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SUMMARY

Germline development is sensitive to nutrient availability and environmental perturbation. Heat 

shock transcription factor 1 (HSF1), a key transcription factor driving the cellular heat shock 

response (HSR), is also involved in gametogenesis. The precise function of HSF1 (HSF-1 

in C. elegans) and its regulation in germline development are poorly understood. Using the 

auxin-inducible degron system in C. elegans, we uncovered a role of HSF-1 in progenitor cell 

proliferation and early meiosis and identified a compact but important transcriptional program 

of HSF-1 in germline development. Interestingly, heat stress only induces the canonical HSR 

in a subset of germ cells but impairs HSF-1 binding at its developmental targets. Conversely, 

insulin/insulin growth factor 1 (IGF-1) signaling dictates the requirement for HSF-1 in germline 

development and functions through repressing FOXO/DAF-16 in the soma to activate HSF-1 

in germ cells. We propose that this non-cell-autonomous mechanism couples nutrient-sensing 

insulin/IGF-1 signaling to HSF-1 activation to support homeostasis in rapid germline growth.
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In brief

Using auxin-inducible degradation in Caenorhabditis elegans, Edwards et al. uncover germline­

specific activities of HSF-1 that only induce the canonical heat shock response in a subset of germ 

cells upon stress but are coupled to nutrient-sensing insulin/IGF-1 signaling during development to 

enhance expression of key proteostatic genes in support of rapid germline proliferation.

INTRODUCTION

Heat shock transcription factor 1 (HSF1) is best known for its roles in the heat shock 

response (HSR). Upon proteotoxic stress such as heat shock, HSF1 rapidly induces 

expression of genes encoding molecular chaperones, detoxification enzymes, and protein 

clearance machineries to restore proteostasis (Morimoto, 2008; Vihervaara et al., 2018). 

HSF1 is also required for gametogenesis in invertebrates and vertebrates (Abane and 

Mezger, 2010; Akerfelt et al., 2010; Christians et al., 2000; Jedlicka et al., 1997), but the 

precise roles of HSF1 and its regulation in germline development are not well understood.

At the cellular level, knockout of HSF1 from mouse oocytes results in difficulty resuming 

meiosis when reaching reproductive maturity (Metchat et al., 2009). However, the potential 

contributions of HSF1 to earlier steps of germline development, including proliferation of 

progenitor cells, have not been explored. At the molecular level, the requirement for HSF1 

in germ cells could be linked to its function in stress response because HSF1 knockout 

leads to oxidative stress and reduces expression of certain chaperone genes in mouse oocytes 
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(Bierkamp et al., 2010; Metchat et al., 2009). It is unclear whether HSF1’s activities in 

germline development are triggered by proteotoxic stress, as in the HSR. It has been shown 

during mouse gametogenesis that HSF1 binds to promoters and regulates transcription of 

genes that are not involved in the canonical HSR. These include meiotic genes in mouse 

oocytes (Le Masson et al., 2011) and sex chromosomal multicopy genes that are expressed 

in postmeiotic cells from mouse testis (Akerfelt et al., 2010). Therefore, it remains to be 

answered how HSF1 is activated in germline development and how HSF1 responds to stress 

in germ cells.

Germline development and maintenance are energy demanding, and thus sensitive to 

environmental and metabolic cues (Hubbard et al., 2013). As an essential coordinator of 

nutrient availability, energy metabolism, and growth, the insulin/insulin growth factor 1 

(IGF-1) signaling pathway has evolutionarily conserved roles in male and female gamete 

development and quality control (Ipsa et al., 2019; Neirijnck et al., 2019; Templeman and 

Murphy, 2018). In addition, insulin/IGF-1 signaling (IIS) is known to regulate multiple 

stress response pathways. Among those, it has been shown in C. elegans that IIS suppresses 

HSF-1 activity in the HSR (Chiang et al., 2012). Whether IIS regulates HSF1 in germline 

development remains unknown.

Here we used C. elegans as a model organism to interrogate the molecular and cellular 

functions of HSF-1 in germline development and its regulation by heat stress and IIS. We 

found that HSF-1 is required for germline progenitor cell proliferation and early meiosis. 

Using an inducible degron system, we identified the germline-specific binding profiles of 

HSF-1 and its effects on transcriptomes in germline development and upon heat shock. We 

found distinct activities of HSF-1 in these two processes, with the canonical HSR being 

induced in only a small subset of germ cells and heat stress impairing HSF-1 binding at 

its developmental targets in the germline. Multiple lines of evidence emerged from our 

experiments, suggesting that HSF-1’s functions in germline development are dictated by IIS. 

First, HSF-1 becomes partially dispensable for germline development when IIS is reduced. 

Second, the reproduction-promoting effect of IIS is dependent on HSF-1 in the germline. 

Finally, IIS represses the transcription factor FOXO/DAF-16 in somatic tissues, which, in 

turn, non-cell-autonomously activates HSF-1 in germline development. Our findings suggest 

a mechanism by which HSF-1 activities are coupled to the nutrient-sensing IIS to regulate 

homeostasis and development of the germline.

RESULTS

HSF-1 has tissue-specific roles in C. elegans larval development and reproduction

Hermaphroditic C. elegans is a good model for studying the process of germline 

development from progenitor cell proliferation to meiosis and gamete maturation (sperm and 

oocytes). HSF-1 is essential for larval development (Li et al., 2016; Morton and Lamitina, 

2013), so to investigate the functions of HSF-1 in C. elegans germline development, we 

employed the auxin-inducible degron (AID) system (Zhang et al., 2015) to control HSF-1 

protein levels in a spatiotemporal manner. We inserted AID into the C terminus of the 

endogenous HSF-1 gene using CRISPR, enabling depletion of HSF-1 upon auxin treatment 

in tissues with transgenic expression of the plant E3 ligase TIR1 (Figure 1A). In our 
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transgenic animals, HSF-1 was depleted to an undetectable level within 2 h in adults 

(Figures 1B and S1A) and more quickly in larvae (data not shown). Continuous depletion of 

HSF-1 from the soma after egg lay resulted in larval arrest, as seen in the hsf-1 null mutant 

(Figure 1C). Depletion of HSF-1 from the germline, however, did not stop or significantly 

delay larval development (Figures S1B and S1C) but led to sterility (Figure 1D). Neither 

insertion of AID into HSF-1 nor auxin treatment without AID tagging significantly changed 

larval development or brood size (Figures 1C and 1D), indicating specificity of the AID 

system. To confirm the requirement for HSF-1 in the germline in reproduction, we made 

a transgene that drives pan-somatic expression of HSF-1 in the hsf-1 null mutant. This 

transgene successfully rescued larval arrest (Figure S1D) but not sterility (Figure S1E). 

Furthermore, depletion of HSF-1 from the germline but not the soma of young adults 

significantly reduced brood size (Figure S1F). Our data indicate a function of germline 

HSF-1 in C. elegans reproduction.

HSF-1 is required for mitotic proliferation of germline progenitor cells and early meiosis

To test the contribution of HSF-1 to different steps of germline development, we 

took advantage of the well-defined temporal progression of this process (Hubbard and 

Greenstein, 2005) and initiated HSF-1 depletion from germ cells at different times in 

development. Although HSF-1 depletion starting at any time in embryogenesis and larval 

development reduced brood size, HSF-1 depletion before mid-L3 led to sterility (Figure 

S2A). This time point correlates with the beginning of meiotic prophase in the germline, 

suggesting that HSF-1 may be required for the progenitor cell proliferation that precedes 

meiosis and/or early stages of meiosis. We then examined the germ cell composition 

in dissected gonads from young adult animals with HSF-1 depleted from the germline 

throughout the entire period of external development. Compared with the mock-treated 

control, HSF-1 depletion resulted in a dramatic decrease in total germline nuclei and meiotic 

arrest at the pachytene/diplotene stages (Figures 2A–2C and S2B). The decrease in germline 

nuclei number could be due to inhibition of progenitor cell proliferation or meiotic arrest 

stopping the flux of germline development. Therefore, we directly examined progenitor cell 

proliferation at mid-L3 before the start of meiosis. We found significant decreases in total 

germline nuclei, S phase nuclei (5-ethynyl-2’-deoxyuridine [EdU] positive), and the S index 

(the portion of cells in S phase) with HSF-1 depletion (Figures S2C and S2D), indicating 

that HSF-1 is important for proliferation of germline progenitor cells.

HSF-1 exhibits tissue-specific genomic occupancy in young adult animals

To understand the molecular basis of HSF-1’s functions in germline development, we 

analyzed the germline-specific transcriptional program driven by HSF-1. Because HSF-1 

activities are highly sensitive to stress, we developed a strategy to identify tissue-specific 

HSF-1 binding and transcriptional activities without tissue isolation that may introduce 

cellular stress. To do so, we coupled tissue-specific HSF-1 depletion by AID with 

genome-wide transcriptional analyses in whole animals. First, we performed chromatin 

immunoprecipitation sequencing (ChIP-seq) analyses following acute depletion of HSF-1 

from the soma or the germline. 2 h of HSF-1 depletion only changed expression of a handful 

of genes (Figure S3F), which minimized the potential effects on endocrine/paracrine that 

may influence HSF-1 binding in non-targeted tissues. The germline-specific binding profiles 
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of HSF-1 could then be inferred by the remaining HSF-1 occupancy upon depletion from the 

soma or the decrease of HSF-1 occupancy upon depletion from the germline (Figure 3A). 

Young adult animals were chosen for these analyses because they contain cells at different 

stages of germline development (Figure 2A) and undergo robust germline proliferation and 

gametogenesis. HSF-1 binding profiles by ChIP-seq were almost identical in the two AID 

models before auxin-induced HSF-1 depletion (Figure S3A). However, after 2 h of auxin 

treatment, the remaining HSF-1 occupancy became quite different (Figure S3B), indicating 

differential HSF-1 binding in post-mitotic somatic cells and proliferating/differentiating 

germ cells. We identified three groups of HSF-1 binding sites at the promoters of protein 

coding genes: those enriched for HSF-1 binding in the soma or the germline and those that 

display substantial HSF-1 occupancy in both (Figure 3B; Table S1). Genes with “germline­

enriched” and “shared” HSF-1 peaks at their promoters are considered HSF-1-bound genes 

in germ cells.

HSF-1 directs a compact transcriptional program important for homeostasis and 
development of the germline

We then examined the transcriptional effect of HSF-1 depletion by AID via RNA sequencing 

(RNA-seq). To determine HSF-1-dependent changes in gene expression, we examined the 

effects of auxin treatment and AID insertion at HSF-1 under all tested conditions (Figure 

S3C). Either of them only caused a small number of differentially expressed (DE) genes 

(Figures S3D and S3E). Global transcriptome changes occurred when HSF-1 was depleted 

from the germline for 24 h (Figures 3C and S3F). These results contrasted with depletion of 

HSF-1 from the soma, which resulted in much fewer DE genes (Figure S3F).

We next examined the transcriptional changes at 8 h and 16 h to help distinguish primary 

from secondary effects of HSF-1 depletion from germ cells (Figure 3C; Table S2). At 8 h, all 

of the 12 DE genes were downregulated. Remarkably, HSF-1 bound to 10 of their promoters 

in germ cells (Figure 3D, gene names in red), strongly arguing that they are direct targets 

of HSF-1 in the germline. These results are also consistent with the established role of 

HSF-1 as a transcriptional activator. Of the 10 “first responders” to HSF-1 depletion, 9 genes 

encode constitutively expressed chaperones (HSP-90, HSC70/HSP-1 [referred as HSC-70 in 

this study] and the chaperonin subunit CCT-5) or co-chaperones, which have important roles 

in protein folding and protein complex assembly. Sixteen additional HSF-1-bound genes in 

germ cells were downregulated significantly at 16 h (Figure 3D, gene names in black). One 

of them, egg-5, showed a faster decrease in mRNA upon HSF-1 depletion than its paralog, 

egg-4, which functions redundantly to egg-5 but has no HSF-1 binding at the promoter 

(Figure S3G). This suggests that downregulation of these HSF-1-bound genes at 16 h could 

not exclusively result from a secondary “passenger effect” of germline defects but was likely 

caused by loss of HSF-1 from the promoters.

We therefore propose that the 26 HSF-1-bound genes that were downregulated at 8 h 

and/or 16 h are the primary targets of HSF-1 in germ cells. They form a compact 

transcriptional program consisting of two functional clusters (Figure 3D). One is enriched 

for genes encoding players in proteostasis (red nodes). In addition to chaperones and 

co-chaperones, this cluster includes the peptidyl-prolyl isomerase CYN-7, which catalyzes 
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cis-trans isomerization of proline imidic peptide bonds and assists protein folding, and the 

ubiquitin-conjugating enzyme UBC-9, which functions in protein degradation. The second 

group is enriched for genes whose encoded proteins function in different processes of 

reproduction (green nodes). Among these, the centromere protein A (CENP-A) orthologs 

HCP-3 and CPAR-1 are important for mitotic sister chromatid segregation and nuclear 

division (Buchwitz et al., 1999; Green et al., 2011; Kalis et al., 2010). EGG-5, an ortholog 

of human protein tyrosine phosphatase receptor type J (PTPRJ), is required for oocyte-to­

zygote transition (Cheng et al., 2009). CBD-1 and CHS-1 are known to make the vitelline 

and chitin layers of the eggshell (Stein and Golden, 2018). We selected three chaperone 

genes (hsp-90, hsc-70, and cct-5) and two non-chaperone genes (hcp-3 and egg-5) from 

the primary targets of germline HSF-1 for a functional test. Knockdown of each of these 

genes by germline-specific RNAi dramatically decreased the number of eggs and/or viable 

progenies (Figure 3E), supporting their requirement for fecundity.

To understand the roles of this HSF-1 transcriptional program in germline development, 

we examined the cascade of transcriptome changes upon germline HSF-1 depletion. Gene 

Ontology (GO) analyses revealed alterations in cellular redox balance and proteostasis at 

16 h of HSF-1 depletion (Figure 3F). These alterations are evident by downregulation of 

genes functioning in the oxidation-reduction process and upregulation of genes involved 

in protein degradation by the ubiquitin-proteasome. The latter change is often seen in 

proteotoxic stress. The genes downregulated at 16 h were also enriched for those involved 

in amino acid biosynthesis and fatty acid metabolism, two metabolic processes sensitive 

to proteostasis and cellular redox state (Arnsburg and Kirstein-Miles, 2014; Lismont et 

al., 2015). Importantly, differential expression of these homeostatic and metabolic genes 

preceded the massive transcriptome changes in mitotic and meiotic genes after 24 h of 

HSF-1 deletion (Figure 3G). At 24 h, genes functioning in DNA replication and cell division 

were downregulated, whereas genes involved in meiosis were upregulated, correlating well 

with inhibition of progenitor cell proliferation and cell arrest at meiotic prophase caused by 

HSF-1 depletion. Our data suggest that HSF-1 regulates a compact transcriptional program 

to maintain cellular homeostasis and support germline development.

Heat stress does not induce the canonical HSR in most germ cells but suppresses HSF-1 
activities in germline development

Because chaperone and co-chaperone genes make up a big portion of the germline 

transcriptional program of HSF-1 (11 of 26 genes), we next wanted to find out whether 

HSF-1 is activated in germline development by proteotoxic stress as in the HSR. We 

therefore examined the HSR by RNA-seq analyses in heat-shocked young adult animals 

following acute depletion of HSF-1 from the soma or the germline by AID. Interestingly, 

we found that depletion of HSF-1 from the soma abolished almost all heat-shock-induced 

transcription at HSF-1-bound genes, whereas depletion of HSF-1 from the germline had a 

minimal effect on the whole-animal HSR (Figure 4A, columns of “%mRNA induction by 

HS”; Table S3). Because there are similar numbers of cells in the soma and the germline 

of young adults, our results suggest that the canonical HSR was induced very weakly in the 

germline or only occurred in a small subset of germ cells. We then chose inducible hsp-70 
(at F44E5.4/.5 loci) to probe the spatial pattern of the HSR using RNA fluorescence in situ 
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hybridization (FISH). Transcription of hsp-70 was induced robustly in somatic tissues by 

15 min of heat shock (HS) at 34° C and reduced to the non-HS (NHS) level upon HSF-1 

depletion from the soma (Figures 4B and S4A). HS induced hsp-70 in only a subset of 

meiotic prophase nuclei from the germline (Figures 4B and 4C), which is consistent with 

a previous report (Das et al., 2020). This induction was still dependent on HSF-1 because 

depletion of HSF-1 from the germline abolished hsp-70 transcription in these selected germ 

cells without affecting the HSR in the soma (Figures 4C and S4B).

To gain mechanistic insights into the tissue-specific HSR, we performed ChIP-seq analyses 

to compare HSF-1 binding in the soma and the germline upon HS. For most of the 

HSF-1-dependent HSR genes, HSF-1 binding at the promoters occurred largely in the 

somatic tissues but not in the germline during HS. This tissue specificity was evident 

because HSF-1 occupancy obtained from whole animals was decreased dramatically upon 

depletion of HSF-1 from the soma but changed modestly by depletion of HSF-1 from the 

germline (Figure 4A, columns of “ %HSF-1 occupancy”). This observation was illustrated 

by the classical HSR genes hsp-70 (at the C12C8.1 locus; Figure 4D) and hsp-16s (Figure 

S4C) as well as the terminal nucleotidyltransferase gene tent-5 (Figure S4C), where HSF-1 

binding was induced upon HS. Two HSR genes, hsp-110 and dnj-13 (Figure 4A, names 

labeled in red), are exceptions that retained substantial levels of HSF-1 in germ cells during 

HS. We found that their promoters were bound by HSF-1 in the soma and the germline 

before HS and that HS did not further induce HSF-1 binding (Figures 4D and S4C). Our 

results indicate that HS-induced binding of HSF-1 at the HSR genes is limited in germ 

cells. Importantly, HSF-1 was required in the soma for RNA polymerase II (RNA Pol II) 

transcription during HS regardless of whether HSF-1 binding was induced further. Depletion 

of HSF-1 from the soma abolished recruitment of RNA Pol II, causing a decrease in RNA 

Pol II across the genes (hsp-70, hsp-16s, and tent-5) or impaired transcription elongation, 

resulting in a more prominent decrease in RNA Pol II in the body of genes than in the 

promoters (hsp-110 and dnj-13).

The effects of HS on HSF-1-mediated transcription extended to HSF-1 targets under NHS 

conditions. As an example, the hsp-90 gene has two separate promoters for basal (NHS) and 

HS-inducible transcription (Figure 4D, black and red arrows, respectively), as shown by our 

previous work (Li et al., 2016). HSF-1 binding at the distal, HS-inducible promoter (orange 

arrow) was exclusive in the soma, and increased RNA Pol II transcription in HS as it did 

at hsp-70 and hsp-16s but to a lesser extent. However, binding of HSF-1 at the proximal, 

basal promoter occurred in the soma and the germline and decreased upon HS (Figure 4D). 

Importantly, when HSF-1 was depleted from the soma, the remaining HSF-1 in germ cells 

was not sufficient to induce transcription upon HS. Instead, the decrease in HSF-1 binding to 

the proximal promoter in HS was accompanied by repression of RNA Pol II elongation. The 

HS-induced loss of HSF-1 at its basal binding sites was not unique for the hsp-90 proximal 

promoter. Germline-specific HSF-1 occupancy obtained by ChIP-seq in animals with acute 

depletion of HSF-1 from the soma revealed that, upon HS, HSF-1 binding decreased from 

most of its targeted promoters of protein-coding genes in germline development (Figure 4E). 

This result indicates repression of the germline transcriptional program of HSF-1 by HS.
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Notably, the decrease in HSF-1 occupancy at its germline developmental target genes by 

HS was not due to HSF-1 losing DNA binding activity. Our ChIP-seq analyses revealed 

hundreds of HSF-1 binding peaks enriched in germ cells or shared between the germline and 

the soma upon HS. Strikingly, these germline HSF-1 binding sites were almost exclusively 

located in helitron repeats (Figure 4F), the rolling circle DNA transposons in C. elegans 
(Kapitonov and Jurka, 2007). As an example, binding of HSF-1 at HelitronY1 near the 

hsp-110 gene was induced by HS and enriched in the germline rather than the soma (Figure 

4D). HSF-1 binding sites used uniquely by somatic cells in HS tend not to be associated 

with helitrons (Figure 4F). Our ChIP-seq data showed that HSF-1 occupancy in germ cells 

increased at almost all of the 337 binding sites in helitrons upon HS (Figure 4G), suggesting 

that preferential binding of HSF-1 to helitrons over promoters of protein coding genes 

underlies the unique response of HSF-1 to heat stress in the C. elegans germline.

Our results indicate that HSF-1 activity in germline development is not triggered by 

proteotoxic stress as in the canonical HSR but repressed by heat stress.

HSF-1 is required for IIS-promoted reproduction

To gain more insight into the germline-specific roles of HSF-1 and its regulation, we 

wanted to find out how HSF-1 may interact with cellular pathways that have established 

roles in germline development. We performed Ingenuity Pathway Analysis (IPA) on the 

transcriptomes after 16 h of HSF-1 depletion in the germline. This time point provides 

abundant expression changes for IPA but precedes the global transcriptome alterations at 

24 h. IPA revealed gene expression signatures that are consistent with inhibition of the 

linked IIS and mTORC2 signaling pathways (Figures 5A and 5B). HSF-1 depletion led to 

expression changes in genes downstream of the IIS and mTORC2 pathways, as seen upon 

inhibition of AKT (AKT-1 and AKT-2 in C. elegans) and RICTOR (RICT-1 in C. elegans) 

and upon activation of NFE2L1 and NFE2L2 (orthologs of the C. elegans transcription 

factor SKN-1). Overall, these transcriptome features imply that HSF-1 may support the IIS 

and mTORC2 pathways in germline development.

In C. elegans, activities of the single insulin/IGF-1 receptor DAF-2 are important for 

germline progenitor cell proliferation (Michaelson et al., 2010) and meiotic I progression 

(Lopez et al., 2013), the two processes of germline development to which HSF-1 

also contributes (Figure 2). RICT-1 in mTORC2 is required for C. elegans fecundity 

predominantly through its downstream kinase SGK-1 (Jones et al., 2009; Soukas et al., 

2009), but their roles in germline development are not well characterized. To understand 

how HSF-1 may interact with the IIS and mTORC2 pathways in germline development, 

we tested the role of HSF-1 in reproduction upon changes in IIS and mTORC2 signaling. 

Interestingly, the reduction-of-function (rf) mutants daf-2 and pdk-1 suppressed the sterility 

caused by chronic depletion of HSF-1 from the germline (Figure 5C) despite their brood 

sizes being significantly smaller than those of wild-type animals when HSF-1 was present. 

These results indicate that IIS dictates the requirement for HSF-1 in reproduction via 

phosphatidylinositol 3-kinase (PI3K)-PDK1. Knockout of SGK-1, the major target of 

mTORC2 for fecundity, partially suppressed sterility by germline HSF-1 depletion (in 

9 of 63 animals). Given the common processes IIS and HSF-1 mediate in germline 
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development and their strong genetic interaction, we decided to focus on understanding 

this new functional interaction between IIS and HSF-1.

We confirmed that suppression of HSF-1 depletion-induced sterility by daf-2(rf) was not an 

artifact from incomplete depletion by AID. First, the GFP signal from HSF-1::degron::GFP 

disappeared from the germline of the daf-2(rf) mutant within 2 h of auxin treatment 

(Figure S5A). Second, loss of the GFP signal was not due to cleavage of degron::GFP 

from the C terminus of HSF-1. By inserting a 3xFLAG tag into the N terminus of 

HSF-1::degron::GFP (Figure S5B) and measuring HSF-1 levels via immunofluorescence 

(IF) against FLAG, we showed that HSF-1 was depleted to the background level throughout 

different regions of the germline in wild-type and daf-2(rf) animals (Figures S5C–S5E). 

Finally, we confirmed the observation in the daf-2(rf) mutant using an AID-independent 

model. Introducing the daf-2(rf) allele into hsf-1(null) animals with transgenic expression of 

HSF-1 only in the soma (Figures S1D and S1E) enabled those sterile animals to produce 

viable progenies (Figure S5F). Our data clearly indicate that lowering IIS can partially 

bypass the requirement for HSF-1 in germline development. Consistent with this notion, at 

the cellular level, reducing IIS alleviated the germline progenitor proliferation defects and 

meiotic arrest caused by the lack of germline HSF-1 (Figures 5D and 5E; compare Figure 

S5G with Figure 2B).

The daf-2(rf) allele we used (e1370) altered one residue in the tyrosine kinase domain, 

leading to partial loss of activity (Patel et al., 2008) and slightly reduced brood size (Figure 

5C). Further reduction of IIS in daf-2(rf) animals using RNAi against DAF-2 resulted in 

another ~60% decrease of brood size (Figure 5F, blue bar versus red bar). Importantly, the 

fecundity-promoting effect of IIS was HSF-1 dependent because daf-2 RNAi did not make 

a significant difference when HSF-1 was depleted from the germline (Figure 5F, green bar 

versus purple bar). Our data revealed a correlation between animal brood size and HSF-1’s 

contribution to fecundity, which are dictated by IIS activity (Figure 5G), and suggest that 

HSF-1 is required specifically by IIS for promoting reproduction.

IIS activates HSF-1-dependent expression of hsp-90 and hsc-70 in germline development

Given the important roles of HSF-1 target genes in germline homeostasis and development, 

how could animals with reduced IIS reproduce successfully without HSF-1 in the germline? 

Because IIS represses multiple stress-responsive transcription factors through the AKT and 

SGK-1 kinases, we tested whether the daf-2(rf) mutant suppresses the germline defects 

associated with HSF-1 depletion by enhancing stress responses in germ cells. Single 

knockout mutants of the AKT and SGK-1 kinases did not rescue (AKT-1 and AKT-2) or 

very modestly rescued (SGK-1) reproduction upon HSF-1 depletion in the germline (Figure 

S6A). This is not surprising, given that these kinases have been reported to function in 

parallel downstream of IIS in various contexts (Hertweck et al., 2004). We therefore tested 

SKN-1 and DAF-16 (the C. elegans ortholog of mammalian FOXO), two major regulators 

of cellular responses to proteotoxic and oxidative stress (An and Blackwell, 2003; Li et al., 

2011; Murphy and Hu, 2013; Vilchez et al., 2012) that are repressed by AKT and SGK-1 

(Brunet et al., 1999; Chen et al., 2013; Hertweck et al., 2004; Lin et al., 2001; Mizunuma 

et al., 2014; Ruf et al., 2013;Tullet et al., 2008; Figure 5B). Knockdown of DAF-16 in the 
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daf-2(rf) mutant by RNAi resulted in sterility when HSF-1 was depleted from the germline 

but did not decrease the brood size when HSF-1 was present (Figures 6A and S6B). Similar 

results were observed in the daf-2(rf); daf-16(null) double mutant (Figure S6C). Knockdown 

of SKN-1 did not alter the egg numbers regardless of HSF-1 status but caused embryonic 

lethality (Figures 6A and S6B), consistent with its role in embryogenesis (Bowerman et al., 

1992). These results indicate that DAF-16, but not SKN-1, is required for fertility of the 

daf-2(rf) mutant in the absence of germline HSF-1. Surprisingly, this activity of DAF-16 is 

required from the somatic tissues because knockdown of DAF-16 in the soma but not in the 

germline led to sterility of the daf-2(rf) mutant upon HSF-1 depletion (Figure 6B). These 

results contrast the results from tissue-specific RNAi against EGG-5, which was required 

from the germline (Figure S6D). Our results argue against the hypothesis that reduced 

IIS suppresses infertility associated with HSF-1 depletion by activating the DAF-16- and 

SKN-1-mediated stress response in germ cells. Instead, they suggest that DAF-16 functions 

downstream of IIS in somatic tissues non-cell-autonomously dictating the requirement for 

HSF-1 in germline development.

Consistent with a previous report (Michaelson et al., 2010), we found that reduced IIS 

significantly impaired larval germline proliferation, resulting in decreased numbers of 

mitotic nuclei in day 1 adults (Figure S6E). We wondered whether the slower germline 

flux would lower the demands for the germline transcriptional program of HSF-1 (Figure 

3D), making HSF-1 partially dispensable for reproduction. To test this idea, we took hsp-90 
and hsc-70 as examples, which are essential for C. elegans germline development (Green 

et al., 2011) and support cell proliferation by promoting protein synthesis and the cell 

cycle (Mayer and Bukau, 2005; Schopf et al., 2017; Truman et al., 2012). Compared with 

the wild type, daf-2(rf) animals had lower levels of hsp-90 and hsc-70 transcripts in the 

germline when HSF-1 was present (Figures 6C and 6D, blue versus red dots, S6F, and 

S6G), supporting our hypothesis that, upon IIS reduction, less hsp-90 and hsc-70 expression 

is needed to support fecundity. Upregulation of hsp-90 and hsc-70 by IIS is HSF-1 

dependent because IIS activity did not significantly affect their expression when HSF-1 

was depleted from germ cells (Figures 6C and 6D, green versus purple dots). Importantly, 

germline-specific RNAi against HSP-90 and HSC-70 reduced the brood size of daf-2(rf) 
animals regardless of the status of HSF-1 (Figure 6E), suggesting that hsp-90 and hsc-70 
were expressed in germ cells in the absence of HSF-1. This low-level, HSF-1-independent 

expression (Figures 6C and 6D, purple dots) was sufficient and necessary for the daf-2(rf) 
animals to reproduce without HSF-1 in the germline (Figure 6E). However, in wild-type 

animals, HSF-1 is indispensable for fertility (Figures 2 and 5C), likely because HSF-1 is 

required for upregulating hsp-90 and hsc-70 expression (Figures 6C and 6D) to support 

more rapid germline growth. Consistently, although germline proliferation in wild-type 

animals is faster, it is more sensitive to HSF-1 depletion compared with daf-2(rf) animals 

(Figure S6H). Because HSF-1 directly activates transcription of hsp-90 and hsc-70, our data 

suggest that IIS enhances HSF-1 activity in the germline.

IIS and FOXO/DAF-16 non-cell-autonomously regulate HSF-1 activity in the germline

IIS determines HSF-1’s contributions to fecundity (Figure 5G) and germline expression of 

hsp-90 and hsc-70 (Figures 6C and 6D). Because DAF-16 is repressed by IIS and its activity 
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in the soma dictates the requirement for HSF-1 in reproduction (Figure 6B), we wanted 

to find out whether somatic DAF-16 is also involved in regulating HSF-1-dependent gene 

expression in germ cells. Although germline hsp-90 transcripts decreased in the daf-2(rf) 
mutant, they were restored to wild-type levels in the daf-2(rf); daf-16(null) double mutant 

(Figure S7A), suggesting that IIS activates hsp-90 expression in germ cells by repressing 

DAF-16. Furthermore, knocking down DAF-16 specifically in somatic tissues significantly 

increased hsp-90 and hsc-70 expression from the germline of the daf-2(rf) mutant in an 

HSF-1-dependent manner (Figures 7A and 7B). These results suggest that repression of 

DAF-16 in the soma by IIS non-cell-autonomously activates HSF-1 in the germline. In 

addition, we found that knockdown of DAF-16 in the soma is sufficient to increase germline 

proliferation in the daf-2(rf) mutant (Figure S7B). This result is consistent with the idea 

that HSF-1 is activated to support IIS-promoted germline growth and suggests that DAF-16 

non-cell-autonomously coordinates HSF-1 activation and germline growth in response to 

IIS.

DISCUSSION

Germline development is energetically costly, making this process sensitive to 

environmental perturbation and nutrient availability. HSF1 has evolutionarily conserved 

roles in proteotoxic stress response and gametogenesis and has emerged as a regulator of 

energy metabolism (Gomez-Pastor et al., 2018; Li et al., 2017). Here we applied the AID 

system in C. elegans to understand the precise roles of HSF-1 in germline development 

and how HSF1 responds to stress and nutrient cues in germ cells. Our results revealed an 

important role of HSF-1 in germline progenitor cell proliferation in addition to its previously 

reported functions in meiosis (Le Masson et al., 2011; Metchat et al., 2009). Furthermore, 

our data demonstrated that, during germline development, HSF-1 is not activated in the 

same way as during the HSR but is rather repressed by heat stress. Our findings support a 

model (Figure 7C) where the activities of HSF-1 in germ cells are coupled to the nutrient 

sensing IIS at the organismal level: HSF-1 supports IIS-promoted germline development, 

and IIS represses FOXO/DAF-16 in the soma to non-cell-autonomously activate HSF-1 in 

the germline.

Using the AID system, our study overcame two big challenges of studying HSF-1 in 

germline development: (1) to robustly deplete HSF-1 protein specifically in germ cells and 

(2) to probe the transcriptional activities of HSF-1 genome-wide in the germline without 

tissue isolation. We successfully paired tissue-specific depletion of HSF-1 with whole­

animal ChIP-seq and RNA-seq analyses to infer tissue-specific HSF-1 binding profiles and 

HSF-1-dependent gene expression. Importantly, auxin treatment in animals expressing TIR1 

without degron insertion had minimal effects on the transcriptome (Figure S3), indicating 

target specificity of AID. We established AID as a useful system for studying transcription 

regulation with spatiotemporal specificity.

Despite the sensitivity of germ cells to heat stress (Abane and Mezger, 2010), how the 

HSR is regulated and how heat stress affects the physiological functions of HSF1 in germ 

cells were largely unknown. Our genomic data and RNA-FISH results for hsp-70 show that 

the canonical HSR is not induced robustly in the germline except for a subset of cells at 

Edwards et al. Page 11

Cell Rep. Author manuscript; available in PMC 2021 September 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



meiotic prophase. This is consistent with a recent study in C. elegans (Das et al., 2020) and 

several studies in vertebrates reporting that HS induction of candidate chaperone genes in 

the germline is developmental stage specific (Curci et al., 1991; Hayashida et al., 2006; Le 

Goff and Michel, 1999). This germline HSR, although occurring only in a subset of cells, 

is proposed to have a protective role in C. elegans because hsf-1 RNAi in the germline 

increased embryonic lethality upon HS (Das et al., 2020). In mouse spermatogenesis, stress­

induced HSF1 activity can protect germ cells or promote apoptosis depending on the cell 

type (Hayashida et al., 2006). It has yet to be determined in C. elegans which portion of 

germ cells develops into gametes and what portion may undergo apoptosis after HS and the 

potential roles of HSF-1 in decision making.

We found that preferential binding of HSF-1 to helitron repeats over promoters of protein­

coding genes underlies the germline-specific HSR in C. elegans (Figures 4E–4G). Helitron 

repeats contain clusters of HS elements (HSEs) (Garrigues et al., 2019) that are recognized 

by the HSF-1 trimer. Given the high number of HSEs at each helitron repeat and the 

cooperative binding between multiple HSF-1 trimers in heat stress (Xiao et al., 1991), 

helitrons are expected to outcompete the classical HSR promoters for HSF-1 binding if both 

are accessible. We found that, in HS, HSF-1 was able to bind at the classical HSR promoters 

in the soma while almost exclusively bound to helitrons in germ cells (Figure 4F). It is 

possible that, in proliferating germline progenitor cells, which are enriched in S phase in 

fed animals (Seidel and Kimble, 2015), DNA replication-coupled nucleosome disassembly 

may expose more helitrons to compete for HSF-1 binding than in post-mitotic somatic cells. 

Because of the preferential binding of HSF-1 to helitrons, HS did not induce the canonical 

HSR robustly in most germ cells but led to loss of HSF-1 from its developmental targets 

(Figure 4E). Our findings provide a potential explanation for hypersensitivity of germ cells 

to proteotoxic stress.

Our studies revealed that the functions of HSF-1 in germline development are coupled 

to IIS. In germ cells, HSF-1 is not serving as an on/off switch of its target genes that 

are essential for reproduction (e.g., hsp-90 and hsc-70; Figures 6C–6E). The low, HSF-1­

independent expression is sufficient and necessary to support fertility when IIS activity is 

reduced (e.g., in the daf-2(rf) mutant; Figures 5C and 6E). Instead, HSF-1 is activated in 

germ cells by IIS as HSF-1-dependent expression of hsp-90 and hsc-70 is upregulated with 

increased IIS (Figures 6C and 6D). IIS promotes germline proliferation (Michaelson et al., 

2010) and organismal protein synthesis in young adults (Stout et al., 2013). Activation of 

HSF-1 by IIS provides a plausible mechanism that couples protein folding capacity to rapid 

flux of germline development through enhanced expression of key proteostatic genes (Figure 

3D). Conversely, in animals of high IIS (e.g., the wild type), insufficient expression of 

these genes upon depletion of germline HSF-1 led to proteotoxic stress, as implicated by 

induction of proteasomal genes (Figure 3F) and defects of germline development (Figure 2). 

In addition, HSP-90 and HSC-70 have evolutionarily conserved roles in cell proliferation 

and meiosis through regulating activities of cyclins, AKT, and ERK (Basso et al., 2002; 

Green et al., 2011; Metchat et al., 2009; Schopf et al., 2017; Truman et al., 2012). AKT and 

ERK kinases function in the C. elegans germline downstream of IIS to promote proliferation 

and meiosis (Lopez et al., 2013; Michaelson et al., 2010). Therefore, HSF-1 could also 

support the signaling pathways downstream of IIS in germline development by upregulating 
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hsp-90 and hsc-70. Consistently, we found that HSF-1 is required by IIS for promoting 

fecundity (Figures 5F, 5G, and 7C).

Our finding that IIS enhances HSF-1 activities in germline development contrasts with the 

reported repression of HSF-1 by IIS in the canonical HSR (Chiang et al., 2012). This 

discovery joins the observation that HS impairs HSF-1 binding at its developmental targets 

in germ cells (Figure 4E), indicating that regulation of HSF-1 in germline development is 

distinct from that in the canonical HSR. In C. elegans, IIS is one major nutrient-sensing 

pathway that regulates diapause entry, energy metabolism, and reproduction based on 

nutrient availability (Templeman and Murphy, 2018). Our discoveries suggest that, through 

the IIS pathway, HSF-1 could integrate stress and nutritional cues to regulate homeostasis 

and development of the germline (Figure 7C).

HSF-1 and FOXO/DAF-16 are known to function jointly to enhance animal stress responses 

and extend the lifespan (Hsu et al., 2003). Our studies revealed a different functional 

interaction of the two in which repression of DAF-16 in the soma by IIS is important 

for activation of germline HSF-1 (Figures 7A and 7B). In addition to its cell-autonomous 

functions in germ cells (Michaelson et al., 2010; Pinkston-Gosse and Kenyon, 2007), 

DAF-16 acts non-autonomously in the soma, influencing the germline, including progenitor 

cell proliferation (Michaelson et al., 2010; Qi et al., 2012, 2017) and reproductive longevity 

(Luo et al., 2010; Qin and Hubbard, 2015; Wang et al., 2014). Our findings add another 

non-cell-autonomous regulation by DAF-16 in reproduction. Future studies will determine 

where and how DAF-16 in the soma sends signals to germ cells and identify the germline 

autonomous pathway that regulates HSF-1 activities. In certain somatic tissues (e.g., the 

intestine), DAF-16 regulates insulin expression and thus affects IIS in other tissues (Murphy 

et al., 2007). It is possible that IIS and its downstream PI3K-AKT/SGK-1 and/or RAS­

MEK-ERK pathways in the germline (Lopez et al., 2013) are involved in regulating 

HSF-1. Neither HSF-1 protein levels nor its nuclear localization in the germline were 

changed significantly in daf-2(rf) animals (Figures S5C–S5E), implying that somatic IIS and 

DAF-16 may affect germline HSF-1 via its DNA binding and/or transcriptional activities. 

AKT and MEK have been reported to promote HSF1 transcriptional activities through 

post-translational modifications to support rapid proliferation of cancer cells (Frezzato et al., 

2019; Tang et al., 2015). It will be interesting in future work to determine whether similar 

mechanisms are in place to coordinate HSF-1 activation and germline development.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the Lead Contact, Jian Li (jian-li@omrf.org).

Materials availability—Worm strains generated in this study as listed in the Key 

resources table will been deposited to the Caenorhabditis elegans genetics center at 

University of Minnesota upon publication.
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Data and code availability—The RNA-seq and ChIP-seq datasets from this study have 

been deposited at Gene Expression Omnibus and are publicly available as of the date of 

publication. Accession numbers are listed in the Key resources table. This paper does not 

report original code. Any additional information required to reanalyze the data reported in 

this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Unless stated, C. elegans strains were maintained at 20°C on NGM plates seeded with OP50 

bacteria and were handled using standard techniques (Brenner, 1974).

The HSF-1 AID models were made by CRISPR knock-in of degron::gfp to the C terminus 

of endogenous hsf-1 gene through microinjection of chemically modified synthetic sgRNA 

(Synthego; Table S4) along with Cas9 Nuclease (Integrated DNA Technologies, IDT) 

following the previously published protocol (Prior et al., 2017). The repair template for 

C-terminal insertion of degron::gfp was made by NEB assembly of synthetic gene fragments 

from IDT that contain HSF-1 sequences flanking the insertion site and the PCR fragment of 

degron::gfp from pLZ29 (Zhang et al., 2015). The repair template for N-terminal insertion 

of 3XFLAG tag was a single strand oligo (IDT) containing the FLAG tag sequence flanked 

by 39 bp upstream and 37 bp downstream sequence from the insertion site. The HSF-1 AID 

models were outcrossed 6 times before use.

Transgenic worms expressing HSF-1 only in the soma were generated by microinjection of 

sur-5p::HSF-1 (cDNA)::gfp with ttx-3p::rfp co-injection marker into OG576 (hsf-1(ok600) 
I/hT2 [bli-4(e937) let-?(q782) qIs48] (I;III)). The sur-5p::HSF-1 (cDNA)::gfp construct 

was made by replacing the luciferase gene in pSLGCV (sur-5p::luc+::gfp) with HSF-1 

cDNA through the SmaI and KpnI restriction sites. Transgenic worms that are sensitive to 

RNAi only in the somatic tissues were made by microinjection of sur-5p::rde-1 with two co­

injection markers (ttx-3p::gfp and myo-2p::rfp) into a strain carrying the null allele of rde-1 
(mkc36). The sur-5p::rde-1 construct was made by NEB assembly of the pPD97_75 vector 

digested by EcoRI and BamHI, the sur-5 promoter PCR amplified from the sur-5p::HSF-1 

(cDNA)::gfp plasmid, and the rde-1 genomic DNA PCR amplified from pNP160. A list of 

strains used in this study can be found in the Key resources table.

METHOD DETAILS

Auxin Treatment, RNAi and Heat Shock—Auxin treatment was performed by 

transferring worms to bacteria-seeded NGM plates containing 1mM auxin (indole-3-acetic 

acid, Sigma). The preparation of auxin stock solution and auxin containing NGM plates was 

done as previously described (Zhang et al., 2015). Briefly, auxin was dissolved to 400 mM 

in ethanol as the stock solution, which can be stored for up to 1 month at 4°C. Auxin was 

diluted into the NGM agar, cooled to about 50°C, to a final concentration of 1 mM before 

pouring plates. Plates were seeded with fresh OP50 culture and left at room temperature for 

1-2 days to dry. In all experiments, worms were also transferred to NGM plates containing 

0.25% of ethanol (EtOH) to serve as the mock treated control.
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RNAi was performed by feeding, and all RNAi clones from the Ahringer Library were 

sequence verified before use. Overnight cultures of RNAi bacteria in LB media containing 

100 μg/ml ampicillin were diluted and allowed to grow for another 4-5 hours at 37°C to 

reach OD600 of 1.0-1.2. Following this, 5 mM IPTG was added and the cultures were 

incubated for another 3 hours to induce expression of double-stranded RNAs. Cultures 

were then seeded onto NGM plates containing 100 μg/ml ampicillin and 1 mM IPTG, 

and allowed to dry at room temperature for 2 days. All RNAi experiments were done 

by doing egg lay directly on freshly prepared RNAi plates (within one week of seeding). 

RNAi bacteria in HT115 strain as obtained from the Ahringer Library were used in Figure 

3E. Upon HSF-1 depletion, both the reduction-of-function (rf) mutants daf-2 (e1370) and 

pdk-1(sa680) showed noticeable difference of brood size when fed by OP50 and HT115. 

To allow direct comparison of brood size in these rf mutants upon HSF-1 depletion and 

upon RNAi treatment, we therefore conducted all the other RNAi experiments that involved 

these rf mutants in a RNAi compatible OP50 strain (Xiao et al., 2015). Tissue-specific RNAi 

were done in transgenic worms that express the Argonaute protein gene rde-1 specifically in 

either the germline (Zou et al., 2019) or the soma (as described above) in the null mutant 

rde-1 (mkc36). To control the separation of co-injection markers with rde-1 transgenes in 

our soma RNAi model, we picked animals that carried both of the co-injection markers in 

experiments.

Heat shock was done by immersing parafilm wrapped plates in a pre-heated water bath at 

34°C. For RNA-seq and ChIP-seq experiments, worms were heat shocked on 10 cm plates 

for 30 min, and for RNA FISH experiments, worms were heat shocked on 6 cm plates for 15 

min.

Measurements of Body Length and Brood Size—The HSF-1 AID animals (JTL611 

and JTL621) and the corresponding control animals that only express TIR1 (CA1200 and 

CA1199) were age-synchronized by egg lay for 1 hour on EtOH or Auxin plates. Larvae 

were grown to the indicated stages (Figures 1C and S1B) and crawling animals were 

recorded using a Leica M205 FA microscope. Videos were imported into ImageJ and 

analyzed for the size of larvae (body length, mm) using the wrMTrck plugin.

For brood size analyses (except Figure S2A), animals were synchronized by egg lay on 

plates containing auxin and/or RNAi bacteria as specified in figure legends, and singled at 

L4/young adult stage onto the same type of plates to lay eggs for 24 hours. Worms were then 

transferred to new plates every day and eggs were allowed to hatch and grow to L3 stage, at 

which point the number of progeny was counted. In a subset of experiments, significant eggs 

did not hatch, and we counted and reported the number of dead eggs as specified in figure 

legends. For Figure S2A, age synchronization of JTL621 was done by egg lay on EtOH 

plates, and larvae were transferred onto auxin plates at indicated time points. Brood size of 

each singled animal was counted on auxin plates.

RNA Extraction, cDNA Synthesis and qPCR—The HSF-1 AID animals (JTL611 

and JTL621) and the corresponding control animals that only express TIR1 (CA1200 

and CA1199) were synchronized by treatment of alkaline hypochlorite solution (bleach). 

Synchronized L1 larvae were grown on 10 cm normal NGM plates (~500 worms per plate) 
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to develop into young adults (appearance of vulva). Extra few hours were given to CA1199 

and JTL621 since they develop slightly slower than CA1200 and JTL611. Approximately 

120 young adult worms were picked onto 10 cm NGM plates containing either EtOH or 

auxin, and kept for indicated time before collection. For each condition, RNA was extracted 

using 300 μL Trizol reagent. Worms were vortexed continuously for 20 minutes at 4°C 

and then went through one cycle of freeze-thaw to help release RNA. Following this, RNA 

was purified using Direct-zol RNA MiniPrep kit (Zymo Research) as per manufacturer’s 

instructions using on column DNase I digestion to remove genomic DNA. RNA was used in 

library preparation for sequencing or to synthesize cDNA for qPCR analysis.

cDNA was synthesized using BioRad iScript cDNA synthesis kit as per manufacturer’s 

instructions. Relative mRNA levels were then determined by real-time quantitative PCR 

using iTaq Universal SYBR Green Supermix (BioRad) and a Roche Lightcycler 96 

thermocycler. Relative mRNA levels were calculated by standard curve method and gene 

expression was normalized to the mean of the housekeeping genes cdc-42 and rpb-2. All 

primers used can be found in Table S5.

Chromatin Immunoprecipitation (ChIP)—For each condition, approximately 20,000 – 

25,000 bleach synchronized L1 larvae (JTL611 or JTL621) were grown on 10 cm normal 

NGM plates to develop into young adults. The animals were transferred onto 10 cm plates 

(~500 worms per plate) containing either EtOH or auxin. After two hours, we either directly 

collected the worms for crosslinking or subjected them for heat shock at 34°C for 30 min. 

ChIP experiments were performed as previously described (Li et al., 2016). Briefly, animals 

were collected from NGM plates, washed with M9 and crosslinked with 2% formaldehyde 

in PBS at room temperature for 15 min. Crosslinking was quenched by incubation with 

0.1M Tris (pH 7.5) for 5 min. Worms were then washed three times in M9 and once in 

cold FA buffer (50 mM HEPES/KOH pH7.5, 1 mM EDTA, 1% Triton X-100, 0.1% sodium 

deoxyholate, 150 mM NaCl with Roche Complete protease inhibitors). Worms were then 

resuspend in 600 μL of FA buffer and lysed by douncing in a Kontes 2 mL glass dounce, and 

sonicated in Bioruptor to yield 200 bp–600 bp size DNA fragments.

Immunoprecipitation (IP) was set up using 0.5 μg of chromatin, and either 5 μL of anti-full 

length GFP antibody (Clontech, living colors), or 3 μg of anti-RNA Pol II antibody (8WG16, 

BioLegend) in FA buffer (1 mL total volume), and incubated at 4°C overnight on a rotating 

wheel. The next day, 30 μL of protein-G Dynabeads were added to each IP. Following 2 

hours of incubation, protein-G Dynabeads were thoroughly washed and DNA was eluted and 

purified as previously described (Boehm et al., 2003). To have enough DNA for ChIP-seq, 

we set up 5 IPs of GFP and 3 IPs of Pol II for each condition, and pool the DNA to do 

library preparation for sequencing.

ChIP-seq Analysis—ChIP-seq libraries were prepared using Accel-NGS 2S kit as 

per manufacturer’s instructions. Indexed libraries were treated by Illumina Free Adaptor 

Blocking Reagent to minimize index hopping and the pooled libraries were sequenced at 

a NovaSeq 6000 sequencer with 150bp paired-end sequencing at OMRF clinical genomics 

core.
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Sequencing reads were mapped to a non-repeat-masked version of the C. elegans WS235 

genome using bowtie2 (Langmead and Salzberg, 2012) with the command bowtie2–no­

unal–very-sensitive –dovetail. Mapped reads in coordinated pairs, and with fragment size no 

bigger than 600bp were kept for downstream analyses. Duplicate reads were filtered for each 

replicate using MACS2 (Zhang et al., 2008) command macs2 filterdup -g ce–keep-dup auto. 

HSF-1 peaks were called for each ChIP replicate of the control (no HSF-1 depletion) paired 

with the corresponding input sample using the command macs2 callpeak -g ce -f BEDPE–

call-summits -q 1e-6. Common HSF-1 peaks in the biological duplicates were kept for 

subsequent analyses. To generate a list of HSF-1 peak summit positions in non-heat-shock 

(NHS) and heat-shock (HS) conditions, common HSF-1 peaks called in both the JTL611 

and JTL621 strains were kept if the peak summits are within 100bp in the two strains, and 

the midpoints were used as the consensus peak summits. To assign HSF-1 ChIP-seq peaks 

to promoters, transcription start sites (TSSs) determined by GRO-cap (Kruesi et al., 2013) 

were used where available. To compare genomic occupancy, filtered reads from biological 

replicates were combined to generate the bedgragh files using the command macs2 pileup 

-B. Given average fragment size of ChIP DNA is almost identical in all conditions for either 

HSF-1 or Pol II, pair-end reads were shifted half of the fragment length toward the center 

to generate the bedgraph files. To determine the genomic regions with significant HSF-1 

occupancy change by HSF-1 depletion, the bedgraph files in the control condition (EtOH) 

and the depleted condition (auxin) were compared using the command macs2 bdgdiff -l 180 

-C 10. To visualize and compare the ChIP-seq data in genome browser views, the bedgraph 

files were normalized to reads per million using MACS2 callpeak -B –SPMR, and visualized 

using Integrative Genomics Viewer (IGV) (Robinson et al., 2011) with WS235 genome. 

Quantification of genomic occupancy were done by mapping the center of ChIP fragments 

to a reference point (e.g., HSF-1 peak summits) using windowBed in bedtools (Quinlan 

and Hall, 2010) and Matrix in R. For quantitative comparison of HSF-1 occupancy between 

conditions, all HSF-1 ChIP-seq data were normalized to 6 millions reads, corresponding to 

the lowest coverage after duplicate filtering among all conditions. Heatmaps were generated 

with the Java TreeView package (Saldanha, 2004).

RNA-seq Analysis—Total RNAs were polyA enriched, and directional RNA-seq libraries 

were prepared using NEBNext Ultra II RNA library prep Kit. Paired-end sequencing was 

done at a NovaSeq 6000 sequencer at OMRF clinical genomics core. The majority of 

samples were sequenced by 50 bp. A subset of samples that were sequenced with longer 

reads were trimmed to 50 bp to make all downstream mapping and analyses consistent.

RNA-seq reads were mapped to Ensembl WBcel235 genome using RNA STAR (Dobin et 

al., 2013) with–alignIntronMax 120000 to set the intron size, and–outFilterMultimapNmax 

200 to allow multi-mapped reads. The mapped reads were then subject to FeatureCounts in 

Rsubread (Liao et al., 2019) for quantification with the setting -p -B -P -C -M -O–fraction 

–largestOverlap. The settings in STAR and FeatureCounts enabled proper quantification 

of those heat shock genes (e.g., hsp-70 and hsp-16s) that are duplicated in C. elegans 
genome. Differential expression (DE) analyses were then done using edgeR (Robinson et 

al., 2010) with default settings except of using Likelyhood Ratio Test and filtering out those 

lowly expressed genes with CPM (counts per million) value less than 1 in more than 75% 
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samples. For the analyses in Figure 3C, to control for effects by auxin and by insertion of 

AID:GFP to HSF-1, at each time point, we pooled mock treated TIR1 and mock treated 

HSF-1::degron;TIR1 with auxin treated TIR1 to calculate the expression levels in control 

condition, and then compare them to auxin treated HSF-1::degron;TIR1 (see Figure S3C for 

sample description). This analysis reports only DE genes caused by HSF-1 depletion.

Ingenuity Pathway Analysis (IPA) was done by inputting the DE genes and their fold 

changes at 16 hour of HSF-1 depletion from the germline to QIAGEN IPA. Worm genes 

were converted into their human orthologs, and compared to published datasets in the 

database to predict potential upstream regulators and their activation status that interpret 

the observed gene expression changes. Gene ontology analysis (GO) was done using the 

program DAVID (https://david.abcc.ncifcrf.gov/) with functional annotation clustering to 

collapse redundant GO terms. The enrichment score for each cluster was shown with the 

corresponding GO_BP (Biological Processes) term representing the cluster.

RNA Fluorescence in situ hybridization (FISH)—FISH probes were designed against 

the worm hsp-70 (F44E5.4/.5), hsp-90 and hsc-70 (hsp-1) genes by using the Stellaris 

FISH Probe Designer (Biosearch Technologies Inc) at http://www.biosearchtech/com/

stellarisdesigner. To increase the sensitivity and specificity, a set of 47-48 Quasar 670 Dye 

modified probes (Biosearch Technologies Inc) were used for each gene, and the sequences 

can be found in Table S6. The FISH experiments were done by following the published 

procedure (Das et al., 2020) with slight modifications. For FISH against hsp-90 and hsc-70, 

age-synchronized Day 1 adult worms that were at the young adult (YA) and gravid adult 

(GA) transition (adult vulva and a few if any embryos in the uterus) grown at 20°C were 

harvested directly by picking off the plates that contained either ethanol or auxin and 

were seeded with OP50 bacteria or indicated RNAi bacteria. For FISH against hsp-70 
(F44E5.4/.5), worms were either kept at 20°C or exposed acutely to 34°C heat shock for 15 

min before collection. For each condition, about 20 animals were picked into 1X RNase-free 

PBS buffer, fixed in freshly prepared 4% paraformaldehyde, and subsequently permeabilized 

in 70% ethanol at 4°C for about 24 hours. Samples were washed using Stellaris Wash Buffer 

A (catalog# SMF-WA1-60, Biosearch Technologies Inc) before 100 μL of the hybridization 

solution (catalog# SMF-HB1-10, Biosearch Technologies Inc) containing 1 μL of 10 mM 

probe was added to each sample. After 16 hours of hybridization at 37°C, the samples 

were washed three times with Wash Buffer A, and then incubated for 30 min in Wash 

Buffer A with 0.5 μg/ml of DAPI. Worms were then washed with Wash Buffer B (catalog 

no. SMF-WB1-20, Biosearch Technologies Inc) and mounted on slides in about 16 μl of 

Vectashield mounting medium (catalog no. H-1000, Vector Laboratories).

Immunofluorescence (IF) and Germline Nuclei Quantification—Except for 

Figures S5C–E, IF was performed with dissected gonads as previously described (Kocsisova 

et al., 2018) with slight modifications. Animals were synchronized by egg lay and grown to 

young adult stage (adult vulva start appearing). Approximately 30 animals were dissected 

in M9 buffer containing 0.1% Tween-20 (PBST) and 0.25 mM levamisole. The samples 

were then fixed in PBST buffer containing 3% paraformaldehyde for 10 min at room 

temperature, and subsequently incubated with cold methanol for 15 min at −20°C. After 

Edwards et al. Page 18

Cell Rep. Author manuscript; available in PMC 2021 September 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://david.abcc.ncifcrf.gov/
http://www.biosearchtech/com/stellarisdesigner
http://www.biosearchtech/com/stellarisdesigner


washes with PBST, the samples were blocked for 30 min at room temperature in PBST with 

1% bovine serum albumin before rabbit anti-HIM-3 (Novus, Cat# 53470002) was added 

at 1:200 dilution. After overnight incubation and four washes with the blocking solution, 

Goat anti-Rabbit IgG (H+L) Alexa Fluor Plus 488 (Invitrogen Cat# A32731) was added to 

the samples at 1:1000 dilution and incubated for 2 hours in the dark at room temperature. 

DNA staining was done in 100 ng/ml of DAPI for 20 min, and the samples were mounted 

on agarose pad for confocal imaging. Mitotic, transition and meiotic zones were defined 

based on staining of the meiotic marker HIM-3 and the crescent-shaped DAPI staining in 

the transition zone. Nuclei counting was done using IMARIS 9.3.1 software following the 

published procedure (Gopal and Pocock, 2018).

For Figures S5C–E, we prepared freeze-cracked worms, fixed in 4% 

paraformaldehyde, as described (Charlie et al., 2006) with the following 

changes. We prepared JTL708 (daf-2(e1370) III; 3xFLAG::hsf-1::degron::GFP I; 

ieSi38[sun-1p::TIR1::mRuby::sun-1_3’UTR+Cbr-unc-119(+)] IV) worms by bleach 

synchronization, and L1 larvae were grown on NGM plates containing ethanol at 20°C 

for approximately 75 hours. Young adult worms were rinsed off in M9 buffer and plated 

on either ethanol or auxin plates for 2 hours before rinsing for freeze-cracking. A methanol 

incubation for 15 min at 4°C after fixation was added to eliminate the TIR1:RFP signal in 

the worms. The samples were co-stained with anti-FLAG M2 (mouse, Sigma Cat# F3165) 

at 1:250 and anti-REC-8 (rabbit, Novus Cat# 49230002) at 1:100 at 15°C overnight. We 

then labeled the anti-FLAG with anti-mouse-Alexa 647 (Invitrogen Cat# A32728) and 

anti-REC-8 with goat anti-rabbit-Alexa 488 (Invitrogen Cat# A32731) by incubating for 2 

hours at room temperature.

EdU labeling—EdU labeling was performed by feeding animals with EdU-labeled 

MG1693 bacteria. EdU-labeled bacteria and M9 agar plates were prepared as described 

(Kocsisova et al., 2018). For the experiments in larvae (as in Figures S2C and S2D), 

JTL621 animals were synchronized by egg lay on ethanol or auxin plates, and grown 

for 38 hours at 20°C to L3 stage. The Larvae were then transferred onto M9 plates 

with EdU bacteria, and fed with EdU for 3 hours. Fixation and rehydration of whole 

animals were done as described (Michaelson et al., 2010). Briefly, animals were fixed 

for 10 minutes in 3.7% paraformaldehyde (Fisher Scientific, Cat#AA433689M) in PBST, 

washed in PBST, incubated for 5 minutes in −20°C methanol, and washed three times 

in PBST. For experiments in Figure S6E, age-synchronized Day 1 adult worms that were 

at the young adult (YA) and gravid adult (GA) transition (adult vulva and a few if any 

embryos in the uterus) were used. The experiments were done by following the published 

protocol (Kocsisova et al., 2018). Briefly, the animals were fed with EdU bacteria for 

30 min, and dissected gonads were fixed in 3% paraformaldehyde, washed in PBST and 

incubated overnight in −20°C methanol before washing three times in PBST to rehydrate the 

germlines. EdU click reaction using Click-iT EdU Cell Proliferation Kit with Alexa Fluor 

594 dye (Thermofisher, Cat# C10339) and DAPI staining were performed as described 

(Kocsisova et al., 2018). Worms were then mounted on 2% agarose pad for confocal 

imaging. Nuclei with any EdU labeling (individual chromosomes or all chromosomes) were 

scored as positive.
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Fluorescence Imaging and Quantification of Fluorescence Intensity—Imaging 

of live animals as in Figures 1B, S1A, and S5A was done by immobilizing age-synchronized 

young adult animals in a drop of M9 buffer containing 6mM levamisole on a 2% agarose 

pad. Images were acquired immediately using a Zeiss LSM710 Confocal Microscope with 

a 20X objective. Fluorescent imaging for RNA FISH and IF was performed using a Zeiss 

LSM710 Confocal Microscope through a 63X oil objective. Zen software was used to obtain 

z- stacks, stitch image tiles, and perform subsequent analyses. Fluorescence intensity was 

quantified in individual worms after maximal intensity projection. Regions of interest were 

outlined within individual worms and the arithmetic mean of fluorescence intensity per area 

was determined. For quantification of IF and FISH signals in the germline, germ cells in 

mitotic region, transition zone and meiotic prophase were included.

QUANTIFICATION AND STATISTICAL ANALYSIS

Two-tailed, unpaired Student’s t test were used for candidate gene expression analyses (RT­

qPCR and RNA FISH), nuclei quantification and brood size analyses. Two-way ANOVA 

test was used for developmental size analyses in Figure S1C. P values from these statistical 

analysis were calculated using GraphPad Prism, and are declared in figure legends. Error 

bars represent SEM or standard deviation as specified in figure legends. Benjamini and 

Hochberg FDR was used to calculate the adjusted P value for differential expression 

analyses by RNA-seq.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• HSF-1 activates proteostatic and pro-reproduction genes in germline 

development

• Heat stress relocates HSF-1 from its developmental targets to helitrons in 

germ cells

• Insulin/IGF-1 signaling in the soma non-autonomously activates HSF-1 in the 

germline

• HSF-1 is required for insulin/IGF-1-promoted germline proliferation and 

fecundity
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Figure 1. The auxin-inducible degron (AID) system reveals tissue-specific roles of HSF-1 in C. 
elegans larval development and reproduction
(A) Schematic of the AID system: endogenous HSF-1 tagged with AID and GFP and a 

transgene expressing the plant E3 ligase TIR1 that recognizes AID in the presence of auxin 

under control of a tissue-specific promoter.

(B) Live-animal images of young adults with germline-specific HSF-1 depletion by AID for 

2 h. Dashed lines outline gonads. Scale bars, 50 μM.

(C) Size tracking of developing larvae with continuous HSF-1 depletion in the soma initiated 

at egg lay. Data are represented as mean ± standard deviation (n ≥ 15). The timeline 

represents larval stages (L1–L4) in control animals without HSF-1 depletion. The size of 

animals with HSF-1 depletion from the soma did not increase after 24 h (Dunnett’s test, 

p ≥ 0.05) and was significantly smaller than the control without auxin treatment at 30 

h (unpaired, two-tailed Student’s t test, P: 4.3E–15) and after, suggesting larval arrest at 

L1/L2.

(D) Brood size of animals with continuous HSF-1 depletion in the germline initiated at egg 

lay. Data are represented as mean ± standard deviation (n ≥ 10). Statistical significance was 

calculated by unpaired, two-tailed Student’s t test. ****p < 0.0001; ns, not significant (p > = 

0.05).
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Figure 2. HSF-1 is required for mitotic proliferation of germline progenitor cells and early 
meiosis
(A and B) Representative images showing immunofluorescence (IF) of the meiotic marker 

HIM-3 in dissected gonads with DAPI staining of DNA. Young adult animals without auxin 

treatment (control, A) or with HSF-1 continuously depleted in the germline since egg lay (B) 

were used. Different stages of germline development are labeled. Germline progenitors are 

located in the “mitotic” zone. The white asterisks indicate the distal end of gonads where 

progenitor cell proliferation occurs. Scale bars, 20 μM.

(C) Quantification of nuclei (per gonad arm) in mitosis (progenitor cells), meiosis (from 

pachytene to diakinesis), or in the transition zone based on IF of Him-3 and the crescent­

shaped transition zoon nuclei in (A) and (B). Mean and standard deviation are shown 

(control, n = 10; HSF-1 depletion, n = 8). Statistical significance on the total number of 

nuclei was calculated by unpaired, two-tailed Student’s t test. ****p < 0.0001.
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Figure 3. HSF-1 directs a compact transcriptional program important for homeostasis and 
development of the germline
(A) Schematic showing tissue distribution of HSF-1 upon acute depletion in the two AID 

models. White dashed lines outline gonads.

(B) Heatmaps of HSF-1 occupancy at ChIP-seq peaks (normalized HSF-1 reads mapped 

to 50-bp bins, ±500 bp from peak summits) that are at promoters (within 1,000 bp from 

the transcription start sites) of protein-coding genes (PCGs). The two AID models were 

grown to young adults at 20°C (non-heat-shock [NHS] condition)and treated with auxin 

for 2 h (depletion [depl]) or mock-treated (control [ctrl]). HSF-1 peaks were grouped into 
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“soma enriched” or “germline enriched” when HSF-1 occupancy at the peaks decreases 

significantly upon depl from the corresponding tissue but not the other or grouped into 

“shared” when HSF-1 occupancy decreases significantly upon depl in both (P: 10e–10). The 

peaks in each group were ranked by the average HSF-1 occupancy under the two “ctrl” 

conditions. The number of peaks in each group is shown in parentheses.

(C) Heatmap of mRNA fold change upon depl of HSF-1 from the germline of young 

adults for 8, 16, and 24 h. Whole-animal RNA-seq analyses were done in four biological 

replicates for the 8-h and 16-h time points and in triplicates for the 24-h time point. 

TIR1; HSF-1::degron::GFP (auxin) was used as the HSF-1 depl condition, and TIR1; 

HSF-1::degron::GFP(mock treated), TIR1 (auxin), and TIR1 (mock treated) were pooled 

together as the ctrl. The mRNA fold change (HSF-1 depl/ctrl) is shown. Differentially 

expressed (DE) genes (false discovery rate [FDR], 0.05; fold change ≥ 1.25) at any time 

point were included and ranked by fold change at 8 h, then 16 h, and last, 24 h. The number 

of PCGs in each group is shown in parentheses.

(D) The gene network directly activated by HSF-1 in germline development. Genes included 

are those with HSF-1 binding peaks at the promoters and significantly decreased expression 

upon HSF-1 depl from the germline for 8 h (gene names in red) or 16 h (gene names in 

black). The protein-protein interaction network was retrieved from the STRING database 

and grouped by k-means clustering (n = 2). The node color represents the cluster to which 

the gene belongs (red, proteostasis; green, reproduction). The color saturation of edges 

represents the confidence score of a functional interaction.

(E) Brood size analyses with germline-specific RNAi. The numbers of eggs and viable 

progeny were scored. EGG-5 RNAi likely knocked down its paralog EGG-4 as well, 

based on sequence similarity. Data are represented as mean ± standard deviation (n ≥ 12). 

Statistical significance was calculated by unpaired, two-tailed Student’s t test relative to the 

ctrl RNAi (empty vector of L4440). ****p < 0.0001.

(F and G) Gene Ontology (GO) analyses of DE genes by HSF-1 depl from the germline 

for 16 h (F) and 24 h (G). The top5 GO terms based on enrichment score are shown for 

downregulated genes (blue bars) and upregulated genes (red bars).
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Figure 4. HSF-1 exhibits germline-specific response to heat stress
(A) Heatmaps of HSF-1 occupancy and mRNA changes in heat-shocked young adults with 

acute HSF-1 depl for 2 h. HSF-1 dependent, HS-induced genes are shown and defined by 

HSF-1 binding at promoters, significantly increasing mRNA levels (FDR, 0.05) upon HS 

at 34°C for 30 min in both AID models without auxin treatment (ctrl) and significantly 

decreasing mRNA levels upon HSF-1 depl in at least one AID model. Percent change 

of HSF-1 occupancy was calculated as the ratio of normalized HSF-1 ChIP-seq reads 

from HSF-1 depleted to those from the ctrl in 50-bp bins, ± 500bp from peak summits. 
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Percent mRNA induction by HS is the ratio of the increased mRNA after HS from the 

HSF-1-depleted condition to that from the ctrl condition. The mRNA fold change (FC) by 

HS and HS-induced mRNA (read counts per million [cpm]) were calculated as the ratio or 

the difference of mRNA between HS and NHS, respectively, and by pooling the data of ctrl 

conditions (no auxin) from two AID models.

(B and C) Representative images of RNA fluorescence in situ hybridization (FISH) of 

hsp-70 (F44E5.4/.5) in young adult AID animals without heat shock or subjected to a 

heat shock (HS) at 34°C for 15 min following 2 h of mock treatment as the ctrl or auxin 

treatment to deplete HSF-1 (depl) from the soma (B) or the germline (C). Scale bars, 20 μM.

(D) Gbrowser views of HSF-1 and RNA Pol II occupancy at thehsp-70 (C12C8.1), hsp-110 
(and the downstream helitron), and hsp-90 gene loci under NHS and HS conditions with ctrl 

and HSF-1 depl from the soma or germline (germ). At the hsp-90 locus, the red and black 

arrows show the distal, inducible and proximal, basal promoters, respectively. The orange 

arrows and the magnified image show the small, HS-inducible HSF-1 peaks at the distal 

promoter.

(E) Heatmap showing HS-induced FCs of germline HSF-1 occupancy at the NHS HSF-1 

peaks located at promoters of PCGs. Germline HSF-1 occupancy was determined by HSF-1 

ChIP-seq reads obtained in animals with acute depl of HSF-1 from the soma. The FC was 

calculated as the ratio of normalized HSF-1 reads from the HS condition to those from the 

NHS condition in 50-bp bins, ± 500 bp from peak summits.

(F) Histograms showing the number of HSF-1 binding peaks during HS in the context of 

their tissue specificity and locations in helitron repeats.

(G) Heatmap showing HS-induced FCs of germline HSF-1 occupancy at the HSF-1 peaks 

located in helitron repeats. Calculations were done as in (E).
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Figure 5. HSF-1 is required for IIS-promoted reproduction
(A) Bar graph of activation Z scores from IPA of transcriptome changes at 16 h of HSF-1 

depl from the germline. The activation Z score is a statistical measurement of the activation 

status of upstream regulators of DE genes (positive Z score, activation; negative Z score, 

inhibition).

(B) Schematic of the linked IIS and mTORC2 signaling transduction pathway (Blackwell 

et al., 2019; Hertweck et al., 2004; Murphy and Hu, 2013; Sarbassov et al., 2005). Human 

protein names are shown in red, and C. elegans ortholog names are shown in black. Green 

pointed arrows denote activation, and red blunt-ended arrows denote repression.
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(C) Brood size of the wild-type, daf-2(rf), and pdk-1(rf) animals upon depl of HSF-1 

from the germline since egg lay. The pdk-1(rf) mutants were grown at 15°C to avoid 

developmental defects at higher temperature. Data are represented as mean ± standard 

deviation (n ≥ 15). Statistical significance was calculated by unpaired, two-tailed Student’s t 

test. ***p < 0.001, ****p < 0.0001.

(D and E) Representative images showing IF of the meiotic marker HIM-3 in dissected 

gonads with DAPI staining of DNA. hsf-1(null) animals that express the hsf-1::gfp transgene 

from the pan-soma sur-5 promoter (D) showed meiotic arrest at pachytene (boxed image), 

whereas animals carrying an additional daf-2(rf) allele (E) successfully entered oogenesis 

(boxed image showing a nucleus at diakinesis). Dashed lines outline gonads, and the white 

asterisks indicate the distal end of gonads. Scale bars, 20 μM.

(F) Brood size of daf-2(rf) animals treated with daf-2 RNAi or the empty vector of L4440 

as ctrl (ctrl RNAi) upon depl of HSF-1 from the germline. Depl of HSF-1 and RNAi 

started since egg lay. Data are represented as mean ± standard deviation (n ≥ 20). Statistical 

significance was calculated by unpaired, two-tailed Student’s t test. ****p < 0.0001; ns, p > 

= 0.05.

(G) Correlation of total brood size and HSF-1-dependent fecundity in animals with different 

IIS activities. HSF-1-dependent fecundity is calculated as the percent of brood size decrease 

upon depl of HSF-1 from the germline (as in C and F).
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Figure 6. IIS activates HSF-1-dependent expression of hsp-90 and hsc-70 in germline 
development
(A) Histograms showing the number of eggs laid by daf-2(rf) animals with systemic RNAi 

treatment against DAF-16 or SKN-1. The empty vector of L4440 was used as the Ctrl 

(ctrl RNAi). Depl of HSF-1 from the germline and RNAi started since egg lay. Data are 

represented as mean ± standard deviation (n ≥ 15). Statistical significance was calculated by 

unpaired, two-tailed Student’s t test. *p < 0.05, ***p < 0.001, ****p < 0.0001; ns, p > = 

0.05.

(B) Histograms showing brood size of the daf-2(rf) animals with RNAi treatment against 

DAF-16. RNAi was done in genetic models that are RNAi defective (negative Ctrl) or enable 

RNAi to occur systemically only in the germline or in the soma. Depl of HSF-1 from the 

germline and RNAi started since egg lay. Data are represented as mean ± standard deviation 

(n > 15). Statistical significance was calculated by unpaired, two-tailed Student’s t test. *p < 

0.05, ***p < 0.001, ****p < 0.0001; ns, p > = 0.05.
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(C and D) Scatter dot plot showing the fluorescence intensity of hsp-90 (C) and hsc-70 (D) 

RNA-FISH in the germline of wild-type and daf-2(rf) animals that were mock treated as the 

Ctrl or treated with auxin to deplete HSF-1 from the germline since egg lay (HSF-1 depl). 

Mean and standard deviation are plotted. Statistical significance was calculated by unpaired, 

two-tailed Student’s t test. **p < 0.01, ****p < 0.0001; ns, p > = 0.05. HSF-1-dependent 

expression in the germline was calculated as fluorescence intensity in the Ctrl minus HSF-1­

depleted animals, a.u., arbitrary units of fluorescence.

(E) Brood size analyses with germline-specific RNAi in the daf-2(rf) mutant. Depl of HSF-1 

from the germline and RNAi started since egg lay. Data are represented as mean ± standard 

deviation (n > 15). Statistical significance was calculated by unpaired, two-tailed Student’s t 

test. ****p < 0.0001. The average brood sizes of animals with hsp-90 and hsc-70 RNAi are 

labeled.
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Figure 7. IIS and FOXO/DAF-16 non-cell-autonomously regulate HSF-1 activities in the 
germline
(A and B) Scatter dot plot showing the fluorescence intensity of hsp-90 (A) and hsc-70 
(B) RNA-FISH in the germline of the daf-2(rf) animals that are only sensitive to RNAi 

in somatic tissues. Depl of HSF-1 from the germline by AID and RNAi (daf-16 or empty 

vector of L4440 as the ctrl) started since egg lay. Mean and standard deviation are plotted. 

Statistical significance was calculated by unpaired, two-tailed Student’s t test. **p < 0.01, 

****p<0.0001.
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(C) A proposed model for HSF-1 to support germline homeostasis and development in 

response to nutrient-sensing insulin/IGF-1 signaling (IIS) and heat stress. Left: correlation of 

IIS and DAF-16 activities in the soma with progenitor cell proliferation and HSF-1 activities 

in the germline. The demands for expression of HSF-1 target genes (e.g., hsp-90 and hsc-70) 

in germ cells of animals with different IIS activities dictate HSF-1’s requirement for fertility 

and fecundity. Right: model for regulation of germline HSF-1 by somatic IIS and heat stress. 

Green pointed arrows denote activation, and red blunt-ended arrows denote repression.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit polyclonal anti-HIM-3 Novus Novus Cat# 53470002; 
RRID:AB_11013811

Rabbit polyclonal anti-REC-8 Novus Novus Cat# 49230002; 
RRID:AB_10717927

Mouse monoclonal anti-FLAG (M2) Sigma Sigma Cat# F3165; RRID:AB_259529

Mouse monoclonal anti-RNA Polymerase II (8WG16) BioLegend BioLegend Cat# 664906; 
RRID:AB_2565554

Rabbit polyclonal anti-GFP Clontech Takara Bio Cat# 632592; 
RRID:AB_2336883

Goat anti-Mouse IgG (H+L) Alexa Fluor Plus 647 Thermofisher 
Scientific

Invitrogen Cat# A32728; 
RRID:AB_2633277

Goat anti-Rabbit IgG (H+L) Alexa Fluor Plus 488 Thermofisher 
Scientific

Invitrogen Cat# A32731; 
RRID:AB_2633280

Bacterial and virus strains

E. coli OP50 CGC OP50

E. coli HT115 CGC HT115

E. coli MG1693 CGSC MG1693

Chemicals, peptides, and recombinant proteins

Indole-3-acetic acid (auxin) Sigma Cat# I2886-5G; Cas# 87-51-4

IPTG Thermofisher 
Scientific

Cat# R0393; Cas# 367-93-1

Trizol reagent Thermofisher 
Scientific

Cat #15596026

Protein-G Dynabeads Thermofisher 
Scientific

Cat # 10004D

EdU (5-ethynyl-2′-deoxyuridine) Thermofisher 
Scientific

Cat # A10044

Paraformaldehyde Fisher Scientific Cat# AA433689M; Cas# 30525-89-4

iTaq Universal SYBR Green Supermix BioRad Cat# 1725124

NEBuilderr HiFi DNA Assembly Master Mix New England BioLabs Cat# E2621

Alt-R HiFi S.p. Cas9 NLS IDT Cat# 1078727

Critical commercial assays

iScript cDNA synthesis kit BioRad Cat# 1708891

Click-iT EdU Cell Proliferation Kit for Imaging, Alexa Fluor 594 dye Thermofisher 
Scientific

Cat# C10339

Zymo Research Direct-zol RNA MiniPrep kit Zymo Research Cat # R2051

ZymoPURE Plasmid Miniprep Kit Zymo Research Cat # R4208T

QIAGEN MinElute PCR Purification Kit QIAGEN Cat# 28004

Deposited data

Tissue-specific HSF-1 occupancy at 20°C or upon heat shock (HS) at 34°C 
for 30 min (ChIP-seq)

This study GEO: GSE162063

Cell Rep. Author manuscript; available in PMC 2021 September 15.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Edwards et al. Page 39

REAGENT or RESOURCE SOURCE IDENTIFIER

Transcriptomic analyses of the heat shock response upon HSF-1 depletion 
from the somatic or germline tissue (RNA-seq)

This study GEO: GSE162064

Transcriptomic analyses of HSF-1 in germline development (RNA-seq) This study GEO: GSE162066

Experimental models: Organisms/strains (C. elegans)

Wild type, Bristol CGC N2

hsf-1(ok600) I/hT2 [bli-4(e937) let-?(q782) qIs48] (I;III) CGC OG576

unc-119(ed3)III;ieSi38[sun-1p::TIR1::mRuby::sun-1 3’UTR+Cbr­
unc-119(+)]IV

CGC CA1199

ieSi57[eft-3p::TIR1::mRuby::unc-54 3’UTR+Cbr­
unc-119(+)]II;unc-119(ed3)III

CGC CA1200

mkcSi13 II; rde-1(mkc36) V CGC DCL569

daf-2(e1370)III CGC CB1370

pdk-1(sa680)X CGC JT9609

daf-16(mgDf50) I; daf-2(e1370) III CGC HT1890

akt-1(ok525)V CGC RB759

akt-2(ok393)X CGC VC204

sqk-1(ok538)X CGC VC345

hsf-1(ok600) I/hT2 [bli-4(e937) let-?(q782) qIs48] (I;III); 
ljtEx3[sur-5p::HSF-1 (cDNA)::gfp+ttx-3p::rfp]

This study JTL804

hsf-1(ljt3[hsf-1::degron::gfp])I; unc-119(ed3)III; 
ieSi38[sun-1p::TIR1 ::mRuby::sun-1 3′UTR+Cbr-unc-119(+)]IV

This study JTL621

hsf-1(ljt3[hsf-1::degron::gfp])I; ieSi57[eft-3p::TIR1:: mRuby::unc-54 3′ 
UTR+Cbr-unc-119(+)]II;unc-119(ed3)III

This study JTL611

daf-2(e1370) III; hsf-1(ljt4[3xFLAG::hsf-1::degron:: gfp])I; 
ieSi38[sun-1p::TIR1::mRuby::sun-1 3′UTR+Cbr-unc-119(+)]IV

This study JTL708

hsf-1(ok600) I; daf-2(e1370)III; ljtEx3[sur-5p::HSF-1 (cDNA)::gfp] This study JTL806

hsf-1(ljt3[hsf-1::degron::gfp])I; daf-2(e1370)III; 
ieSi38[sun-1p::TIR1 ::mRuby::sun-1 3′UTR+Cbr­
unc-119(+)]IV;rde-1(mkc36)V; ljtEx5[sur-5p::rde-1+ttx-3p::gfp+ 
myo-2p::rfp]

This study JTL809

Oligonucleotides

Please see Table S4 for a list of guide RNAs used in this study. N/A N/A

Please see Table S5 for a complete list of primers used in this study. N/A N/A

RNAi clones (multiple) Ahringer Library; 
Bioscience

Cat# 3318_Cel_ RNAi_complete

Stellaris FISH Probes, Custom Assay with Quasar 670 Dye (multiple, 
please see Table S6 for sequences)

Biosearch 
Technologies

Cat# SMF-1065-5

Recombinant DNA

pLZ29: pCFJ151_Peft-3_degron_EmGFP_unc-54 3′UTR Zhang et al., 2015 Addgene Plasmid #71719

pSLGCV: a plasmid that contains sur-5p::luc+::gfp in pPD95.79 Lagido et al., 2008 Addgene Plasmid #49862

pNP160: a plasmid that contains ttTi5605_SEC_ mtl-2p_RDE-1_3′rde-1 a gift from Jonathan 
Ewbank, Aix-Marseille 
University

Addgene Plasmid #106362

pPD97_75: empty backbone a gift from 
Andrew Fire, Stanford 
University

Addgene Plasmid #1494

sur-5p::HSF-1 (cDNA)::gfp in pPD95.79 This study N/A
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REAGENT or RESOURCE SOURCE IDENTIFIER

sur-5p::rde-1 in pPD97_75 This study N/A

Software and algorithms

Imaris Image Analysis software Bitplane https://imaris.oxinst.com

Prism 8 GraphPad Software https://www.graphpad.com:443/

Bowtie 2.3.5.1 Langmead and 
Salzberg, 2012

www.cs.jhu.edu/~langmea

Bedtools Quinlan and Hall, 2010 https://github.com/arq5x/bedtools2

MACS 2.2.7.1 Zhang et al., 2008 https://github.com/macs3-project/
MACS

RNA STAR 2.6 Dobin et al., 2013 https://github.com/alexdobin/STAR

Rsubread Liao et al., 2019 https://bioconductor.org/packages/
release/bioc/html/Rsubread.html

edgR Robinson et al., 2010 http://bioconductor.org/packages/
release/bioc/html/edgeR.html

IGV 2.5.0 Robinson et al., 2011 https://software.broadinstitute.org/
software/igv/download

Ingenuity Pathway Analysis (IPA) QIAGEN https://digitalinsights.qiagen.com/
products/ingenuity-pathway-analysis
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