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Abstract: Congenital adrenal hyperplasia (CAH) is an inherited disorder caused by the absence or
severely impaired activity of steroidogenic enzymes involved in cortisol biosynthesis. More than 90%
of cases result from 21-hydroxylase deficiency (21OHD). To prevent life-threatening adrenal crisis and
to help perform appropriate sex assignments for affected female patients, newborn screening (NBS)
programs for the classical form of CAH have been introduced in numerous countries. In Japan, the
NBS for CAH was introduced in 1989, following the screenings for phenylketonuria and congenital
hypothyroidism. In this review, we aim to summarize the experience of the past 30 years of the NBS
for CAH in Japan, composed of four parts, 1: screening system in Japan, 2: the clinical outcomes for
the patients with CAH, 3: various factors that would impact the NBS system, including timeline,
false positive, and LC-MS/MS, 4: Database composition and improvement of the screening program.
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1. Introduction

Congenital adrenal hyperplasia (CAH) is an inherited disorder caused by the loss
or severely impaired activity of steroidogenic enzymes involved in cortisol biosynthesis
(Figure 1A,B) [1,2]. More than 90 percent of cases result from 21-hydroxylase deficiency
(21OHD) caused by mutations in CYP21A2. The prevalence of 21OHD is estimated to be
1:15,000–16,000 in the USA and Europe [3] and slightly lower in Japan (1:18,000) [4–6]. The
clinical spectrum of the disease ranges from the most severe to mild forms, depending
upon the degree of enzyme deficiency [2].

The disease is mainly classified into two forms: classical and nonclassical. The classical
form is associated with two major problems: life-threatening adrenal crisis in both sexes
and virilization of the external genitalia in 46,XX patients. The classical form is further
subdivided into two subtypes, the severest, salt wasting (SW) form, and simple virilizing
(SV) form. The SW form is associated with cortisol and aldosterone deficiencies, in which
neonates are likely to develop life-threatening adrenal crises with severe hyponatremia
and hyperkalemia. Virilization of the external genitalia in newborn females and precocious
puberty due to overproduction of androgens by the adrenal cortex are the other major
clinical manifestations of the SW and SV forms. However, the clinical phenotypes of the
SW type and the SV forms may overlap, and attempts to differentiate them based on
endocrinological evaluation without genetic analysis are sometimes inconclusive [2].

To prevent a life-threatening adrenal crisis and help perform appropriate sex assign-
ments for affected female patients, newborn screening (NBS) programs for the classical
form of CAH have been introduced in numerous countries [7]. In Japan, the NBS for CAH
was introduced in 1989, following that for PKU and congenital hypothyroidism [4].
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Figure 1. Steroid synthesis in the adrenal cortex (A) and the pathophysiology of 21OHD (B). P5: Pregnenolone, 17αOHP5: 

17-hydroxypregnenolone, P: Progesterone, 17αOHP: 17-hydroxyprogesterone, DOC: Deoxycorticosterone, 11DOF: 11-de-

oxycortisol, B: Corticosterone, 18OHB: 18-Hydroxycorticosterone, DHEA: Dehydroepiandrostendione, A4: Androstenedi-

one, T: Testosterone. 17αOHP and other green steroids are included in the panel of LC-MS/MS screening in Japan. Steroids 

written in blue suggest its synthesis is reduced. 
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Figure 1. Steroid synthesis in the adrenal cortex (A) and the pathophysiology of 21OHD (B). P5: Pregnenolone, 17αOHP5:
17-hydroxypregnenolone, P: Progesterone, 17αOHP: 17-hydroxyprogesterone, DOC: Deoxycorticosterone, 11DOF: 11-
deoxycortisol, B: Corticosterone, 18OHB: 18-Hydroxycorticosterone, DHEA: Dehydroepiandrostendione, A4: Androstene-
dione, T: Testosterone. 17αOHP and other green steroids are included in the panel of LC-MS/MS screening in Japan.
Steroids written in blue suggest its synthesis is reduced.

In contrast to the classical form, the nonclassical form has a milder phenotype in
which clinical problems are not obvious during the neonatal period or childhood, generally
developing during adolescence or adulthood [1,2]. The prevalence of nonclassical form
in Japan is estimated much lower than that in western countries [8–10]. Although some
of them are screened by the NBS, the screening program is not designed to detect all the
newborns with the nonclassical form.

The aim of this review is to summarize the experience of the past 30 years of the
NBS for CAH in Japan, comprising four parts: 1, screening system in Japan; 2, clinical
outcomes for patients with CAH; 3, factors that would impact the NBS system, including
timeline, false positive, and LC-MS/MS; and 4, database composition and improvement of
the screening program.

2. Screening System in Japan

The NBS in Japan was introduced individually into the prefectural administration
according to a government notification by the Ministry of Health and Welfare in 1977. The
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basis of the NBS system, such as the timeline, and the screening panel are identical in
all local governments. After informed consent is obtained from a legal guardian, blood
samples are collected by a heel prick blotted on a filter paper from neonates at 4–7 days
from birth, and the filter paper samples are immediately sent to a laboratory allocated by
the prefectural government.

The details of the screening system are different among laboratories, and as a rep-
resentative, the screening algorithm in Tokyo was shown in Figure 2. In Tokyo, the 1st
screening is divided into two procedures. The level of 17-hydroxyprogesterone (17αOHP)
is initially determined by enzyme-linked immunosorbent assay (ELISA) without steroid
extraction. We select blood samples in the 97th percentile or higher for 17αOHP values for
subjecting the second-tier test, which is carried out after steroid extraction [4,5,11,12]. The
cutoff criteria for the second-tier test are shown in Table 1.

The NBS has two different cutoff values: for “screening positive” and for “retest”.
When the 17αOHP level is higher than the screening positive cutoff value, the neonate
is directly referred to a pediatric endocrinologist for further endocrinological evaluation.
Neonates with 17αOHP levels more than the retest cutoff value are retested. When the
17αOHP levels are higher than the retest cutoff value two–three times, the screening is
considered positive (Figure 2) [4,5,11–13].
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Figure 2. Algorithm of CAH screening in Tokyo.

In some female patients, blood sampling for the screening is performed ahead of
schedule due to atypical genitalia, which is one of the major clinical symptoms in female
neonates with 21OHD and is frequently recognized at birth.

To reduce the number of false-positive results in preterm newborns, one of the most
serious issues in the screening for 21OHD, some laboratories, including that of Tokyo,
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employ cutoff values based on gestational age and/or birth weight. The cutoff values were
determined according to a pilot study of serum 17αOHP levels in full-term and preterm
infants. As a representative screening system in Japan, the algorithm and criteria for the
screening in Tokyo are shown in Table 1 and Figure 2 [5], respectively.

Table 1. Criteria of CAH mass screening in Tokyo.

<Criteria According to the Gestational Age>

Gestational age at birth (weeks) *1a ≤29 30–34 35–36 ≥37
Corrected gestational age (weeks) *1b ≤31 32–35 36–37 ≥38

<Criteria According to Weight> *2,*3

Body weight (g) ≤999 1000–1999 2000–2499 ≥2500

Cutoff level of
17αOHP [n·mol/L]

Retest *4
60

45 24 15
Positive *5 60 60 60

*1a Samples collected before the age of 7 days, *1b Samples collected at the age of 7 days or after, *2 1st test: body
weight = birth weight, 2nd test and after: body weight = corrected body weight calculated by the formula as
below. Corrected body weight at test (g) = birth weight (g) + (age at test − 7) × 20 (g). *3 For infants born small
or large for gestational age, either the criteria of gestational age (corrected gestational age) or body weight was
applied, whichever was a lower value. Since 2012, criteria according to weight have not been used, and solely
gestational age-stratified cutoff has been used. *4 recall for the second (or the third) test of the screening. *5 refer
to hospitals for further endocrinological examinations.

For the quality control of the screening, most screening laboratories perform follow-up
surveys of the patients who were referred to hospitals. In the surveys, clinical information of
the patients, including confirmed diagnosis, is collected from the pediatric endocrinologists
at the hospitals [13].

3. Clinical Outcomes of the Newborn Screening for CAH in Japan
3.1. The Effects of the Screening

The clinical profiles of 21OHD before the introduction of the screening differ remark-
ably from the current profiles [14]. Before the introduction of the screening, Suwa S et al.
conducted a nationwide survey and reported the clinical profiles of 21OHD in Japan. Ac-
cording to the survey, the estimated prevalence of 21OHD was 1/43,764, and the average
age in days when the patients firstly visited the hospitals was 1102. In the SW type, the
average age of the first hospital visit was 55 days (male: 63 days (range, 1 days to 3 years),
female: 47 days (range: 0 days to 3.9 years)), and in the SV form, the average age at first
visit was 6.4 years (male: 5.9 years (range: 14 days to 34 years), female: 6.5 years (range:
0 days to 44 years)) (Table 2) [15]. The ratio of male to female was 1:1.5, and the number
of male patients was significantly lower than that of females, implying that a substantial
number of male patients were missed, i.e., the SV form remained undiagnosed or the fatal
cases with the SW form in the neonatal-infantile period. Consistently, the survey revealed
that the mortality rate was 10.6% in neonates with the SW form, which is consistent with
the reports from other countries [15]. In 46,XX cases, 12.9% were firstly assigned as male
because of atypical genitalia and corrected to female sex after the diagnosis of 21OHD [15].

Table 2. Age at diagnosis before and after implementation of the screening.

Before CAH Screening * After CAH Screening **

Male Female Total Male Female Total

SW type 63 days (120) 47 days (96) 55 days (216) 9.0 days (55) 6.2 days (45) 7.6 days (100)
SV type 5.0 yrs (39) 6.5 yrs (150) 6.4 yrs (189)

Numbers in parentheses indicate numbers of the subjects, *, **: according to the data reported by Suwa et al., 1994 [15] and Gau
et al., 2020 [13], respectively.

After the introduction of the screening, the clinical outcomes of 21OHD during the
neonatal/infantile period were remarkably improved. The average ages at the first visit
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were 8.2 and 7.6 days (male: 9.2 days, female: 6.0 days) in Sapporo and Tokyo, respectively
(Table 2) [6,13]. To date, no fatal cases have been identified.

Although the follow-up surveys and the screening systems are not designed for
detecting false-negative cases, based on a survey for the literature and the annual reports
from NBS programs, no false-negative cases have been reported since the introduction of
the screening [5,6,13]. We presume that the sex of all 46,XX cases was correctly assigned.

3.2. The Progression of Salt Wasting during the First Two Weeks of Life

Adrenal crisis is a life-threatening medical emergency, and eradicating the lethal cases
of 21OHD is one of the major goals of newborn screening [16]. Although the fact that
there were no reported fatal cases suggests the primary goal of the screening has been
accomplished, 37.4% of 21OHD neonates already developed severe salt wasting, which
is defined by Na < 130 mEq/L, K > 7 mEq/L, on arrival at medical hospitals in Tokyo
screening [13]. Furthermore, some of the 21OHD neonates exhibited life-threatening salt
wasting, such as more than 10 mEq/L of serum K [13].

Severe adrenal crisis during the neonatal to early infantile period would cause neuro-
logical comorbidities. According to the nationwide survey before the introduction of NBS
in Japan, a substantial number of the 21OHD patients revealed to have neurological comor-
bidities including intellectual disability and epilepsy. The prevalence associated with the
SW form was higher, 18.5%, than with the SV form, 9.4%, suggesting that delayed diagnosis
of adrenal crisis causes intellectual disability [17]. Consistently, in the retrospective study
from the U.K., where NBS for 21OHD is not introduced, more than 20% of the SW-type
21OHD patients developed learning difficulties [14]. Those suggest that just eradication
of lethal cases would not be sufficient for the goal of the 21OHD screening, and avoiding
severe adrenal crisis should be considered.

Retrospective analysis of the follow-up survey of the NBS in Tokyo revealed that, in
classical 21OHD patients, the serum Na and K levels linearly deteriorated with age in days,
and the age when the regression lines reached Na < 130 mEq/L, K > 7 mEq/L approximately
coincided at 11.1 and 12.3 days, respectively [13] (Figure 3). The risk of developing severe
salt wasting increases during the second week of life without a threshold, and, therefore,
an early intervention, ideally during the first week of life, is desirable [13,18,19].

Int. J. Neonatal Screen. 2021, 7, x FOR PEER REVIEW 6 of 16 
 

 

Figure 3. Clinical features of serum sodium (Na) and potassium (K) levels in 21OHD neonates. Ret-

rospective analysis of the NBS in Tokyo revealed that, in classical 21OHD patients, the serum Na 

and K levels linearly deteriorated with age in days, and the age when the regression lines reached 

Na < 130 mEq/L, K > 7 mEq/L approximately coincided at 11.1 and 12.3 days, respectively. (Modified 

from Gau et al., 2020 [13]). 

3.3. Triage of the Neonates with Salt Wasting by Body Weight Change 

The follow-up survey in Tokyo revealed that from the second week of life, changes 

in body weight provide a useful index in the evaluation of neonates with positive CAH 

screening results [13]. Neonates with decreasing body weight from the birth weight are 

likely to have classical 21OHD, and neonates with increasing body weight after birth are 

more likely to be false positives [13]. Furthermore, even in cases of 21OHD, the possibility 

of developing severe salt wasting, such as hyponatremia (<130 mEq/L) or hyperkalemia 

(>7 mEq/L), is extremely low without loss of body weight (Figure 4). Contrary to body 

weight change, the relevance of predicting severe salt wasting based on the 17αOHP level 

is extremely low because the 17αOHP level is not associated with Na or K levels [13]. 

 

Figure 4. Body weight change from birth is an excellent predictor of 21OHD and the risk of severe salt wasting. Body 

weight data of 21OHD patients at 7–14 days after birth were collected, and the change in body weight from birth weight 

was examined. None of the 21OHD patients with severe salt wasting (Na < 130 meq/L or K > 7.0 mEq/L) exhibited increased 

body weight (A,B). 

Although the findings of body weight change in patients cannot be the direct criteria 

for the CAH screening protocol, they may assist in some individual cases, e.g., for triaging 

Figure 3. Clinical features of serum sodium (Na) and potassium (K) levels in 21OHD neonates.
Retrospective analysis of the NBS in Tokyo revealed that, in classical 21OHD patients, the serum Na
and K levels linearly deteriorated with age in days, and the age when the regression lines reached Na
< 130 mEq/L, K > 7 mEq/L approximately coincided at 11.1 and 12.3 days, respectively. (Modified
from Gau et al., 2020 [13]).
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3.3. Triage of the Neonates with Salt Wasting by Body Weight Change

The follow-up survey in Tokyo revealed that from the second week of life, changes
in body weight provide a useful index in the evaluation of neonates with positive CAH
screening results [13]. Neonates with decreasing body weight from the birth weight are
likely to have classical 21OHD, and neonates with increasing body weight after birth are
more likely to be false positives [13]. Furthermore, even in cases of 21OHD, the possibility
of developing severe salt wasting, such as hyponatremia (<130 mEq/L) or hyperkalemia
(>7 mEq/L), is extremely low without loss of body weight (Figure 4). Contrary to body
weight change, the relevance of predicting severe salt wasting based on the 17αOHP level
is extremely low because the 17αOHP level is not associated with Na or K levels [13].
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Figure 4. Body weight change from birth is an excellent predictor of 21OHD and the risk of severe salt wasting. Body
weight data of 21OHD patients at 7–14 days after birth were collected, and the change in body weight from birth weight was
examined. None of the 21OHD patients with severe salt wasting (Na < 130 meq/L or K > 7.0 mEq/L) exhibited increased
body weight (A,B).

Although the findings of body weight change in patients cannot be the direct criteria
for the CAH screening protocol, they may assist in some individual cases, e.g., for triaging
a neonate with a positive result who is living in a region with limited access to a pediatric
endocrinologist or in which there is no CAH screening.

4. Potential Issues of Testing Practices in the Newborn Screening for CAH in Japan
4.1. The Timeline of the Newborn Screening for 21OHD

The timeline of the NBSs is becoming earlier worldwide because newly added inborn
errors to the screening panel require early intervention immediately after birth. In the
U.S., SIMD (Society for Inherited Metabolic Disorders) defines the critical condition as a
condition in which serious symptoms may present acutely in the first weeks of life with a
short pre-symptomatic window and require immediate treatment to mitigate morbidity
and mortality [20]. More than 10 inborn errors of organic acid disorders and fatty acid
oxidation disorders are involved in the list, and the SIMD recommends considering the
list as an important starting point for discussion between clinicians and laboratories [20].
Accordingly, blood samples for screening are collected 48 h after birth in the U.S., and the
recommended age in days when the first results are obtained should be seven [21]. Indeed,
in 2018, 64% of the first results were available within 5 days after birth (Table 3) [22]. The
situation is similar in the EU, and, in most countries, blood sampling starts 72 h after birth
(Table 3) [23].

In the NBS for 21OHD, several factors should be considered in terms of timing for the
blood sampling. Especially, given the rate of 37.4% neonates with severe salt wasting in
Japan, earlier sampling can be discussed for the prevention of life-threatening salt wasting.
However, an increase in serum 17αOHP level has been observed in unaffected neonates
during the first 1–2 days of life, and there is evidence of false negatives associated with
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the early collection of specimens in the U.S. [24]. Further, the timeline is determined
by various factors of other diseases in the screening panels, which are different among
countries (Table 3). For optimizing the timeline of the screening, we need careful discussion
continuously.

Table 3. Summary of newborn screening in European countries, Oceania, and the U.S. (modified table from ref-
erence [25]) and the following website (https://www.hrsa.gov/advisory-committees/heritable-disorders/newborn-
screening-timeliness.html, https://newbornscreening.hrsa.gov/your-state#w, https://www.newsteps.org/resources/
data-visualizations/newborn-screening-status-all-disorders, visited date, “23 April 2021”).

Countries
*1

Approximate
Population
(Million)

Screening Panel Interval Birth-Sampling Interval Sampling Analysis

CAH CH PKU GAL
AAD,
OA,

FAOD
<48 h 48–72 h 72–96 h >96 h 1 d 2 d 3 d 4 d 5 d >6 d

Austria 8.8 x *2 x x x >6 x x x x x

Belgium 10.5 x x x x >6 x x x x

Denmark 5.6 x x x x >6 x x x

France 67 x x x x P *2 x x x

Germany 80 x x x x >6 x x x x

Netherlands 17.8 x x x x >6 x x x x

Spain 46.5 x x x P >6 x x x x x x x

Sweden 10 x x x x >6 x x x x

Switzerland 8.1 x x x x 1–6 x x

Finland 5.5 x x >6 x *4 x x x x x x x

Greece 10.5 x x x x x

Hungary 10 x x x >6 x x x

Ireland 4.9 x x x x x x x

Italy 60.5 x x P P x x x x x

Norway 5.3 x x >6 x x

Portugal 10.3 x x >6 x x x x

U.K. 66.6 x x 1–6 x x x

U.S. *3 328.2 50/50 50/50 50/50 50/50 50/50 x x x

JPN 126.3 x x x x >6 x x x x

*1 European countries whose population is approximately more than 5 million were listed. *2 x (in screening panel section) = in screening
panel, P = pilot/regional screening. *3 In the United States section, the number of states that include the disease in the screening panel is
listed. In the AAD, OA, and FAOD section, states that implemented more than six of the metabolic disorders were counted. The interval
between birth, sampling, and analysis of U.S. is recommended timeline. *4 Cord blood is used for some of the screening.

4.2. High Rate of False Positive

For the 17αOHP measurement, immunoassays have been used because of their sensi-
tivity, cost, and simplicity. However, immunoassays lead to high rates of false positives,
seriously affecting the screening efficiency [5,18,26].

One of the major reasons is the cross-reactivity with steroids, such as 17-hydroxy
pregnenolone sulfate and 15β-hydroxylated compounds, which is high in preterm infants,
and the ratio of false positives is extremely high in preterm infants. To minimize false
positives, cutoff points stratified by gestational age and/or birth weight have been used in
some screening systems. Although the stratified cutoff improves positive predictive value
(PPV) to some extent, its efficiency is limited [5,27–30]. In the Tokyo system, gestational age
and birth weight cutoff points have been used since the introduction of the NBS (Table 1).
While the average PPV in Japan was reported as 6.6%, the Tokyo screening program
achieved 25.8% (Figure 5). On the other hand, the PPV in preterm infants with a gestational
age of ≤37 weeks was only 2% [5].

https://www.hrsa.gov/advisory-committees/heritable-disorders/newborn-screening-timeliness.html
https://www.hrsa.gov/advisory-committees/heritable-disorders/newborn-screening-timeliness.html
https://newbornscreening.hrsa.gov/your-state#w
https://www.newsteps.org/resources/data-visualizations/newborn-screening-status-all-disorders
https://www.newsteps.org/resources/data-visualizations/newborn-screening-status-all-disorders
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Figure 5. PPV (positive predicted value) of CAH screening in Tokyo according to the birth weights
and the gestational ages of newborns judged as positive. (Modified from Tsuji et al., 2015 [5]).

Another cause for the high false-positive rate is the nature of 17αOHP itself. Histori-
cally, 17αOHP was originally considered as the pathogenic androgen in cases of 21OHD
rather than as a diagnostic marker, and it has several shortcomings as a diagnostic for
21OHD [31]. The level of 17αOHP is high in cord blood during the first 1–2 days of life, and
stress from other illnesses may result in the 17αOHP remaining high in unaffected neonates.
Furthermore, in other forms of CAH, including 11-hydroxylase deficiency (11OHD), 3β-
hydroxysteroid dehydrogenase deficiency (3βHSDD), and P450 oxidoreductase deficiency
(PORD), 17αOHP may be elevated to almost the same level as that of 21OHD [32]. For fur-
ther improving PPV in 21OHD screening, measuring other biomarkers with high specificity
for 21OHD would be required.

4.3. LC-MS/MS Analysis of 17αOHP as a Second-Tier Test and Diagnostic Test for 21OHD

To improve PPV, an alternative methodology should measure disease-specific markers
other than 17αOHP or has high specificity for the target steroids. When used appropriately
under highly regulated conditions, liquid chromatography-tandem mass spectrometry (LC-
MS/MS) is considered as the gold standard for steroids assays [33–39], and the guideline of
the Endocrine Society have recommended to employ LC-MS/MS for measuring 17αOHP
of the second tier in neonatal screening since 2018 [16].

In addition to its specificity, the advantage of LC-MS/MS is the capability for the
simultaneous assay of multiple steroids [33,34,36]. In Japan, a steroid profile panel from
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Siemens Healthineers AG (Frankfurt, Germany), “MS2-screening CAH” was developed for
the CAH screening. Five steroids were selected for the panel: 17αOHP, 21-deoxycortisol (21-
DOF), 11-deoxycortisol (11-DOF), 4-androstenedione (4AD), and cortisol (F). Accordingly,
the cutoff criteria of the LC-MS/MS assay are not solely based on 17αOHP, but on 21DOF
and the ratios of steroids, such as (17αOHP + 4AD)/F, 11DOF/17αOHP (Table 4) [33].
The combination of highly specific LC-MS/MS and simultaneous assays of five steroids is
expected to dramatically improve the efficiency of the screening [33,34,36].

Table 4. Cutoff level of 17αOHP and other steroids assayed by LC-MS/MS in Saitama, Sapporo and
Tokyo, Japan *1.

Screening Positive Cutoff Level

Prefecture Saitama Sapporo
Tokyo

Criteria A *2,*3 Criteria B *2,*3

17αOHP
(ng/mL)

Term birth >20 >20
>5 >5

Preterm birth >30 >50

21DOF (ng/mL) >1.0 >2.0 >1.0

(17αOHP + 4AD)/F >2.0

11DOF/17αOHP <0.1

Retest Cutoff Level

Prefecture Saitama *2 Sapporo *2 Tokyo *2

17αOHP (ng/mL) >1.0 >2.5 >1.5
(17αOHP + 4AD)/F >0.1 >0.1 >0.3

11DOF/17αOHP <0.3 <0.2 <0.3

*1 The algorithm of the screening is the same as shown in Figure 1. When the retest values are documented twice,
the patients are judged as positive. *2 The result is judged as positive or retest when all parameters meet the
criteria. *3 The patient with the result that meets criteria A or B is considered as screening positive.

Indeed, the outcomes of LC-MS/MS are excellent. In 2018, the LC-MS/MS assay
for 21OHD was employed in 5 of 37 prefectural laboratories in Japan. In immunoassay
screening, out of 653 subjects with positive results, there were 38 confirmed cases of
21OHD, resulting in a PPV of 5.8% (38/653). On the other hand, the PPV in LC-MS/MS
screening was 40.0% (6/15), indicating that the specificity of LC-MS/MS is remarkable [40].
Accordingly, in 2018, the Ministry of Health, Labor, and Welfare in Japan added LC-MS/MS
to the list of recommended methodologies for the second-tier test of 21OHD screening [41].

In addition to improving the efficiency of 21OHD screening, the steroid profile assay
by LC-MS/MS may bring further advantage to the screening, that is, assisting definitive
diagnosis of 21OHD [34]. Although 21OHD can be diagnosed endocrinologically, the
procedures and cutoff criteria are complicated because other rare forms of CAH, such as
11OHD, PORD, and 3βHSDD, should be differentiated from the diagnosis of 21OHD as
we described in the previous section [32,42–48]. The nonspecific increase in 17αOHP levels
in other forms of CAH has been considered as a potential clinical pitfall.

Currently, reliable methods for differentiating 21OHD from other forms of CAH are an
adrenocorticotropic hormone (ACTH) stimulation test [16], urine steroid profile analyses
using gas chromatography mass spectrometry [49], and genetic test, which cannot be used
as a first-line diagnostic test because the procedure of CYP21A2 gene analysis is extremely
complicated [50–52].

It has been suggested that the ratios of steroids (17αOHP + 4AD)/F, 11-DOF/17αOHP,
and 21-DOF may be more specific biomarkers for the diagnosis of 21OHD than that of
17αOHP and are expected to differentiate 21OHD from other types of CAH in which
17αOHP levels are elevated, such as 3βHSDD, 11OHD, and PORD. Although there are few
reports of the levels of (17αOHP + 4AD)/F, 11-DOF/17αOHP, or 21-DOF in these forms
of CAH, some cases suggest the potential usefulness of the five steroids in the screening
panel. 21DOF would not be elevated in 3βHSDD because, in a model of partial 3βHSD
deficiency preterm infants, 21DOF is not grossly elevated [34]. In patients with 11-OHD,
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21-DOF levels are reported to be normal, and 11-DOF is markedly elevated, presumably
increasing the 11-DOF/17αOHP ratio [53]. Urinary steroid profile analyses of PORD
suggested that the ratio of pregnanetriolone (Ptl)/tetrahydrocortisone steroids (THEs) and
a specific cutoff of 11β-hydroxyandrosterone (11HA) would be useful for differentiating
PORD from 21OHD. Ptl, THEs, and 11HA are metabolites of 21DOF, 11DOF + cortisol, and
4AD, respectively, which are included in the LC-MS/MS screening panel [54].

Accordingly, in combination with other clinical symptoms and signs, such as poor
body weight gain and high ACTH, 21OHD can be diagnosed based on the results of NBS
by LC-MS/MS [31,34]. However, we cannot directly apply the screening criteria to the
diagnostic criteria, and for establishing the diagnostic criteria, an accumulation of the cases
is required.

5. Database Composition and Improvement of Screening Program

For better and more efficient management of the CAH, the screening programs need
persistent improvement in quality. By examining reliable follow-up studies, the outcomes
and the experiences of the screening should be retrospectively evaluated and shared among
the screening laboratories [25,55,56]. For short-term outcomes, most laboratories and local
governments have introduced follow-up surveys in Japan, using the results for more
efficient screening by decreasing false positives and early availability of screening results.

On the other hand, the assessment of long-term outcomes for CAH patients identified
by screening is challenging. A nationwide registry system is required to establish efficient
long-term follow-up systems. In Japan, the current screening system depends on each local
government; thus, the demanding task of organizing a cross-regional collaborative system
that involves local governments, local laboratories, and medical institutes is required.

Recent studies have revealed that 21OHD patients have substantial risks for metabolic
syndrome in adulthood [57–60]. The metabolic syndrome in 21OHD has been assumed
to be due to long-term glucocorticoid therapy [61]. However, other causes, such as fetal
environments, have also been suggested [62,63], and the pathophysiology of the condi-
tion remains unknown. Further, the quality of life of 21OHD patients in adulthood is
largely unknown. Especially in female patients, their gender issues should be clarified in
detail [64–66]. As mentioned previously, before the introduction of the screening, 21OHD
patients had substantial risks for neurological sequelae, which are presumably caused
by the adrenal crisis during the neonatal period [14,17]. Therefore, the introduction of
NBS would reduce the risk for neurological sequelae [67], but currently, available data is
limited. We should keep in mind that, even after the introduction of the screening, there
are a substantial number of 21OHD patients who developed severe salt wasting before the
introduction of therapy. Further, a recent study suggested the number of hyponatremic
episodes is an independent risk for lower IQ, suggesting that for optimizing the manage-
ment of 21OHD patients during childhood, preventing episodes of severe adrenal crisis
is crucial [68]. Thus, clarifying long-term outcomes will provide valuable information for
improving the screening logistics.

Long-term outcomes will also provide valuable insights for evaluating the cost-
effectiveness of screening. Although several analyses have been performed economically,
they were based on short-term outcomes with various analytical models, leading to incon-
sistent results [69–71]. In Japan, economic analyses based on detailed clinical data have not
been performed. To better understand the cost-effectiveness of screening, comprehensive
approaches based on long-term outcomes are essential.

Despite not covering 21OHD patients, the introduction of several registry systems for
rare congenital diseases has encouraged us. In the EU, some international collaboration-
based registry systems for rare congenital diseases, such as the European Registry and
Network for Intoxication type Metabolic Diseases (E-IMD) and the European Registry
and Network for Homocystinurias and Methylation Defects (E-HOD), have been estab-
lished [25,72–75]. Further, the Japanese Society for Inherited Metabolic Disease has suc-
cessfully introduced the registry system, “JaSMIn”, for patients with inherited metabolic
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disease (https://www.jasmin-mcbank.com/, visited 23 April 2021). The limitation of
this registry system is the unknown coverage rate due to voluntary patient registration.
However, the registry is designed to cover a broad spectrum of rare inherited metabolic
diseases that can be discovered by NBS, and it will provide valuable insights, enabling
feedback on newborn screening in the future, including economic aspects.

Ideally, for establishing feedback systems with long-term follow-up surveys, close
collaboration among the screening laboratory professionals, pediatricians, primary care
providers, and clinical epidemiologists is essential [55,56,76,77]. Currently, to share the
outcomes of the screening and updating of technical information, the Japan Society for
Neonatal Screening has a collaborative laboratory integrated committee (Gijutsubu-kai). We
expect that with this committee, pediatric endocrinologists and local governments would
be able to construct large collaboration-based reports and infrastructure. A nationwide
registry system in which all results of infants are registered and evaluated periodically
would lead to further methodological improvements.
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