tumor
cells (Wei, et al., 2016). More abundance of CD8+ T cells is
correlated with less recurrence and a longer recurrence-free
survival time in HCC (Gabrielson, et al., 2016). Tumor-
infiltrating B cells can positively mediate the antigen
presentation process to induce tumor killing (Wouters and
Nelson, 2018). In our study, the low-risk group with a better
prognosis displays more abundance in CD8+ T cells and activated
B cells than the high-risk group, and thus possesses elevated anti-
tumor immunity. In contrast, the high-risk group exhibits a high
fraction of immature dendritic cells and activated dendritic cells,
which may be due to the phenomenon that the chronic hypoxic
microenvironment exerts a stimulatory action on the
immunoregulatory functions of immature dendritic cells
(Pierobon, et al., 2013). Therefore, we conclude that the
hypoxia-related lncRNA signature is tightly connected with
the tumor immune microenvironment in HCC. The hypoxic
tumor microenvironment supports tumor stemness, metastasis,
and tumor immune escape (Chouaib, et al., 2017; Samanta and
Semenza, 2018), and also up-regulates critical immune
checkpoints expression such as PD1/PDL1 (Lequeux, et al.,
2019). We also uncovered that the high-risk cluster exhibited
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elevated expression levels of PD1, PDL1, CTLA4, LAG3, and
TIGIT compared to the low-risk counterpart, supporting the
contribution of hypoxia to the tumor immune escape in HCC.

Hypoxia has been considered to drive cancer cells to an
immune resistance phenotype and is associated with
resistance to immunotherapy (Abou Khouzam, et al., 2020;
Wu, et al., 2019). We also investigated the association of our
constructed signature with immunotherapy response using
the TIDE algorithm, which can effectively predict the
treatment responsiveness of immune checkpoint blockade
(Jiang, et al., 2018). A higher TIDE score means more
T cell dysfunction or more exclusion of T cell infiltration
and thus less response to immunotherapy. Notably, the low-
risk group possesses more potential immunotherapeutic
responders compared to the high-risk counterpart. We
speculate that the low-risk group represents less hypoxic
exposure and therefore is more responsive to
immunotherapy. Additionally, the low-risk group exhibits
a lower inhibitory concentration (IC50) value of Axitinib,
Dasatinib, Erlotinib, Gefitinib, and Lapatinib, suggesting a
higher sensitivity to these drugs than the high-risk group.
Hypoxia aberrantly activates the HIF-1α pathway and several
specific oncogenic pathways, inducing chemoresistance in
cancer chemotherapy (Akman, et al., 2021; Kim and Lee,
2017). In line with these studies, the high-risk group retains
more enriched scores in the
“WNT_BETA_CATENIN_SIGNALING” and
“PI3K_AKT_MTOR_SIGNALING” pathways,
demonstrating the potential chemoresistance mechanism
under the hypoxia condition in HCC. However, the IC50

value of sorafenib shows no statistical difference between
the two groups. This phenomenon may be due to the intricate
mechanism of sorafenib resistance including epigenetic
modification, autophagy, ferroptosis, hypoxia, immune
microenvironment (Tang, et al., 2020), and tumor genetic
heterogeneity with HCC (Cabral, et al., 2020). Collectively,
the hypoxia-related lncRNA signature has the potential to
predict immunotherapy response and targeted drug
sensitivity.

However, our present study has some limitations. Due to
the absence of another public dataset of HCC patients with
matched lncRNA expression profiles and complete survival
data, the prognostic model was validated in an internal split
testing dataset and lacked complete external validation. Thus,
additional studies will be needed to further verify its reliable

prognostic value. Meanwhile, the signature has been proved
to possess the potential predictive capability of
immunotherapy response by bioinformatical analysis, but
well-designed clinical trials are required to further examine
its performance. Additionally, CAHM and LINC00869 are
reported in HCC for the first time, their mechanism is worth
further exploration by molecular function experiment.

In conclusion, the hypoxia-related lncRNA landscape
correlates with clinical outcomes in patients with HCC. We
established a reliable hypoxia-related lncRNAs signature that
could accurately predict the clinical outcomes of HCC patients
and correlate with immunotherapy response and targeted drug
sensitivity, providing new insights for immunotherapy and
targeted therapy in HCC.
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