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A B S T R A C T   

The goal of this study is to investigate the causes of osteoporosis-related skeletal fragility in postmenopausal 
women. We hypothesize that bone fragility in these individuals is largely due to mineral, and/or intrinsic ma
terial properties in the osteocyte lacunar/peri-lacunar regions of bone tissue. Innovative measurements with 
nanoscale resolution, including scanning electron microscope (SEM), an atomic force microscope that is inte
grated with infrared spectroscopy (AFM-IR), and nanoindentation, were used to characterize osteocyte lacunar 
and peri-lacunar properties in bone biopsies from fracturing (Cases) and matched (Age, BMD), non-fracturing 
(Controls) postmenopausal healthy women. In the peri-lacunar space, the nanoindentation results show that 
the modulus and hardness of the Controls are lower than the Cases. The AFM-IR results conclusively show that 
the mineral matrix, maturity (peak) (except in outer/far regions in Controls) were greater in Controls than in 
Cases. Furthermore, these results indicate that while mineral-to-matrix area ratio tend to be greater, the mineral 
maturity and crystallinity peak ratio “near” lacunae is greater than at regions “far” or more distance from lacunae 
in the Controls only. Due to the heterogeneity of bone structure, additional measurements are needed to provide 
more convincing evidence of altered lacunar characteristics and changes in the peri-lacunar bone as mechanisms 
related to postmenopausal women and fragility. Such findings would motivate new osteocyte-targeted treat
ments to reduce fragility fracture risks in these groups.   

1. Introduction 

Osteocytes play a major role in mechanotransduction and remodel
ing of bone tissue. It is hypothesized that osteocytes directly contribute 
to the bone remodeling process (Bonewald, 2011; Seeman and Delmas, 
2006; Dole et al., 2017; Roschger et al., 2019; Mullender et al., 2004). 
Specifically, the cellular network between osteocytes has been observed 
to sense local mechanical strains on the bone matrix and to receive 
signals that control bone matrix production, mineralization, and 
resorption. This sequence ties directly to recent studies testing the hy
pothesis that postmenopausal women who have sustained osteoporotic 
fractures have reduced bone quality, as indicated by measures of 
intrinsic material properties, in comparison with non-fracturing women 
(Vennin et al., 2017; Rokidi et al., 2019; Boskey et al., 2016). Lower 
lacunar density/volume would render low bone tissue porosity, causing 
bone tissue to have decreased toughness or energy absorbing ability thus 
compromising bone's capability to arrest cracks, leaving it more prone to 

fracture (Qiu et al., 2003; Heveran et al., 2019; Misof et al., 2019). 
Measurement of osteocyte lacunar properties presents numerous tech
nical challenges. Due to the small size of individual lacuna, studying 
their volume, density, shape, and distribution is very challenging. Most 
techniques used to investigate the structure of bones include the scan
ning electron microscope (SEM) (Boyde, 2012), the transmission elec
tron microscope (TEM) (Rubin et al., 2004), the confocal microscope 
(McCreadie et al., 2004; van Hove et al., 2009), and the use of Raman 
spectroscopy (Schrof et al., 2014). Although these techniques can locate 
and visualize osteocytes, they have significant limitations in terms of 
radiation damage and their inability to quantify mineral changes of the 
lacunae at the nanoscale. 

Fourier transform infrared spectroscopy (FTIR) has been used to 
establish bone material quality: mineral-to-matrix ratio, crystallinity (i. 
e., mineral crystal size), carbonate-to-phosphate ratio (i.e., mineral 
maturity and crystallinity ratio), and collagen maturity (i.e., the level of 
enzymatic cross-linking) (Boskey et al., 2016; Boskey et al., 2009; Farlay 
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et al., 2010; Schmidt et al., 2017; Gu et al., 2013; Unal and Akkus, 2015). 
The amide I band possesses structural information about the collagen 
matrix and is also the location of the strongest peaks for the non- 
enzymatic cross-link pentosidine. Therefore, the amide I peak was tar
geted here (1720–1600 cm− 1) to find a sub-band ratio to quantify the 
effect of changes in the non-enzymatic cross-link content on the bone 
matrix. The mineral-to-matrix ratio, which characterizes the degree of 
mineralization of the bone matrix, is defined as the ratio of intensities of 
the phosphate stretch band to the amide I band. The crystallinity ratio is 
defined as the normalized intensity based on the values at 1030 cm− 1/ 
1110 cm− 1. This ratio gives an index of mineral maturity and crystal
linity corresponding to the transformation of nonapatitic domains to the 
apatitic ones. However, a complex biological tissue such as bone con
tains not only type I collagen fibrils, but also mineral and proteoglycan 
components. Therefore, additional tools are needed to discover the un
derlying organization of bone tissue. The atomic force microscope that is 
integrated with infrared spectroscopy (AFM-IR) is a rapidly emerging 
technique that provides chemical analysis with nanoscale spatial reso
lution that is far beyond conventional optical diffraction limits (Dazzi 
et al., 2012). AFM-IR uses an AFM contact probe to detect the local 
thermal expansion in a sample which results from absorption of infrared 
radiation during a measurement (Dazzi and Prater, 2017). Such an 
approach can also be used to map the chemical response spatially in 
bone tissue (Dazzi and Prater, 2017). 

Since its introduction, instrumented indentation testing (IIT) or 
nanoindentation has been widely used to measure the elastic modulus 
and hardness of the peri-lacunar space and bone lamellae at submicron 
scales, but challenges remain with respect to separation of the contri
butions from the collagen and mineral (Hengsberger et al., 2002; Saini 
et al., 2019). Although, the mineral/matrix composition properties 
(Rokidi et al., 2019; Rizzo et al., 2018; Mandair et al., 2021) and local 
intrinsic/micromechanical properties (Akhter et al., 2017) have been 
reported in these biopsies, the properties have been localized within the 
peri-lacunar space in animal models (CTI, 2020) (Taylor et al., 2020), 
but not in human biopsies before. Bone receives stress (external force) 
which produces strain (structural deformation). Higher level strains 
above the yield point deform bone material beyond its point of resilience 
(JMNI) (Nicolella et al., 2008), consequently generating material dam
age, usually in the form of micro-cracks. It has been reported that 
intrinsic material properties may affect the local lacunar mechanical 
strains during skeletal loading events (Nyman et al., 2011). The osteo
cytes within lacunae are sensitive to mechanical strain and help regulate 
bone remodeling and other functions. It is expected that the lacunar 
(peri-lacunar) mineral/matrix properties are correlated with the 
intrinsic bone quality, independent of the bone mineral density (BMD), 
in comparisons of fracturing and matched, non-fracturing post
menopausal women (Dole et al., 2017; Vennin et al., 2017; Akhter et al., 
2017). It was also observed that osteocyte lacunae are larger, more 
numerous and more spherical in healthy women (Bonewald, 2011; Qiu 
et al., 2003). An understanding of the organization of mineral and ma
trix within the peri-lacunar space along with information about the 
mechanical properties of each constituent are needed to understand 
initiation and to quantify the propagation of fracture in bone tissue (Yeni 
et al., 2001). In this manuscript, we combine three different approaches 
including SEM, AFM-IR, and nanoindentation, to characterize osteocyte 
lacunar and peri-lacunar properties in bone biopsies from fracturing (n 
= 5, Cases) and matched (Age, BMD), non-fracturing (n = 5, Controls) 
healthy postmenopausal women. Based on published data, it is possible 
that osteocyte lacunar/peri-lacunar properties play a role in the local or 
intrinsic properties of bone tissue thus affecting its material strength 
(CTI, 2011) (Taylor et al., 2020), We hypothesize that bone fragility in 
fracturing individuals is largely due to mineral, and/or intrinsic material 
strength that include osteocyte lacunar/peri-lacunar properties (Frost, 
1960a; Frost, 1960b; Arnold et al., 1971). To the best of our knowledge, 
this is the first study to investigate the causes of osteoporosis-related 
skeletal fragility in fracturing postmenopausal women that considers 

the mechanical behavior with respect to relative distance from the 
lacunae. 

2. Methods 

2.1. Position registry 

The mineral organization and properties in the peri-lacunar region 
were quantified using three different experimental techniques, 
including SEM/AFM-IR/nanoindentation, all with nanoscale spatial 
resolution. These regions of interest were within ~25 μm of the lacuna 
center. The goal was to ensure that the same lacunae could be identified/ 
located after the samples were moved from instrument to instrument 
(SEM to AFM-IR, to IIT), so that the results from all instruments could be 
correlated spatially. First, each lacuna of interest was identified with 
SEM within a bone biopsy sample. The position of each lacuna was 
recorded relative to the specific shape of the central canal as well as the 
surrounding cement lines as fiducial markers. Next, the mineral orga
nization measurements were made using AFM-IR (Sereda et al., 2019). 
Using the fiducial markers, each lacuna was identified with an optical 
microscope and the probe positioned accordingly in the peri-lacunar 
space. Localized nanoIR spectra were acquired at several positions in 
this region and relevant nanoIR absorption peaks were collected. 
Finally, the samples were tested for their nanoscale mechanical prop
erties of elastic modulus and hardness in the peri-lacunar region. Again, 
the specific fiducial markers were used to identify the target lacuna in 
order to position the IIT tip in the regions of interest. 

2.2. Bone sample preparation 

A longitudinal section of 300 μm in thickness was cut from each bone 
biopsy that included trabecular and cortical bone (Akhter et al., 2017; 
MPLJ, 2019). Each biopsy section was mounted on a glass slide, and 
polished to 0.3 μm surface finish required for subsequent measurements. 
These sections were obtained from PMMA-embedded biopsy blocks 
prepared for histological investigations in a prior study (Boskey et al., 
2016). All measurements were performed around the edge of each la
cuna, which assured that the measured spots were mineralized bone. 
Embedding bone typically increases the variance of most peak ratios, but 
differences in the compositional properties were still detectable in 
samples embedded in PMMA (CTI, 2011) (Nyman et al., 2011). In each 
biopsy, the investigation was focused on cortical bone. The sub-groups 
of biopsies in this study represent fracturing (n = 5), and non- 
fracturing (n = 5) postmenopausal women. The bone biopsy details 
have been published elsewhere (Vennin et al., 2017; Rokidi et al., 2019; 
Boskey et al., 2016; Rizzo et al., 2018; Mandair et al., 2021; Kimmel 
et al., 2022). The two groups of healthy, non-osteoporotic post
menopausal women who were at least 4 years past their last menstrual 
period were recruited, including a) fragility fracture women and b) 
BMD/age-matched women with no fragility fracture. 

At the time of enrollment, the fragility fracture subjects were healthy 
postmenopausal women who experienced fracture during the previous 
five years due to low trauma and had never taken any type of bone- 
active medication. “Low trauma” was defined as trauma equal to or 
less than a fall to the ground from standing height. Fractures of digits, 
face, and skull were excluded. The fracture group (Cases) included post- 
menopausal women with osteopenic BMD values (T-scores between 
+0.3 and − 2.5 for either the hip or spine) (Vennin et al., 2017; Rokidi 
et al., 2019; Boskey et al., 2016; Rizzo et al., 2018; Mandair et al., 2021; 
Kimmel et al., 2022). 

2.3. Localized nanoIR spectrum for mineral and matrix characterization 

For bone compositional analysis, mineral and matrix characteriza
tion via AFM-IR was performed (Sereda et al., 2019). A commercial 
nanoIR2 atomic force microscope (Anasys Instruments, Inc.) 

W. Qian et al.                                                                                                                                                                                                                                   



Bone Reports 17 (2022) 101604

3

supplemented with a tunable infrared quantum cascade laser, QCL 
(Daylight Solutions MIRcat), was used to image topography and mea
sure localized nanoIR spectra, as well as to create chemical IR maps at a 
constant wavelength. Contact mode nIR2 probes (Model: PR-EX-nIR2, 
Anasys Instruments) with resonance frequency of 13 ± 4 kHz and 
spring constant of 0.07–0.4 N/m were used. The AFM-IR instrument has 
a pulsed tunable IR source, with a pulse length of ~10 ns and can cover a 
broad range of the mid-IR region. The light from the IR laser was focused 
onto the surface region near the tip-sample contact area. When the 
sample absorbed the light, a rapid heating/expansion of the sample 
occurred which created an impulsive load onto the AFM cantilever tip 
that induced an oscillation. The amplitude of cantilever oscillation was 
proportional to the sample IR absorption coefficient. Spectra were ac
quired with two perpendicular directions of infrared laser light. Peak 
amplitude normalization was applied to all spectra in order to visualize 
and compare spectral shape/peak ratios. Spectra were acquired over a 
range of 1900 to 912 cm− 1. Each spectrum was acquired two times, 
automatically averaged for better signal to noise ratio and the back
ground noise was subtracted using the instrument software. Each indi
vidual spectrum was fit with Gaussian functions using a customized 
MATLAB code (MathWorks, Inc.) and was treated as a single point. 
Mineral-to-matrix ratio was calculated by dividing the area of the 
phosphate peak (1150–950 cm− 1) by the area of the amide I peak 
(1720–1600 cm− 1). Matrix maturity ratio was calculated by dividing the 
apatitic phosphate peak area (1050–950 cm− 1) by the non-apatitic 
phosphate peak area (1150–1050 cm− 1). The definitions used for the 
calculations are shown schematically in Fig. 1. These values were used 
for comparisons between the Controls and Cases. A total of 208 nanoIR 
spectra were collected on a total of sixteen lacunae, six lacunae from the 
Controls, ten lacunae from the Cases. 

2.4. Nanoindentation testing of mechanical properties 

The localized mechanical properties (modulus and hardness) of the 
peri-lacunar region were measured using a Hysitron TI 950 Tri
boindenter through quasistatic nanoindentation (Vennin et al., 2017). A 
Berkovich (three-sided pyramid) diamond tip was mounted on a trans
ducer that allowed for displacements in the z direction. The bone sample 
was mounted on a scanner that allowed for motion in the x/y-plane that 
was perpendicular to the tip axis. This combination allowed the topog
raphy of the sample surface to be mapped, using the scanning probe 
microscope (SPM) mode, and force-displacement measurements to be 
made using the same tip. Based on the SPM image, the tip was positioned 

on the peri-lacunar region to quantify mechanical differences with 
respect to position. During an indentation measurement, the tip was 
pressed into the sample such that the resulting force-displacement 
behavior was quantified. Multiple indentations were made with a 
target force of 6 mN (milliNewtons) at a constant loading rate of 400 μN/ 
s (microNewtons per second) (Vennin et al., 2017). The indentation 
procedure included a linear loading ramp of 15 s, a holding period of 10 
s at the maximum load and a linear unloading ramp of 15 s. The load- 
displacement data from each indentation were used to calculate the 
reduced indentation modulus (Er) and hardness (H) for the tissue. Me
chanical measurements of modulus and hardness were made with ~10 
μm spacing, in order to identify differences of the volume fraction of 
mineral near the lacunae. A Poisson's ratio of 0.3 was assumed for bone 
tissue in calculations for the analysis (Hengsberger et al., 2002; Reilly 
et al., 1974; Zysset et al., 1999). The Oliver-Pharr method (Oliver and 
Pharr, 1992) was used to extract the indentation modulus. A total of 315 
nanoindentation results were collected on the total of twenty-eight 
lacunae, including fourteen lacunae from Control samples, and four
teen lacunae from Case samples. 

2.5. Morphology of lacunae 

The morphology of the bone and osteocyte lacunae (Akhter et al., 
2017; MPLJ, 2019) were verified and observed using a field-emission 
scanning electron microscope (FESEM, FEI Helios Nanolab 660). 
Furthermore, the localized AFM-IR spectra of the peri-lacunar space in 
the vicinity of ~25 μm around the lacunae were collected. A total of 14 
to 16 positions were collected for each peri-lacunar space and both 
“lacunae-near” and “lacunae-far” were analyzed (approximately n = 30 
measurements/positions or points per specimen) for Controls (Fig. 4a-b) 
and Cases (Fig. 4c-d) respectively. The position of “lacunae-near” was 
within the 5 μm distance from each lacunar edge. The position of 
“lacunae-far” was within the 15 μm distance from each lacunar edge. 
The distance between “near” and “far” was around 10 μm. Mineral-to- 
matrix ratio represents the degree of mineralization of the bone tissue 
and the areas under the curve of the phosphate peak (1140–912 cm− 1) 
and the amide I band (1720–1600 cm− 1) were integrated to measure the 
mineral-to-matrix area ratio, as shown in Fig. 1. Mineral maturity and 
crystallinity ratio corresponds to the progressive transformation of 
immature surface-hydrated domains into a mature and more stable 
apatite lattice. Thus, the areas under the curve of the phosphate peak 
(1050–912 cm− 1) and the peak (1140–1050 cm− 1) were integrated to 
define the mineral maturity and crystallinity area ratio. The collected 

Fig. 1. Schematic illustration (example) of area ratio and peak ratio for a localized infrared spectrum of a Case bone biopsy specimen (Mean ± Std).  
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localized IR spectra were used to assess the bone quality quantitatively 
through normalization of IR absorption peaks, by analyzing the values of 
“lacunae-far” (Fig. 4a, Fig. 4c) vs “lacunae-near” (Fig. 4b, Fig. 4d) in 
Control and Case patients. 

2.6. Statistics analysis 

nanoIR spectral statistics were performed using IBM SPSS-v23. In a 
standard normal distribution, the negative twenty fifth percentile and 
the positive seventy fifth percentile have a Z score |0.67| with an 
interquartile range of 1.34. Five times the interquartile range, added to 
the seventy fifth percentile, will provide a range of acceptable data. To 
reiterate, any data with a Z score larger than 2.68 or lower than − 2.68 
can safely be deemed as outliers. A total of 9 (4 % approximately) such 
data points were identified from the original 208 data points. A Matlab 
program was used to identify and systematically remove all the statis
tical outliers or noise in the nanoIR data. From each set of testable data, 
all the variables (Table 2) were compared between the Cases and Con
trols using the Wilcoxon signed rank test to compare their medians (P <
0.05). All lacunar data are presented as medians and interquartile range 
(Table 2). Intrasample variance was calculated (coefficient of variation 
= standard deviation/mean for the multiple measurements of cortical 
bone tissue). 

3. Results 

SEM imaging was used to identify a region of interest within each 
sample. In Fig. 2, SEM images show an osteon with a haversian canal at 
the center which is surrounded by concentric lamellae of collagen fibers, 
for the Control (Fig. 2a) and the Case (Fig. 2b) respectively. Both the 
lacunar/peri-lacunar regions within the cortical bone tissue for the 
Control (Fig. 2c) and the Case (Fig. 2d) were identified. As noted pre
viously, the lacunae in cortical bone are more rod-like in shape than 
those in trabecular bone (Akhter et al., 2017; MPLJ, 2019). This result 
may suggest indirectly that cortical bone osteocyte lacunae are better 
adapted for interception of propagating micro-cracks that could even
tually lead to micro-damage accumulation and ultimately stress fracture 
(Busse et al., 2010a). Fig. 2-e,f shows the SEM image and AFM topog
raphy image of lacunae with mineralized fibrils in the lacunar void, 
which consists of nanoscale collagen and minerals. 

Fig. 3 shows the AFM topography (Fig. 3a) and the corresponding 
chemical mapping of mineral (Fig. 3b) and matrix (Fig. 3c) around the 
lacunae respectively, which reveals the spatial variation of mineral 
arrangement which can be related to mineral-to-protein (collagen) or 
carbonate distributions. These results demonstrate the power of AFM-IR 
to map naturally formed mineralized nanostructures. Through chemical 
IR mapping, mineral precipitation, aggregation, and aging can be 
analyzed and quantified at the nanoscale, to provide new understanding 
of the biological processes of lacunae formation. 

Fig. 2. SEM images of a central canal, with surrounding cement lines and lacuna for Control (a) and Case (b) samples respectively; Enlarged SEM images of lacunae 
/peri-lacunae regions within the cortical bone tissue for Control (c) and Case (d) samples respectively; Enlarged SEM image (e, control), and AFM topography image 
(f, case) of lacunae showing the mineralized fibrils. 
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Fig. 4 shows the comparison of localized IR spectra between 
“lacunae-far” and “lacunae-near” for one pair of Case and Control 
samples respectively. The IR spectra were fit, and the mineral-to-matrix 
ratio and mineral maturity and crystallinity ratio of distance related 
lacunae were extracted and are summarized in Table 1. Both ratios for 
“lacunae-near” are higher than those for “lacunae-far”, which is prob
ably due to relative-filling of the mineral in the lacunar void (Boskey 
et al., 2009; Frost, 1960a; Frost, 1960b; Arnold et al., 1971; MPLJ, 
2019). 

Fig. 5a and Fig. 5e shows the optical image of Case sample (5a) and 
Control sample (5e) of cortical bone from the IIT instrument. A total of 
nine quasi-static indentations were performed within the peri-lacunar 
space (18 indents for two lacunae per specimen) on the cortical bone 
(Fig. 5b Case and Fig. 5f Control), to acquire the elastic modulus and 

hardness, in order to quantify differences of the mineral near the 
lacunae. Regions of lacunae area were first identified using SPM imaging 
to quantify the surface topography (Vennin et al., 2017). After imaging, 
the indent positions were chosen around the lacunae. Fig. 5c-d and 
Fig. 5g-h shows the SPM topography images with scan size of 27 μm by 
27 μm before (Fig. 5c and e) and after (Fig. 5d and h) indentations for 
Case and Control respectively. The triangular imprints show the mea
surement locations and their size. The descriptive statistics and the 
differences for the nanoindentation data set are shown in Table 2. The 
median hardness value (0.595 GPa) for Controls was lower than Cases 
(0.809 GPa), and modulus values for Controls (12.42 GPa) are also lower 
than Cases (13.29 GPa). The variance (Table 2) of the measurements for 
most of the variables declined in Controls compared to Cases. 

The data acquired (both “near” and “far” positions) of the mineral to 

Fig. 3. AFM topography image of regions around the lacunae (a), the corresponding chemical mapping of matrix at 1655 cm− 1 (b) and at mineral 1015 cm− 1 (c) 
respectively. 

Fig. 4. Comparison of Localized IR spectrum between “lacunae-far” and “lacunae-near” for Case (a-b) and Control (c-d) samples respectively.  
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matrix ratio (area) and mineral to matrix ratio (peak) show that the 
values for the Control are significantly higher than the Cases (Table 2, 
only the “lacunar-far” position mineral matrix (area) and mineral matrix 
(peak) not different), which agrees with most of the research elsewhere 
(Vennin et al., 2017; Misof et al., 2019). However, the standard devia
tion or variance (Table 2) for the Controls is 1.1–1.6 times that of the 
Cases which suggests more variations in the mineral/material properties 
of non-fracturing subjects (Busse et al., 2010a; Gerbaix et al., 2017). 
Furthermore, AFM-IR results indicated that while the mineral-to-matrix 
area ratio tended to be greater (P < 0.1), the mineral maturity and 
crystallinity peak ratio “near” lacunae are greater (P < 0.05) than at 
regions “far” or more distance from lacunae in the Controls only (Vennin 
et al., 2017; Rokidi et al., 2019; Boskey et al., 2016). 

3.1. Correlation between minerals volume and localized mechanical 
property 

Fig. 6 shows the localized IR spectra and nanoindentation results 
around the same lacunae for one pair of Case (6a) and Control (6b) 
respectively. Table 3 shows the localized infrared results of lacunae and 
corresponding mechanical properties in one pair of Control and Case 
bone samples. No significant relation between the mineral composition 
(mineral/matrix, mineral/maturity ratio) and the local indentation 
modulus/hardness within the bone tissue of Control and Case is 
identified. 

4. Discussion 

The objective of this study was to provide new insights into bone 
fragility in postmenopausal women by analyzing local or intrinsic ma
terial properties of bone tissue. We hypothesize that the skeletal fragility 
is due to mineral, and/or intrinsic material properties that can be 
identified in the osteocyte lacunar/peri-lacunar region of the bone tis
sue. Our results suggest there is merit to this concept. 

4.1. Peri-lacunar mechanical properties 

The peri-lacunar mechanical properties (Table 2) are different than 
the interstitial bone tissue data published from these biopsies, reported 
by Vennin et al. (2017). The indentation modulus of Controls in the peri- 
lacunae is less than the interstitial bone, but the modulus and hardness 
of Cases in the peri-lacunar region are higher than interstitial bone tissue 
(Vennin et al., 2017). The mineral exchange in lacunar voids is a specific 
process, sometimes called mineral diffusion and micropetrosis. This 
mechanism of mineral accumulation, during micropetrosis in lacunae, 
may be the cause of the higher hardness and modulus in Cases (Table 2) 
and thus may be responsible for a reduction in toughness (more brit
tleness) despite a lower mineral/matrix ratio. Furthermore, Rokidi et al. 
(2019) reported lower nano-porosity and tissue water in Cases -another 
contributing factor towards bone fragility. A similar process of mineral- 
filling (micropetrosis) contributing to modify the lacunar spherical 
shape, by reducing the size/volume, and increasing the fragility, which 
was reported in bone tissue from a mouse animal model when subjected 
to 4wks of space flight (Gerbaix et al., 2017). These data (Gerbaix et al., 
2017) document the unique role of the mineral/matrix ratio of bone 
tissue quantified at the peri-lacunar indentation sites, suggesting an 
inverse relation between the intrinsic strength and mineral/matrix ratio. 

4.2. Mineral properties 

Additional investigation of the mineral type (amorphous or crystal
line) may further explain this inverse relationship (between strength and 
mineral/matrix ratio) (Gerbaix et al., 2017) in the peri-lacunar space, 
regardless of the position or distance from the lacunae (Tables 1–2, 
Fig. 4). The increase in mineral properties near the lacunar edge suggests 
continued filling with mineral only, while the matrix remains relatively 

Table 1 
Localized infrared property of distance related lacunar in Control and Case pairs 
bone samples. These data reflect a pair of samples (Case and Control) showing 
mineral/matrix (MM) and mineral maturity and crystallinity (mmc) distribution 
around lacunae (Mean ± Std).  

Type MM area 
ratio 

mmc area 
ratio 

MM peak 
ratio 

mmc peak 
ratio 

Control Lacuna- 
Near 

1.500 ±
0.575 

1.305 ±
0.284 

0.710 ±
0.285 

1.371 ±
0.252 

Control Lacuna- 
Far 

1.191 ±
0.243 

1.128 ±
0.085 

0.593 ±
0.130 

1.310 ±
0.166 

Case Lacuna- 
Near 

1.032 ±
0.329 

1.061 ±
0.077 

0.696 ±
0.237 

1.231 ±
0.209 

Case Lacuna-Far 0.913 ±
0.352 

1.019 ±
0.155 

0.652 ±
0.272 

1.193 ±
0.289  

Fig. 5. Nanoindentation of Case sample (a-d) and Control sample (e-h). (a) Optical microscope image (10×) of cortical bone; (b) a total of nine force-displacement 
curves around the lacunae; (c-d) Topography image of lacunae before (c) and after (d) indents respectively; (e) Optical microscope image (10×) of cortical bone; (f) a 
total of nine force-displacement curves around the lacunae; (g-h) Topography image of lacunae before (g) and after (h) indents respectively. 
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unchanged as suggested previously (Frost, 1960a; Frost, 1960b; Arnold 
et al., 1971; Remaggi et al., 1998). The variation in mineral properties 
within the peri-lacunar regions that are linked to bone fragility along 
with the mineral property changes that are directly related to bone tissue 
mechanical properties should be further investigated (Busse et al., 
2009). The mineral composition variation between two measured points 
(near and far) within the vicinity of the peri-lacunar space represents 
heterogeneity/variation within both the Cases and the Controls. The 
greater trends of variation in modulus and hardness within Cases 
(Table 2) may represent continued filling of the lacunar spaces due to 
osteocyte apoptosis (Misof et al., 2019; Milovanovic et al., 2017) causing 
shrinking of lacunar volume (Bell et al., 2008). However, the active 
mineral exchange in a live healthy osteocyte lacunar space may reflect 
different nanomechanical properties (Busse et al., 2010a; Gerbaix et al., 
2017) inducing a greater toughness in bone tissues within Controls. 

4.3. Filling of lacunar voids-micropetrosis 

Both Frost and Bell (Frost, 1960a; Bell et al., 2008) observed the 
mineral filling of the lacunar space along with the canalicular space with 
aging. Frost noticed an increase in brittleness even in the bone sections 
that exhibited greater micropetrosis (Frost, 1960b). Furthermore, in 
agreement with others (Qiu et al., 2003), micropetrosis may produce 
mineral filled, smaller in size, less numerous lacunae, causing bone tis
sue from the Cases to be harder and more brittle (Busse et al., 2010b; 
Milovanovic et al., 2017). Our high-resolution data on these specimens 
suggest that bone tissue from Cases has declining lacunar volume 
compared with the non-fracturing Controls (MPLJ, 2019; Akhter and 
Recker, 2021), concurring with the Frost (Frost, 1960a; Frost, 1960b) 
data with regards to micropetrosis in Cases. It is possible that with 
micropetrosis (Gerbaix et al., 2017), the mineral diffusion and exchange 
is minimal, therefore, the mineral is packed and aged resulting in greater 
indentation modulus/hardness properties in peri-lacunar space. On the 
other hand, in Controls, the healthy osteocytes continue to provide 
mineral exchange in peri-lacunar surface allowing it to be less likely to 
produce a tougher bone tissue (Table 2). Unlike previous studies of 
nanoindentation (Vennin et al., 2017; Ferguson et al., 2003), the mea
surements here targeted only the peri-lacunar region (within 5 μm of the 
lacunar edge—“near” and <15 μm distance from lacunar edge—“far”) to 
quantify mineral property differences between bone tissue from Cases 
(fracturing) and non-fracturing postmenopausal women (Controls). 
Please note while mineral matrix provides information on the mineral 
and matrix components, the mineral maturity and crystallinity reflects a 
progressive transformation to more stable apatite lattice in bone tissue 
(Farlay et al., 2010). Interestingly, in Controls only, the mineral/ 
maturity properties were greater at positions closer to the lacunar edge. 
Again, additional data are needed to identify the source of the variation 
(i.e., mineral type or maturity). 

The filling of lacunae and the canalicular system (Rokidi et al., 2019; 
Frost, 1960c) with mineral reduces their size or volume (MPLJ, 2019) 
resulting in dried bone tissue (Boyde, 2012) with lower spatial hetero
geneity (Rizzo et al., 2018), along with increased modulus/hardness 
(Table 2). In Cases, such a progression may be responsible for the 
reduction of both the intrinsic and extrinsic toughness (Lloyd et al., 
2017). Decreased intrinsic toughness will allow the formation of 
microcracks at a relatively low stress, and extrinsic toughness will 
facilitate the growth of a microcrack, both of which contribute to the 
fragility of bone tissue (Gerbaix et al., 2017; You et al., 2001). 

Although no correlation was found between the mineral composition 
and the local indentation modulus/hardness (Cases or Controls) for 
these 5 pair of specimens, the declining mineral matrix ratio was re
ported to be responsible for lower indentation modulus and hardness in 
trabeculae of osteoporotic vertebral bodies (Yao et al., 2011). However, 
others (McCreadie et al., 2004; McCreadie et al., 2006; Ferretti et al., 
1999; Tai et al., 2005; Oyen et al., 2008; Zebaze et al., 2011; Lloyd et al., 
2015; Heveran et al., 2019) showed no clear relationship between 
mineral composition and indentation modulus in fracturing Cases and 
Controls. The results presented here may suggest that within the prox
imity of lacunar voids, the mineral/matrix properties are different than 
values reported previously from the interstitial region (Vennin et al., 
2017). Furthermore, along with mineral properties, the stiffening of the 
collagen matrix could also be responsible for fractures. Remaggi et al. 
(Ferretti et al., 1999) reported that mineral diffusion is a primary effect 
as opposed to matrix modification in the canalicular and lacunae system, 
thus providing unique micro-level strength difference from the inter
stitial bone tissue (still under investigation). 

4.4. Novel combination of nanoIR & nanoindentation to quantify local 
properties in peri-lacunar space 

Our nanoIR spectra and nanoindentation measurements on the same 
lacunae (Fig. 6) show no significant relationship between mineral 

Table 2 
Osteocyte lacunar properties in fracturing and non-fracturing women of five 
pairs of samples. The position of lacunae-near was within the 5 μm distance from 
each lacunar edge. The distance between “near” and “far” was around 10 μm. 
(Mean ± Std).   

Control 
Median (IQd 

range) 

Case 
Median (IQd range) 

Modulus 
12.42 
(5.092–21.95) 13.29 (9.88–23.19) a 

Modulus variance 
0.195 
(0.095–0.621) 0.240(0.085–0.699) 

Hardness 0.595 
(0.241–0.893) 

0.809 (0.563–0.941) a 

Hardness variance 0.241 
(0.102–0.700) 

0.229(0.112–0.414) 

Lacunae-near   

Mineral matrix (area) 
1.303 
(0.997–1.601) c 1.056 (0.845–1.250) a 

Mineral matrix variance (area) 0.188 
(0.141–0.379) 

0.267(0.162–0.304) 

Mineral maturity and crystallinity 
(area) 

1.084 
(0.892–1.160) 

0.848 (0.769–1.055) a 

Mineral maturity and crystallinity 
Variance (area) 

0.076 
(0.051–0.164) 0.094 (0.064–0.165) 

Mineral matrix (peak) 
0.754 
(0.630–1.048) 

0.651 
(0.4916593–0.831) a 

Mineral matrix variance (peak) 0.180 
(0.132–0.405) 

0.251(0.167–0.337) 

Mineral maturity and crystallinity 
(peak) 

1.233 
(0.999–1.384) b 1.010 (0.857–1.145) a 

Mineral maturity and crystallinity 
Variance (peak) 

0. 054 
(0.046–0.114) 0.127(0.099–0.186) a 

Lacunae-far   

Mineral matrix (area) 
1.196 
(0.889–1.460) 

1.062 (0.859–1.335) 

Mineral matrix variance (area) 0.233 
(0.153–0.317) 

0.179(0.138–0.033) 

Mineral maturity and crystallinity 
(area) 

1.075 
(0.872–1.205) 0.827 (0.772–1.021) a 

Mineral maturity and crystallinity 
Variance (area) 

0.078 
(0.059–0.199) 0.104(0.083–0.151) 

Mineral matrix (peak) 0.711 
(0.554–0.859) 

0.667 (0.476–0.952) 

Mineral matrix variance (peak) 0.262 
(0.153–0.494) 

0.205(0.137–0.305) 

Mineral maturity and crystallinity 
(peak) 

1.214 
(0.987–1.356) 0.952(0.833–1.063) a 

Mineral maturity and crystallinity 
variance (peak) 

0.112 
(0.088–0.137) 0.138(0.072–0.222) 

Mean ± std. 
a Difference between Case and Controls, P < 0.05. 
b Difference between “near” and “far” lacunae (within each group), P < 0.05. 
c Difference between “near” and “far” lacunae (within each group), P < 0.1. 
d IQ-interquartile range (25th percentile – 75th percentile). 
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matrix, mineral maturity and crystallinity, and mechanical property 
variables (Table 3). These results suggest that the observed differences 
in the intrinsic mechanical properties of the two areas (within the peri- 
lacunar space) may not be attributed to local bone mineral properties. 
The real mechanism for the mineral accumulation or exchange in 
canalicular/perilacunar space is not well known (Oyen et al., 2008). 
This study is the first to provide data with regards to mineral and the 
corresponding local nanomechanical properties within the peri-lacunar 
space. Although the peri-lacunar space is proposed to have predomi
nantly mineral (Oyen et al., 2008), the mineral properties need to be 
explored more extensively. The mineral density (packing) in the peri- 
lacunar space for the shrinking lacunae due to micropetrosis in Cases 
(Yao et al., 2011; Oyen et al., 2008) may be different than the properties 
from the healthy and larger osteocyte lacunae in Controls (Oyen et al., 
2008). 

4.5. Variations in the properties 

The variances (modulus and hardness, Table 2) suggests that the 
bone tissue in the peri-lacunar regions of Controls had less heterogeneity 
in comparison with Cases. A more detailed interpretation of these me
chanical data requires a better understanding of the intrinsic mechanical 
properties of the bone matrix constituents and, especially, the strength 
of the bonds between the organic and mineral components. An improved 
understanding of bone mechanics is vital for the development of eval
uation strategies for patients at risk of bone fracture. Bone matrix ma
terial properties depend on the hierarchical structural features that 
make up bone as well as their composition. The origin of these properties 
and their dependence upon the hierarchical structure and composition 
of bone tissue need additional investigation. 

The difference in mineral properties between Controls and Cases is 
most likely due to the complexity of biological tissue and the natural 
variation in mineral heterogeneity in the bone biopsy samples. 

It is proposed here that these nanoscale results provide additional 
detailed information of bone tissue properties and provide context to the 
microscale and macroscale data acquired previously (Vennin et al., 
2017; Rokidi et al., 2019; Boskey et al., 2016). Please note that by 
making measurements at approximately 10 specific positions around a 
lacuna (~25 μm apart) the data are expected to reflect the realistic 
variations of the bone tissue with respect to the region of interest. 

5. Limitations 

These bone biopsies do not represent actual fracture sites. Therefore, 
the data presented here may not represent the actual mineral and 
nanomechanical properties experienced near relevant fractures. How
ever, each biopsy allows a unique window into the bone health status 
with respect to the intrinsic material properties which may be a surro
gate to skeletal health. All the biopsies were subject to standard and 
equivalent embedding procedure and therefore we expect minimal noise 
related to their embedding. Nonetheless, the iliac crest is the standard 
anatomical site for obtaining bone biopsies, and these unique data in the 
peri-lacunar space were collected using three different techniques in the 
same local region. Furthermore, these data were from a small number of 
specimens randomly selected from a larger set reported previously 
(Vennin et al., 2017; Rokidi et al., 2019; Boskey et al., 2016). 

6. Conclusions 

In summary, this is the first study to investigate the osteocyte 
lacunar/peri-lacunar properties of bone tissue in fracturing (Case) and 
non-fracturing (Control) postmenopausal women. The unique combi
nation of SEM, AFM-IR, and nanoindentation were used to investigate a 
direct relationship between lacunar properties and intrinsic mechanical 
properties. The nanoindentation results show that both hardness and 
indentation modulus of peri-lacunar space in the cortical bone were 
greater in Cases than Controls. In addition, an increase in material 
heterogeneity (variance in the hardness and modulus was observed in 
the Controls as compared with the Cases. The AFM-IR results conclu
sively show that the mineral matrix, maturity (peak) (except in outer/far 
regions in Controls) were greater in Controls than in Cases. Furthermore, 
mineral maturity and crystallinity ratios of “lacunae-near” are on 
average higher than those from “lacunae-far” in Controls only. The 
complex relationship of spatial variation in material properties (mineral 
composition, local hardness/modulus, etc.) (Lloyd et al., 2015) within 
and around the peri-lacunar space would need additional data to explain 

Fig. 6. The localized IR spectrum and nanoindentation testing around the same lacunae for Case (a) and Control (b) respectively.  

Table 3 
Localized infrared property of lacunar and corresponding mechanical properties 
in Control and Case pairs bone samples, mineral matrix ratio (MM ratio), min
eral maturity and crystallinity ratio (mmc ratio). These data represent both 
mechanical and mineral property (infrared spectra) distribution within a pair of 
specimens (Case and Control) (Mean ± Std).  

Type MM 
area 
ratio 

mmc 
area 
ratio 

MM 
peak 
ratio 

mmc 
peak 
ratio 

Modulus 
(GPa) 

Hardness 
(GPa) 

Case 1.379 
±

0.272 

0.787 
± 0.017 

0.783 
±

0.173 

0.856 
± 0.032 

15.468 ±
0.697 

0.775 ±
0.076 

Control 1.168 
±

0.267 

0.919 
± 0.078 

0.697 
+

0.166 

1.08 ±
0.095 

11.615 ±
0.859 

0.680 ±
0.073  
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fragility in bone tissue from fracturing individuals. Pending resources, 
the ongoing work will be expanded to include 120 pairs of samples to 
provide an additional extensive data analysis that is required to provide 
more convincing evidence of possible alterations in the lacunar char
acteristics and changes in the peri-lacunar bone as mechanisms related 
to postmenopausal women and fragility fractures. The findings would 
motivate new osteocyte-targeted treatments to reduce fragility fracture 
risks in postmenopausal women. 
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