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Constraint-based modeling 
identifies new putative targets to 
fight colistin-resistant A. baumannii 
infections
Luana Presta   1, Emanuele Bosi1, Leila Mansouri1, Lenie Dijkshoorn2, Renato Fani1 & Marco 
Fondi1

Acinetobacter baumannii is a clinical threat to human health, causing major infection outbreaks 
worldwide. As new drugs against Gram-negative bacteria do not seem to be forthcoming, and due to 
the microbial capability of acquiring multi-resistance, there is an urgent need for novel therapeutic 
targets. Here we have derived a list of new potential targets by means of metabolic reconstruction and 
modelling of A. baumannii ATCC 19606. By integrating constraint-based modelling with gene expression 
data, we simulated microbial growth in normal and stressful conditions (i.e. following antibiotic 
exposure). This allowed us to describe the metabolic reprogramming that occurs in this bacterium 
when treated with colistin (the currently adopted last-line treatment) and identify a set of genes that 
are primary targets for developing new drugs against A. baumannii, including colistin-resistant strains. 
It can be anticipated that the metabolic model presented herein will represent a solid and reliable 
resource for the future treatment of A. baumannii infections.

Bacteria of the genus Acinetobacter were long considered harmless, environmental organisms, but from the 1960s 
onward, an increasing number of reports have documented the emergence of Acinetobacter strains of this genus 
among severely ill, hospitalized patients. These strains showed unusually high levels of resistance to antibiotics 
that could be used at the time. Also, they gave rise to cross-infections and outbreaks among patients1. Recently, 
resistance to antibiotics in A. baumannii has risen to worrisome proportions (as reviewed in ref. 2), from sus-
ceptible prior to the 1960s, to multidrug-resistant (MDR) (end 1970s), and extended- and pan-drug resistant 
(XDR, PDR) today. Currently, A baumannii is one of the most prominent organisms that are both antibiotic 
resistant and involved in health associated infections, the so-called ESKAPE organisms (that include Enterococcus 
faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and 
Enterobacter spp.3).

One of the last-line treatments for MDR A. baumannii is colistin, a positively charged molecule that, by 
interacting with the lipid A moiety of lipopolysaccharide (LPS), causes disorganization of the outer membrane. 
Unfortunately, colistin resistance in A. baumannii has also been reported, thus highlighting the urgency of finding 
new molecules to face this threat4. Although careful monitoring, antimicrobial stewardship and measures to pre-
vent spread in health care institutions are important for controlling A. baumannii infections, new antimicrobial 
agents and/or strategies are urgently required to eradicate antibiotic resistant strains from affected patients.

To address new possible solutions, a system-level study of antibiotic-response in A. baumannii is required. 
Metabolic network reconstruction and its conversion to a mathematical framework has become a cornerstone 
for studying the systems biology of metabolism5, allowing the examination of the connection between pheno-
type and genotype and driving biological discoveries. In particular, constraint-based tools (such as Flux Balance 
Analysis, FBA) enable the estimation of the rate that metabolites’ flow through a metabolic network and to com-
pute cellular phenotypes for various growth conditions6. Interestingly, by identifying those genes whose dele-
tion is predicted to impair cellular growth, this in silico technique can be used to predict essential genes (EGs) 
at a genome-scale. Following a metabolic modelling approach, several EGs datasets have already been derived 
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for important pathogens such as Helicobacter pylori7, Pseudomonas aeruginosa8, Mycobacterium tuberculosis9, 
and Staphylococcus aureus10. Usually, such predictions are performed simulating growth in an arbitrarily defined 
medium, accounting for the main nutrients used by the microbe and without imposing any additional constraint 
to the model. Indeed, the search space of essential genes predicted can be narrowed by imposing additional 
constraints on the model. One possibility consists of modulating the flux admissible across each reaction on the 
basis of the expression values of the corresponding genes. By doing so, it is possible to generate context-specific 
models that reflect the actual set of reactions employed11. This approach promises to reduce i) the gap between 
the predicted and real cellular metabolic landscapes, and ii) the number of false positives/negatives in EGs pre-
dictions. Additionally, it might reveal hints for the synergistic use of antibiotics and, in particular, to the possible 
additional targets that might arise from the adaptation/response of a microbe’s metabolism to a single antibiotic. 
Indeed, changes in gene expression might redirect the cellular metabolic fluxes in such a way that novel and 
untapped essential reactions may emerge, representing good candidates for a synergic antibiotic. Despite that the 
use of antibiotics in combination is sometimes questionable, this approach can be considered in cases of severe 
infections and it has been shown to be effective in the case of Pseudomonas and Acinetobacter spp.12, 13.

Here, we explored the system-level metabolic consequences of A. baumannii exposure to colistin. We inte-
grated gene expression data during exposure to colistin14 with a newly reconstructed genome scale metabolic 
model, allowing for constraint-based modelling of the type strain ATCC 19606. Our data revealed the metabolic 
reprogramming that occurred in this strain following the establishment of a stressful condition such as the pres-
ence of an antibiotic. Furthermore, the metabolic reconstruction provided here represents an important resource 
for the future understanding of A. baumannii metabolism and for the detection and identification of novel drug 
targets.

Results and Discussion
Genome-scale A. baumannii ATCC 19606 model is consistent with large scale phenotypic 
data.  A preliminary draft reconstruction of the A. baumannii ATCC 19606 metabolic model was obtained 
through the Kbase server (http://kbase.us). This was manually curated as described in Methods. Afterwards, 
we used previously published large-scale phenotypic data15 to validate our reconstruction over a large set of 
experimental tests. Manual curation was performed by comparing FBA outcomes with such auxotrophies data 
(determined through Phenotype Microarray (PM) technology). During this process, the capability of our model 
to represent the observed phenotypes was tested.

Growth rates were firstly estimated in silico in simulated Simmons minimal medium (a standard bacterio-
logical medium that contains only essential inorganic salts) under aerobic conditions by iteratively probing each 
C-source used in PM plates. During these simulations, biomass optimization was selected as the model objective 
function (O.F.). Results of the simulations (either “growth” or “no growth”, i.e. the estimated flux value across bio-
mass assembly reaction) were compared with the activity directly measured during an experimental phenotype 
microarray experiment, and discrepancies identified between the in silico and experimental data were manually 
adjusted as possible (such as by filling in missing transport reactions or metabolic gaps).

Following this procedure, we reached an overall agreement of about 84% between the in silico and experimen-
tal data: out of the 67 in silico screened metabolites, 24 were correctly found to be carbon and energy sources for 
A. baumannii ATCC 19606 (true positives) and 32 not (true negatives) while only 10 disagreements remained, 
5 false negatives and 5 false positives. All data are briefly summarized in Fig. 1, and a detailed description of the 
outcomes of the comparison is reported in Supplementary Material S1, Supplementary Table 1.

The current version of the A. baumannii ATCC 19606 genome-scale metabolic model (named iLP844 accord-
ing to the current naming convention16) contains 1628 reactions (162 exchange reactions), 1509 metabolites, 

Figure 1.  Comparison between in silico and wet-lab experimental outcomes.
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and 844 genes (~23% of all ORFs present in this organism, see Supplementary Material S2). Importantly, this 
proportion is comparable with the coverage of Escherichia coli K12 model, iAF126017 (27%), A. baylyi ADP1 
model, iAbaylyi18 (22%), and A. baumanni AYE model, AbyMBEL89119 (17%). A COG classification of all the 
genes embedded in the model is provided in Table 1. The final A. baumannii ATCC 19606 model is available 
as Supplementary Material in SBML validated format and embedding cross-references to several databases 
(Supplementary Material S3).

Constraint-based modelling identifies metabolic EGs.  As already mentioned, the identification of 
EGs is one of the key-steps in a drug discovery pipeline. Indeed, both general and condition-specific EGs can be 
distinguished20. The formers are required to sustain life under virtually all growth conditions; conversely, under 
specific constraints, changes of central metabolism may occur leading not only to a change in flux distribution 
throughout the network, but also to  changes in gene essentiality and to the appearance of condition-specific 
essential genes. Hence, we systematically evaluated relevant switches in both unconstrained and constrained 
models (different scenarios), by imposing the necessary constraints to the metabolic reconstruction. Accordingly, 
screens for EGs were performed for multiple specific conditions: starting by simply changing the set of available 
nutrients (i.e. simulating different environmental niches) and then by simulating stressful situations such as anti-
biotic exposure and mutations (using available expression data in such conditions).

Nutrient availability influences identified metabolic Egs.  As we were interested in modelling the system in a 
gradually constrained manner, we initially simulated an arbitrary rich medium, allowing our model to have vir-
tually all the nutrients needed – as likely happens inside of a host19. To do so, we set the lower bound of exchange 
reactions as described in methods. Then we performed in silico gene deletions for each gene in the model. 
Accordingly, each gene was defined as essential if its elimination destroyed the network’s ability to synthesize at 
least one key biomass molecules (i.e. the model predicts no-growth); otherwise, the gene was considered to be 
dispensable. Gene essentiality analysis was performed through both FBA and MOMA approaches (see Methods), 

COG Functional 
Category Description

N. of 
genes

J Translation, ribosomal structure and 
biogenesis 28

A RNA processing and modification 0

K Transcription 11

L Replication, recombination and 
repair 21

B Chromatin structure and dynamics 0

D Cell cycle control, cell division, 
chromosome partitioning 1

Y Nuclear structure 0

V Defense mechanisms 4

T Signal transduction mechanisms 5

M Cell wall/membrane/envelope 
biogenesis 60

N Cell motility 0

Z Cytoskeleton 0

W Extracellular structures 0

U Intracellular trafficking, secretion, 
and vesicular transport 0

O Posttranslational modification, 
protein turnover, chaperones 20

C Energy production and conversion 120

G Carbohydrate transport and 
metabolism 61

E Amino acid transport and 
metabolism 182

F Nucleotide transport and metabolism 57

H Coenzyme transport and metabolism 82

I Lipid transport and metabolism 97

P Inorganic ion transport and 
metabolism 71

Q Secondary metabolites biosynthesis, 
transport and catabolism 16

R General function prediction only 32

S Function unknown 12

X No Functional Class Found 15

Table 1.  Number of genes in the model per COG categories.
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which both lead to the identification of 67 EGs. Fig. 2A shows the values of the ratio between the predicted 
growth rate of the gene knock-out mutant and the wild type strain (GR ratio, see Methods). The complete list of 
EGs and their functions is reported in Supplementary Material S4.

Next, we repeated EGs prediction by simulating growth in a minimal medium (Simmons medium, as defined 
in Supplementary Material S1, Supplementary Table 2). As shown in Fig. 2B, this approach labelled a total of 
138 genes as indispensable for growth in this condition (see Supplementary Material S4 for the complete list). 
Differences emerging from these two simulations highlight how nutrient availability affects cell metabolism 
and, interestingly, how different environmental pressures influence gene essentiality. Particularly, 67 genes were 
predicted to be essential under both the tested growth conditions, while 71 are likely to become essential only 
when limited nutrient availability force the cell to reprogram its metabolic behaviour (i.e. in Simmons medium, 
Fig. 3A).

Figure 2.  GRratio value for each gene deletion in rich (A) and minimal (B) media. Blue and red lines represent 
MOMA and FBA predictions, respectively. Please note that, in order to make the analysis more comprehensive, 
also gap-filling genes (i.e. those virtually coding for gap-filling reactions) were included, leading to a total of 
1043 simulated knock-outs.

Figure 3.  (A) A venn diagram proportionally showing EGs predicted only in Simmons medium (pink), EGs 
predicted only in rich medium (green), and EGs predicted by both (blue). (B) A venn diagram proportionally 
showing EGs predicted in silico only by iLP844 (pink), EGs obtained only by wet-lab experiment in ATCC 
17978 (green), and EGs predicted by both methods (blue). (C) A venn diagram proportionally showing 
essential reactions predicted in iLP844 (pink), essential reactions predicted only in A. baumannii AYE model 
(AbyMBEL891) (green), and essential reactions predicted by both (blue). (D) A venn diagram proportionally 
showing EGs predicted only in iLP844 (pink), EGs predicted only by wet-lab experiment in A. baumannii 
ATCC 19606 cell (green), and EGs predicted by both (blue).
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Predicted EGs are consistent with available experimental datasets.  A large body of data exists concerning A. bau-
mannii gene essentiality. Here we used such information both to validate our EGs prediction and to understand 
whether the identified EGs sets are particular to A. baumannii ATCC 19606.

First we compared the EGs dataset obtained in the arbitrary rich medium to that obtained with an in vivo 
experiment on A. baumannii ATCC 17978 pathogenesis21. By using LB medium (a well-known bacteriological 
rich medium), Wang et al.21 labelled 481 genes as essentials for that strain. However, not all of them were com-
parable with our predictions since a large fraction was neither metabolic or possessed an orthologous gene in 
A. buamannii ATCC 19606. In both cases these genes are absent in iLP844. For the same reason, not all the 67 
EGs found through our simulation were comparable with the reported experiment. After performing all these 
necessary restrictions, we reached the result shown in Fig. 3B, i.e. 42 genes have been predicted to be essential 
by both approaches (in silico and wet-lab) for the two A. baumannii strains considered (Fig. 3B). A complete 
description of these EGs is provided in Supplementary Material S4 and represents an experimentally validated 
dataset in the context of A. baumannii drug target identification. Nevertheless, the two experiments show large 
discrepancies. The most likely reason for such inconsistency is strains genomic diversity, as previously reported 
for E. coli strains22.

Furthermore, our predictions in arbitrary rich medium were compared to those achieved performing the 
same analysis on the AbyMBEL891 model, an existing model of A. baumannii AYE19. In order to implement 
the simulation, it was necessary to perform a preliminary editing step on the AbyMBEL891 model, as the entire 
set of gene-reaction-rules was missing from the main reconstruction file. This difficulty in running the analysis 
highlights the need for a common protocol to be adopted during metabolic reconstruction and a standard to be 
reached in order to facilitate model re-use and data sharing among research groups. Nevertheless, after including 
the genes in the Abymbel891 model, we carried out single gene deletion analysis on both models, as described 
in the methods. As shown in Fig. 3C, 48 genes were predicted to be essential in both models, whereas 18 and 37 
EGs were specific for A. baumannii ATCC 19606 and AYE, respectively. Information about the gene function are 
reported in Supplementary Material S4.

Comparisons were also carried out between our in silico predictions and wet-lab results in minimal 
(Simmons) medium. Specifically, we compared our EGs set to that obtained by Dorsey et al. through insertional 
mutagenesis experiments with A. baumannii ATCC 1960623, where the metabolic deficiency of insertion deriva-
tives was subsequently confirmed, identifying essentiality of 10 disrupted genes. Repeating the assay in silico, our 
model correctly represented the phenotypes of the A. baumannii mutants, with 8 out of the 10 genes predicted 
as essential by Dorsey and colleagues also shown to be essential in iLP844 (Fig. 3D, Supplementary Material S4). 
Additionally, in 6 out of the 7 cases, A. baumannii ATCC 19606 model growth was correctly restored (as done in 
the corresponding wet-lab experiments) by adding to the minimal medium the metabolite(s) whose production 
was affected by the mutation.

Antibiotic treatment defines condition-specific models.  Although a large fraction of the predic-
tions was supported by previous experimental data, a possible source of error, using the methodology described 
above, stems from the observation that not all the reactions of the model will be active during growth in a given 
physiological condition. In particular, changes in gene expression are likely to influence the activity rate of the 
corresponding cellular metabolic reactions, leading to the observation that a given reaction can be considered 
‘turned on’ or ‘off ’ on the basis of the expression levels of the encoding gene(s). Using available computational 
methodologies, it is possible to modulate the flux across each reaction on the basis of the expression values of the 
corresponding genes. This permits to take a picture of the current metabolic state and tightening up the predic-
tive capabilities of the model itself. Accordingly, as the dynamic changes of metabolic reprogramming are likely 
mirrored by changes in gene essentialities, a possible solution for avoiding or reducing false positives is to merge 
transcriptomics data of the tested scenario into the genome-scale model.

Arguably, one of the most interesting physiological conditions of A. baumannii strains is the exposure to 
antibiotics and to colistin in particular14. Importantly, both the (metabolic) consequences and the occurrence of 
targets to be used in a synergic treatment are, currently, almost untapped. In order to study the dynamic changes 
of the metabolic network following antibiotic exposure and to derive a more realistic picture of gene essenti-
ality patterns in a real scenario (antibiotic treatment), we used available transcriptomic data for A. baumannii 
ATCC 19606 in response to colistin treatment14. Up-regulation and down-regulation ratios (and correspond-
ing P-values) of genes were combined with the iLP844 by using MADE (Metabolic Adjustment by Differential 
Expression)24. Briefly, MADE uses statistically significant changes in gene expression measurements to determine 
binary expression states (highly and lowly expressed reactions) i.e. reactions are turned on and off depending on 
the changes in mRNA transcript levels. Thus, by mapping gene expression data into the model, the in silico meta-
bolic predictions are more consistent with the actual physiological state of the cell.

In the experiment by Henry et al.14, A. baumannii was grown in two different media, i.e. with and without 
2 mg/L of colistin, and then sampled at 15 and 60 minutes after exposure. Following the described approach, we 
integrated the available transcriptomic data regarding all the metabolic genes embedded in our in-silico recon-
struction (i.e. about 80 genes). Accordingly, we obtained four distinct models, each representing the predicted 
functional metabolic state of the cell at both 15 and 60 minutes, treated and untreated with colistin. These models 
differ in that some of their reactions are (completely) ‘turned on’ or ‘off ’ according to the measured levels of their 
corresponding genes. Afterwards, optimization of the four models was performed, allowing the analysis of flux 
distribution in the network and the occurring metabolic reshape.

Colistin exposure changes predicted metabolic fluxes in central A. baumannii pathways.  In 
order to highlight changes in the overall metabolic behaviour and to identify changes on the metabolic rewiring 
occurring after antibiotic exposure, we compared flux distributions at the two time-points by calculating the flux 
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ratio (RFratio, see Methods) of treated vs. untreated models, for all the reactions. However, FBA only provides one 
of the possible optimal solutions out of many alternative (and feasible) cellular flux distributions. Hence, in order 
to correctly predict metabolic changes following antibiotic exposure we restricted the feasible solution space by 
performing Flux Variability Analysis (FVA)25. This approach allows estimating the minimum and maximum flux 
admissible across each reaction (under the same constraints as in FBA) and hence it can be used to estimate the 
correctness and accuracy of FBA predictions (see Methods).

As shown in Supplementary Material S5, according to FVA, the range of admissible flux is sometimes very 
large (spanning from the minimum −1000 to maximum 1000 mmol/g*h−1 in some cases), revealing the lack of 
accuracy in some of FBA-derived predictions. We here used FVA outcomes (as described in Methods) to filter out 
those reactions whose fluxes display little variation. In other words, each reaction was considered for downstream 
analyses only if both the maximum and minimum FVA predicted fluxes did not differ from the FBA predicted 
flux by more than 20%. Consequently, we were left with 901 reactions at 15 minutes and 970 reactions at 60 min. 
It is worth noting that several intervals of admissible flux ranges were tested and we report in Supplementary 
Materials S1, Supplementary Figure 1 the number of reactions filtered for each set of intervals. After carrying out 
this preliminary step, we observed the effects of the treatment at the metabolic level (for each reaction) by com-
paring the flux values in the untreated vs. treated condition.

Both qualitative and quantitative flux changes were analysed by dividing the reactions into three categories 
(‘steady’, ‘increasing’, and ‘decreasing’, see Fig. 4) according to their trends in the examined experimental condi-
tions. Also, we report a survey of the pathways in which they are involved in and their relative abundance for each 
category. Reactions’ fluxes were considered ‘steady’ if their values did not change in the two conditions, otherwise 
they were defined to be ‘increasing’ or ‘decreasing’ according to the corresponding trend.

As shown in Fig. 4, at both 15 and 60 min time-points there is an increase in flux in most of the reactions. 
Interestingly, such change in flux mainly occurs in three biosynthetic pathways: fatty acid, peptidoglycan, and 
lysine biosynthesis. On the other hand, under the given constraints, there is a change in flux in some catabolic 
pathways (mainly involved in sugars and nucleotide metabolism). In our opinion, such a finding could be related 
to the rearrangement of the external membrane layer, a well-known effect of colistin treatment. If this is true, it is 
possible that the cell reacts to the antibiotic treatment by trying to repair the damage established by colistin while 
at the same time redirecting a certain amount of LPS components to catabolic processes.

Also, we would like to point-out that, although a down-regulation of certain genes involved in fatty acids 
biosynthesis was detected by Henry et al., here our data suggest that it does not necessarily imply a turning-off of 
the pathway. On the contrary, in our simulation fatty acid biosynthesis registers an increase in flux, probably as a 
side-effect of LPS disassembly as stated above.

Figure 4.  Abundance plot of reactions affected by colistin treatment at 15 (blue) and 60 (pink) minutes 
arranged according to three categories: ‘steady’, ‘increasing’, ‘decreasing’. Pathways which they belong to are 
reported.
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Colistin exposure changes gene essentiality patterns.  According to the new constraints taken into 
account, gene essentiality was re-evaluated by calculating growth ratios (FBA and MOMA) at both 15 and 60 min-
utes after exposure to colistin. As for the analysis involving nutrient availability, shifts in gene essentiality emerged 
following antibiotic stress. The complete sets of the predicted EGs for each condition have been reported in 
Supplementary Material S4. As with the previous case, we can easily recognize genes likely to be essential in both 
conditions (treated and not) and, more interestingly, genes that emerged as essential only after the treatment. 
Specifically, following 15 minutes of colistin exposure, a total of 87 EGs were predicted: 66 were required both in 
presence and absence of colistin, but an additional 21 EGs were marked as condition-specific: 12 related to the 
non-treated model and 9 related to the treated one, reported in Table 2 and in Fig. 5A.

The same outline has been depicted in the second time-point condition (60 minutes): we identified 12 and 5 
condition-specific EGs in the absence and in the presence of the antibiotic, respectively, see Table 2. Moreover, we 
found the same set of 66 EGs mentioned above (see Fig. 5B), suggesting that this represents a functionally relevant 
set of genes for sustaining growth in A. baumannii ATCC 19606. Interestingly, however, some genes switch from 
the ‘essential’ condition to the ‘non-essential’ one, following the exposure to colistin.

Locus Tag Function
15′ without 
colistin

15′ with 
colistin

60′ without 
colistin

60′ with 
colistin

LPS− 
without 
colistin

LPS− with 
colistin

HMPREF0010_00435 phosphopyruvate hydratase yes no yes no no no

HMPREF0010_00813 fructose-bisphosphate aldolase class II Calvin cycle subtype yes no yes no no no

HMPREF0010_00815 phosphoglycerate kinase yes no yes no no no

HMPREF0010_00975 amino acid ABC transporter periplasmic protein yes no yes no no no

HMPREF0010_01733 PAP2 superfamily protein yes no yes no no no

HMPREF0010_01995 23-bisphosphoglycerate-independent phosphoglycerate mutase yes no yes no no no

HMPREF0010_02140 fructose-16-bisphosphatase yes no yes no no no

HMPREF0010_03273 glucose-6-phosphate isomerase yes no yes no no no

HMPREF0010_00382 phosphotransferase system fructose-specific EI/HPr/EIIA 
component yes no yes no no no

HMPREF0010_03275 UTP-glucose-1-phosphate uridylyltransferase yes no yes no no no

HMPREF0010_01305 alphaalpha-trehalose-phosphate synthase (UDP-forming) yes no yes no no no

HMPREF0010_01353 glutamine-dependent NAD+ synthetase yes no no no no no

HMPREF0010_00342 ornithine carbamoyltransferase no yes no no no yes

HMPREF0010_00949 malonate decarboxylase epsilon subunit no yes no yes no no

HMPREF0010_01149 acetyl-CoA carboxylase biotin carboxylase no yes no no no no

HMPREF0010_01969 argininosuccinate lyase no yes no yes no no

HMPREF0010_02047 carbamoyl-phosphate synthase large subunit no yes no no no yes

HMPREF0010_02048 carbamoyl-phosphate synthase small subunit no yes no no no yes

HMPREF0010_02972 argininosuccinate synthase no yes no no no yes

HMPREF0010_03445 34-dihydroxy-2-butanone 4-phosphate synthase no yes no no no no

HMPREF0010_00048 sugar kinase no yes no no no no

HMPREF0010_02330 glutamine synthetase type I no no yes no no no

HMPREF0010_01216 quinolinate synthetase complex A subunit no no no yes no no

HMPREF0010_02175 thymidylate kinase no no no yes no yes

HMPREF0010_03295 nicotinate-nucleotide diphosphorylase (carboxylating) no no no yes no no

HMPREF0010_01705 ketol-acid reductoisomerase no no no no yes no

HMPREF0010_00392 ornithine-oxo-acid transaminase no no no no no yes

HMPREF0010_00419 N-acetyl-gamma-glutamyl-phosphate reductase no no no no no yes

HMPREF0010_00840 methionine adenosyltransferase no no no no no yes

HMPREF0010_01215 ArgJ protein no no no no no yes

HMPREF0010_01382 acetylglutamate kinase no no no no no yes

HMPREF0010_01506 methionine synthase no no no no no yes

HMPREF0010_01669 3-methyl-2-oxobutanoate hydroxymethyltransferase no no no no no yes

HMPREF0010_01887 2-heptaprenyl-14-naphthoquinone methyltransferase no no no no no yes

HMPREF0010_01969 argininosuccinate lyase no no no no no yes

HMPREF0010_02002 riboflavin synthase alpha subunit no no no no no yes

HMPREF0010_02344 adenosylhomocysteinase no no no no no yes

HMPREF0010_0275979 glutamate racemase no no no no no yes

HMPREF0010_03444 67-dimethyl-8-ribityllumazine synthase no no no no no yes

Table 2.  Complete set of condition specific EGs found. “Yes” and “no” refet to gene essentiality in the 
corresponding condition.
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The two new sets of EGs show how changes in gene expression induced by the presence of the antibiotic might 
influence gene essentiality patterns in the strain ATCC 19606 and provide additional, nontrivial targets for drug 
design in such an organism. We also performed additional robustness analyses in order to test whether nutrients 
depletion occurring in treated and untreated samples during the in vivo experiments could impact the set(s) of 
predicted EGs. Specifically, the robustness of the number of predicted EGs in each of these conditions (i.e. treated 
vs. untreated samples) in respect to possible variations in the medium composition was assessed via random 
permutation. We tested up to 1,000 different nutritional compositions as described in detail in Supplementary 
Material S1, Supplementary Figure 2). The results showed that possible changes in the nutritional environment 
had only minor implications for the set of predicted EGs.

Further, with the aim of discriminating whether the products of all the identified hypothetical EGs are A. 
baumannii specific or have orthologs in Homo sapiens, meaning that they would not represent good candidates 
for antibiotic treatment development, the sequences of the identified potential EGs were used to probe the human 
genome. Based on this BLAST26 search (see Methods), we excluded from further studies those genes presenting 
more than 30% sequence identity with their human counterparts. Targeting of such genes is non-ideal since they 
may cause potential side-effects by perturbing critical components in the human body. All BLAST results are 
reported in Supplementary Material S6.

Among all the queries, we identified 46 (out of 73) general EGs and 4 (out of 12) condition-specific EGs 
that do not have any human orthologous. Thus, the 46 EGs represent valuable targets for further develop-
ment of brand new drugs against A. baumannii ATCC 19606 infections. However, it is relevant to remark that, 
while these 46 general EGs could have been detected in several conditions, the other 4 condition-specific EGs 
are the result of specific constraints integrated in the model (gene expressions data). Hence, as already men-
tioned, they are nontrivial detections and they could represent a suitable horizon in the field of colistin-coupled 
treatment. The four genes, named HMPREF0010_00949, HMPREF0010_02972 and HMPREF0010_03445, 
HMPREF0010_01216 respectively encode a malonate decarboxylase (epsilon subunit), an arginine succinate 
synthase, a 3-4-dihydroxy-2-butanone-4-phopsphate synthase and a quinolate synthase. Interestingly, malonate 
decarboxylase epsilon subunit has already been characterized in the closely related organism Pseudomonas 
putida and labelled as an indispensable component of the enzyme for the cyclic decarboxylation ofmalonate27. 
However, to the best of our knowledge, no therapies targeting this protein have been developed to date. The 
product of 3-4-dihydroxy-2-butanone-4-phopsphate synthase is an intermediate in the biosynthesis of ribofla-
vin. The enzyme requires a divalent cation, preferably Mg2

+, to be active. The step becomes essential after colistin 
treatment as the antibiotic is predicted to cause an increase in flux through this pathway, probably following 
the shutdown of other parts of the network due to the down regulation of the corresponding genes. The argi-
nine succinate synthase, is an enzyme catalysing the penultimate step in arginine biosynthesis (urea-cycle): the 
ATP-dependent ligation of citrulline to aspartate in order to form arginino-succinate, AMP, and pyrophosphate. 
The last EGs encodes for a bacterial specific enzyme that catalyses the second step in the de novo biosynthesis of 
NAD+ from aspartate.

EGs in colistin resistant A. baumannii.  Up to now, we have presented how metabolic reconstruction and 
mathematical modelling can be used to explore the strain’s metabolic response during colistin treatment and how 
it can lead to the identification of novel potential drug targets. Our last attempt is now to illustrate how, starting 
from the same available experimental data, the model can be employed as a ready-to use blueprint in order to test 
new hypothesis.

As it was reported by Moffatt et al.28, the mechanism responsible for colistin resistance is linked to LPS. 
Specifically, mutations in the lpxA, lpxC, and lpxD genes have been reported as the main cause of LPS loss, thus 
abolishing the initial charge-based interaction with the antibiotic. Hence, to simulate an A. baumannii LPS 
(LPS−) deficient and colistin-resistant strain, we removed this component from the biomass formulation in our 
genome-scale model. Then, to determine which genes are central for the cell’s survival in such a condition, we 
used the transcriptomic data of the mutant strain in the presence/absence of colistin at 60 minutes14 and mapped 
the data onto the new LPS− model. After this, we repeated the EGs prediction pipeline described above.

The analysis yielded a total of 55 and 72 EGs in the untreated and treated condition, respectively. Even in this 
case, the two sets share several elements (54 EGs) that remain mandatory for the cell in the two conditions (listed 
in Supplementary Material S4). Additionally, it is possible to observe that 18 genes become essential (reported 

Figure 5.  Venn diagrams proportionally showing EGs predicted only in absence of colistin (pink), EGs 
predicted only in presence of colistin (green), and EGs predicted by both (blue), at 15 minutes (A) and 
60 minutes (B).
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in Table 2) only after antibiotic exposure: 9 of them were already found to be EGs in the wild type strain while 
9 represent specific EGs of the mutant. Since the latter are non-trivial EGs (obtained through gene expression 
integration and introduction of an antibiotic resistance promoting mutation into the model) they have been 
re-used as seed for an additional BLAST search against the human genome (see Supplementary Material S6). 
The search led to the identification of 5 genes that do not have orthologs in humans: HMPREF0010_01215 
encoding for glutamate-N-acetyltransferase (member of the ornithine acetyltransferase, OAT, family), 
HMPREF0010_00419, encoding for N-acetyl-gamma-glutamyl-phosphate reductase, HMPREF0010_01382 
encoding for N-acetyl-L-glutamate-kinase, all of which are involved in the arginine biosynthesis pathway, 
HMPREF0010_0275979 that encodes for a glutamate-racemase and HMPREF0010_02344 that encodes for an 
adenosylhomocysteinase. This group of 4 EGs represents a potential achievement obtained from this work as it 
suggests specific targets to be taken into consideration when developing therapies in combination with colistin in 
an LPS- strain.

Predicted EGs are common in A. baumannii.  Finally, we checked the distribution of EGs predicted for the strain 
ATCC 19606 within the entire A. baumannii species. The sets of predicted EGs were searched in all of the 1099 A. 
baumannii genomes sequenced to date, as described in the Methods. The overall result is shown in Supplementary 
Material S1, Supplementary Figure 3. The general trend observed was that more than 90% of the genomes ana-
lysed possessed the searched queries (identity >30%). Also, our analysis shows that this tendency is kept almost 
unchanged even when imposing an identity threshold greater than 50%, 70% and 90%. Accordingly, it can be 
stated that the possible target genes are broadly distributed and their sequence is conserved at the A. baumannii 
species level. Although we do not have any information about the EGs at such a wide level, this preliminary result 
is encouraging, since it expresses the possibility that the target genes we indicated for A. baumannii ATCC 19606 
are probably common targets in most of A. baumannii type infections.

Conclusions
In this work, we have reconstructed and validated a genome-scale metabolic model of A. baumannii ATCC 19606. 
The model is comprehensive and accurate, as it covers ~23% of all CDSs in the genome of this microorganism 
and it was shown to have 84% agreement with Phenotype Microarray growth experiments. Based on the model’s 
reliability, we applied constraint-based modelling to derive a global understanding of the behaviour of this met-
abolic system. By integrating gene expression data with constraint-based modelling we described the metabolic 
reprogramming occurring after colistin-exposure in A. baumannii and the changes in the pattern of gene essen-
tiality during this stress condition. All the sets of condition-specific putative target genes that we propose have 
been compared (and partially validated) with the results obtained from experiments found in the literature. Some 
of these genes, although not yet experimentally validated, might represent primary targets for future research 
on the treatment of both the wild type and LPS-mutant (i.e. colistin resistant) strains. Our results have practical 
implications for the identification of new therapeutics as the identified essential genes can be used in drug-design 
pipelines. Moreover, we showed that the sequences of predicted EGs for the type strain ATCC 19606 are shared 
by most of the members of A. baumannii species, encouraging further research to check whether they are valuable 
drug targets for a larger number of strains than currently known. Finally, it can be anticipated that the iLP844 
model illustrated herein represents a reliable and solid platform for further developments and the system-level 
understanding of the physiology of A. baumannii representatives and for the treatment of their infections.

Methods
Draft model reconstruction.  We obtained a draft metabolic model of A. baumannii ATCC 19606 based on 
the genome annotation using Kbase automated reconstruction method (https://kbase.us/)29. This reconstruction 
was then thoroughly inspected and refined by integrating data from additional functional databases (MetaNetX30, 
Bigg31, Seed32, KEGG33). Further integration was performed by searching for orthologous genes (genes likely hav-
ing an identical biological function in a different organism) in closely related organisms (Acinetobacter baumanii 
AYE, Acinetobacter baylyi ADP1, and Escherichia coli) through a BBH (Bidirectional Best Hit) approach (inPara-
noid34). Information regarding transport proteins was obtained probing the Transporter Classification Data Base 
(TCDB35) and transportDB36.

In order to predict proper phenotypes, the general biomass producing reaction of Gram negative bacteria 
automatically generated by Kbase was substituted with a more accurate one that takes into account strain’s specific 
components, which was recovered from the previously reported model of the related strain A. baumannii AYE, 
AbyMBEL89119.

Metabolic modelling.  The reconstructed model was analysed using CoBRApy-0.4.1 COnstraints-Based 
Reconstruction and Analysis for Python37 and COBRAToolbox-2.038 in MATLAB® R2016a (Mathworks Inc.). 
Gurobi 6.5.0 (www.gurobi.com) and GLPK 4.32 (http://www.gnu.org/software/glpk/) solvers were used for com-
putational simulations presented. A MATLAB® script to obtain all the results shown in this manuscript is pro-
vided as Supplementary Material S7.

Two growth media were considered during the in silico simulations:

Rich medium.  Lower bounds of salts uptake reactions were set to −1000 mmol/g*h−1 in order to mimic 
non-limiting conditions. Carbon sources uptake reactions were set to −100 mmol/g*h−1.

Simmons medium.  Lower bounds of all uptake reactions accounting for the nutrients present in Simmons 
medium39 (see Supplementary Material S1, Supplementary Table 2), were set to −1000 mmol/g*h−1, to mimic 
non limiting conditions, only the C-source (citrate) was set to −5.
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FVA.  FVA analysis allows the determination of the span of possible flux variability (i.e. the maximum and min-
imum values of all the fluxes that satisfy the given constraints) while keeping the same optimal objective value.

This approach has been used in this work in order to impose bounds to FBA flux predictions (fFBA), which are 
notably non-unique. In fact, for any optimal solution found through FBA there may exist alternate flux distribu-
tion patterns yielding the same growth rate. Hence, the space of reliable FBA-flux predictions has been restricted 
by selecting only those that occur in the interval defined as follows:

< ≥ . ∗ ∧ ≤ . ∗with f 0 f 1 2 f f 0 8 f (1)FBA FVA, min FBA FVA, max FBA

> ≥ . ∗ ∧ ≤ . ∗with f 0 f 0 8 f f 1 2 f (2)FBA FVA, min FBA FVA, max FBA

Gene essentiality and flux ratios calculation.  Gene essentiality testing was performed by simulating 
deletion of each gene within the metabolic network and hence setting the associated reactions to carrying no 
flux (according to the corresponding Gene-Protein-Reaction (GPR) rule). To predict the growth of the mutant 
strain and determine the set of EGs, we used two different approaches, FBA and MOMA40. The main difference 
between them is that while the first predicts growth yield and metabolic fluxes based on the biological assumption 
of optimal growth, the second does not assume optimality of growth but approximates metabolic phenotype by 
performing distance minimization in flux space. The second approach has been shown to be more accurate in 
predicting lethal phenotypes40. The knocked-out gene was defined as ‘essential’ according to the results obtained 
computing the ratio (GRratio) between the simulated knocked out strain growth rate (µKO) and the one predicted 
for the wild type strain (µWT). Formulated as:

= µ µGR / (3)ratio KO WT

Following this approach, if GRratio = 0, then the knocked out gene is labelled as essential. Conversely, in case 
GRratio = 1, the removal of the gene has no effect on the growth phenotype. Finally, when 0 < GRratio < 1, the 
deleted gene was labelled as fitness-contributing gene, i.e. its removal partially affects the capability of the cell to 
produce biomass.

As MOMA and FBA predictions may lead to different essential gene sets41, 42, 40, we used both approaches to 
compute essential genes in all the conditions tested in this work. Although no major differences were observed, 
results obtained with both methods are presented throughout the manuscript.

In order to evaluate the range of the change in the carried flux of each reaction in the model following colistin 
exposure, we compute the ratio between the predicted flux in the treated vs. the untreated conditions as follows:

= ϕ ϕRF ( / ) (4)ratio Treated Untreated

Values of RFratio equal to one indicate that no changes in the activity of the corresponding reactions were 
observed when simulating growth in the treated vs. the untreated conditions. Conversely, values of RFratio between 
0 and 1 or values greater than 1 will indicate a reduced or increased activity of the corresponding reactions in the 
treated condition, respectively. Finally, negative values of RFratio will indicate those reactions whose directionality 
is predicted to change after the treatment.

Transcriptomics data integration and data visualization.  In order to add transcriptional regula-
tory rules to the metabolic model, we imported the model from COBRA Toolbox into TIGER-1.2.0 0 (Toolbox 
for Integrating Genome-scale metabolism, Expression, and Regulation) framework (12). Then, the up- and 
down-regulation ratios of gene expression were mapped into the A. baumannii ATCC 19606 metabolic model 
by using MADE (Metabolic Adjustment by Differential Expression)24. The program uses significant statistical 
changes in gene or gene expression to create functional metabolic models. By adopting an optimization approach 
that applies Boolean rules, MADE connects reactions to the binary expression states of associated genes. The four 
arrays of genes to be switched-off yielded by MADE have been reported in Supplementary Material S8.

EGs BLAST searches in H. sapiens and A. baumannii species.  Protein sequences of the correspond-
ing EGs found in A. baumannii ATCC 19606 were probed against the human proteome to test their validity as 
potential drug target in infections with this pathogen, i.e. to exclude any cross-interactions between the drug used 
for the treatment and human proteome elements.

Queries were aligned to the protein sequences of H. sapiens using the default search parameters of the NCBI 
BLASTP online tool (BLOSUM62 matrix and gap costs equal to Existence 11, Extension 1). Results were consid-
ered positive (orthologous sequences found) if their sequence identity score value was equal to/greater than 30.

In addition, the global distribution of EGs was evaluated at the A. baumannii species level by probing them 
against all of sequenced genomes retrieved at NCBI ftp site, i.e. 1099 genomes. Particularly, the focus was centred 
on EGs found in Simmons medium and in rich medium, as well as for those found after 15 and 60 minutes of 
colistin exposure. BLAST search parameters and analysis of the results were performed as described above.
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