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There are many ways to compute value. For instance, animals can compute4

value by learning from the past or by imagining future outcomes, but it is un-5

clear if or how these computations interact. We used high-throughput training6

to collect statistically powerful datasets from 240 rats performing a temporal7

wagering task with hidden reward states. Rats adjusted how quickly they initi-8

ated trials and how long they waited for rewards across states, balancing effort9

and time costs against expected rewards. Statistical modeling revealed that an-10

imals computed the value of the environment differently when initiating trials11

versus when deciding how long to wait for rewards, even though these deci-12

sions were only seconds apart. This work reveals that sequential decisions use13

parallel value computations on single trials.14

Main Text15

The value of the environment, or how much reward it is expected to yield, determines an-16

imals’ motivational states and sets their expectations for error-based learning (1–3). But how17
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are values computed? Reinforcement learning systems can store or “cache” values of states,18

actions, or outcomes that are learned directly from experience, or they can compute values us-19

ing a learned model of the environment to simulate possible futures (3). These different value20

computations have distinct tradeoffs, and a central question is how neural systems decide which21

computations to use or whether/how to combine them (4–8). However, it is difficult to deter-22

mine the value computations that subjects use, especially over behaviorally relevant timescales23

of seconds. In standard two-alternative forced choice tasks, the behavioral read-out is a binary24

choice, and the underlying values driving choice are obscure. State-of-the-art methods for re-25

vealing how values are computed use regression models that pool data over entire behavioral26

sessions (9), or pre-determined subsets of trials (10), thereby obscuring moment-by-moment27

changes in value computations. Therefore, whether or how multiple value computations inter-28

act on rapid timescales in the same subject is unclear.29

Rats’ deliberative and motivational decisions are sensitive to the value of30

the environment.31

We developed a temporal wagering task for rats, in which they were offered one of several32

water rewards on each trial, the volume of which (5, 10, 20, 40, 80µL) was indicated by a tone33

(Fig. 1A). The reward was assigned randomly to one of two ports, indicated by an LED. The34

rat could wait for an unpredictable delay to obtain the reward, or at any time could terminate35

the trial by poking in the other port (“opt-out”). Wait times were defined as how long rats36

waited before opting out. Trial initiation times were defined as the time from opting-out or37

consuming reward to initiating a new trial. Reward delays were drawn from an exponential38

distribution, and on 15-25 percent of trials, rewards were withheld to force rats to opt-out,39

providing a continuous behavioral readout of subjective value (Fig. 1B) (11–13). We used40

a high-throughput facility to train 240 rats using computerized, semi-automated procedures.41
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The facility generated statistically powerful datasets (median = 30,842 behavioral trials, 6542

sessions).43

The task contained latent structure: rats experienced blocks of 40 completed trials (hidden44

states) in which they were presented with low (5, 10, or 20µL) or high (20, 40, or 80µL) re-45

wards (12). These were interleaved with “mixed” blocks which offered all rewards (Fig. 1C).46

20µL was present in all blocks, so comparing behavior on trials offering this reward revealed47

contextual effects (i.e., effects of hidden states). The hidden states differed in their average re-48

ward and therefore in their opportunity costs, or what the rat might miss out on by continuing to49

wait. According to foraging theories, the opportunity cost is the long-run average reward, or the50

value of the environment (14). In accordance with these theories (14,15), rats adjusted how long51

they were willing to wait for rewards in each block, and on average waited ∼10 percent less52

time for 20µL in high blocks, when the opportunity cost was high, compared to in low blocks (p53

<< 0.001, Wilcoxon signed-rank test, N = 240; Fig. 1D-F). These are strong contextual effects54

compared to previous studies (12, 16).55

Trial initiation times were modulated by blocks in a similar pattern as the wait times, with56

rats initiating trials more quickly in high compared to low blocks (p << 0.001, Wilcoxon57

signed-rank test, N = 240; Fig. 1G-I). Previous work suggests that this pattern optimally bal-58

ances the costs of vigor against the benefits of harvesting reward in environments with different59

reward rates (2, 17). Therefore, both the trial initiation times, which reflect motivation, and the60

wait times, which reflect deliberating between waiting and opting-out, were modulated by the61

value of the environment.62

Trial initiation and wait times exhibited distinct temporal dynamics.63

Surprisingly, wait and trial initiation times exhibited dramatically different dynamics at64

block transitions. In mixed blocks, the wait times following high and low blocks converged to a65
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Figure 1: Wait time and trial initiation time were modulated by the value of the environ-
ment. A. Schematic of behavioral paradigm. B. Distribution of wait times for one rat. C. Block
structure of task. D-E. Average wait time on catch trials by reward in each block for (D) one rat
and (E) averaged across rats. F. Wait time ratio (average wait time for 20 µL in high block/low
block) across all rats. Filled boxes indicated rats with p < 0.05, Wilcoxon rank-sum test. Popu-
lation average, p << 0.001, Wilcoxon signed-rank test, N = 240. G-H. Average trial initiation
times in high and low blocks for (G) one rat and (H) all rats. I. Trial initiation time ratio (aver-
age initiation time in high block/low block) across all rats. Filled boxes indicated rats with p <
0.05, Wilcoxon rank-sum test. Population average, p << 0.001, Wilcoxon signed-rank test, N
= 240.
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Figure 2: Wait and trial initiation times use distinct estimates of the value of the envi-
ronment. A-B. Mean change in wait times (A) and trial initiation times (B) from low or high
blocks to mixed blocks, N = 240. Data are mean ± S.E.M. C-D. Regression coefficients for (C)
trial initiation time and (D) wait time. E-F. Time constants, τ , of exponential decay parameters
fit to previous trial coefficients for wait time (purple) and trial initiation time (green) were (E)
significantly different, p << 0.001, Wilcoxon sign-rank test, N = 240, and (F) uncorrelated,
r = 0.08, p = 0.18, Pearson linear correlation, N = 240. G-H. Fast or slow initiation time τ
(<20th or >80th) meaningfully divided rats based on their initiation time regression coefficients
(G; p << 0.01, one-tailed permutation test, N = 47), but not wait time coefficients (H; p = 0.1,
one-tailed permutation test, N = 47). I. Predictions for sensitivity to previous offers (behavior
conditioned on previous offer <20µL - >20µL) for fixed (light) versus sequentially-updated
(dark) estimates of environmental value, consistent with inferential and retrospective strategies,
respectively. J. Wait time on 20 µL catch trials in mixed blocks conditioned on previous reward
offer. Difference is significant (p < 0.05) in only 28/240 rats, Wilcoxon rank-sum test. K. Trial
initiation time in mixed blocks conditioned on previous reward offer. Difference is significant
(p < 0.05) in 212/240 rats, Wilcoxon rank-sum test. L. Sensitivity to previous offers for wait
time (purple) and trial initiation time (green). p << 0.001, Wilcoxon sign-rank test, N = 240.
Colored bars are individual rats with p < 0.05, Wilcoxon rank-sum test.
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common value, regardless of the previous block type, suggesting the use of a fixed estimate of66

environmental value in mixed blocks (Fig. 2A). Trial initiation times, however, showed longer67

timescale effects such that initiation times in mixed blocks strongly depended on the previous68

block identity (Fig. 2B). These longer timescale dynamics, which are reminiscent of incen-69

tive contrast effects (18), were also evident in the transitions from mixed blocks into high/low70

blocks for trial initiation times, but not wait times (fig. S1), indicating that trial initiation and71

wait times utilize distinct estimates of the value of the environment.72

To better characterize their temporal dynamics, we regressed the trial initiation and wait73

times against rewards offered on previous trials. We included current rewards as regressors74

in the wait time model, and restricted this analysis to mixed blocks only. Examination of the75

regression coefficients revealed qualitatively different dynamics, in which the wait times were76

explained by the reward offered on the current trial, but the trial initiation times reflected an77

exponentially weighted effect of previous rewards, consistent with a model-free temporal dif-78

ference learning rule (Fig. 2C,D). We fit exponential curves to the previous trial coefficients79

for each rat, and found that the distributions of exponential decay time constant parameters (τ )80

were significantly different for the trial initiation and wait times (p << 0.01, Wilcoxon sign-81

rank test, N = 240; Fig. 2E). Moreover, τ parameters were not correlated across models (r =82

0.08, p = 0.18, Pearson linear correlation, N = 240, Fig. 2F).83

To leverage individual variability across rats, we compared rats with fast and slow temporal84

integration for trial initiation times (τ from exponential fit to regression coefficients < 20th or85

> 80th percentiles). There were differences in temporal integration for trial initiation times,86

but not wait times, for these groups (Fig. 2G-H, trial initiation time p << 0.001, wait time p =87

0.5, permutation test, N = 111). Collectively, these data suggest that within a block, wait times88

use a fixed estimate of the value of the environment, whereas trial initiation times are sensitive89

to previous rewards (Fig. 2C,D). Indeed, for almost all rats (89%), wait times for 20µL offers90
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in mixed blocks were not significantly different if they were preceded by rewards that were91

smaller or larger than 20µL (p > 0.05, Wilcoxon rank-sum test, N = 212/240). However, for92

89% of rats, trial initiation times were significantly modulated by previous rewards, suggesting93

fixed and incrementally updated estimates of the value of the environment, respectively (p <94

0.05, Wilcoxon rank-sum test, N = 212/240, Fig. 2I-L).95

Computational modeling reveals distinct value computations for sequential96

decisions.97

Our data suggest that rats’ sequential decisions (when to initiate trials and how long to wait98

for rewards) reflect different value computations. We developed behavioral models for wait and99

trial initiation times, inspired by foraging theories (14). The wait time model implemented a100

trial value function that scaled with the offered reward and decayed to reflect reward probability101

over time (11). The model’s predicted wait time was when the value function fell below the102

value of the environment (opportunity cost) on each trial (Fig. 3A). Different versions of the103

model estimated the value of the environment using different computations.104

Analysis of rats’ trial initiation times suggests that they estimate the value of the environ-105

ment as a running average of rewards (Fig. 2C) (2, 12, 19). We refer to this computation as106

retrospective, as it reflects past experience (20). Alternatively, rats’ wait times reflected the107

use of discrete estimates of block value (Fig. 2A,D,J). Therefore, rats might infer the current108

block (20–24), and use fixed estimates of block value based on that inference. We refer to this109

computation as inferential, since it requires hidden state inference.110

The inferential model selected the most likely block using Bayes’ Rule with a prior that111

incorporated reward history and knowledge of the block transition structure. This model reca-112

pitulated the rats’ wait times converging to a common value in mixed blocks (Fig. 3B-C). This113

reflects the model’s use of a fixed estimate of the value of the environment in each block.114
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In the retrospective case, the value of the environment was estimated as a recency-weighted115

average of offered rewards according to a temporal-difference learning rule (Fig. 3C). A static116

learning rate was unable to capture the rats’ behavior (fig. S2). Previous work has shown that117

animals adjust their learning rates depending on the volatility in the environment, since it is118

advantageous to learn faster in dynamic environments (25–27). Therefore, our model scaled the119

learning rate by the trial-by-trial change in the inferential model’s beliefs about the hidden state120

(derivative of the posterior, see Methods).121

We fit these models to rats’ wait times. By several model comparison metrics, wait times122

were better fit by the inferential model that used hidden state inference to select block-specific123

estimates of the value of the environment (p << 0.001, Wilcoxon signed-rank test, N = 240;124

Fig. 3F, fig. S3), consistent with that model reproducing the wait time dynamics (Fig. 2A,3B).125

We also used the model to identify trials in mixed blocks where the rats were likely to make126

mistaken inferences. The rats’ wait times reflected these mistaken inferences, further indicating127

that their wait times were well-described by the inferential model (fig. S4).128

We also developed a “belief state” model that estimated the value of the environment as129

the sum of block-specific values weighted by their posterior probabilities. These models make130

qualitatively similar predictions about the average wait times. In fact, when the posterior beliefs131

are stable, which is often the case, the belief state and inferential models are identical, and model132

comparison did not favor one model over the other (data not shown).133

While the inferential model captured rats’ wait times, the retrospective model captured two134

key features of their trial initiation times, which we modeled as inversely proportional to the135

value of the environment (Fig. 2D-E) (2). First, with a sufficiently small learning rate (<0.1,136

fig. S2), the model integrated reward history on long timescales such that trial initiation times in137

mixed blocks depended on the previous block identity. Second, the dynamic learning rate cap-138

tured the rapid behavioral dynamics at block transitions. We explored versions of the dynamic139
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learning rate that did not reflect inference, including using the unsigned reward prediction error140

or a running average of reward prediction errors (27). However, these models could not cap-141

ture both short and long timescale dynamics at block transitions (fig. S2). This suggests that142

trial initiation times reflect a retrospective computation that is influenced by subjective belief143

distributions (25, 26).144

To leverage individual differences, we turned to the inferential model of wait times. We145

added a parameter, λ, that controlled the extent to which the model used an optimal prior, λ = 1,146

versus an uninformative prior, λ = 0 (Fig. 3F; fig. S5). We divided the rats into groups with low147

or high values of λ (λ < 20th or > 80th percentiles), and compared the parameters of logistic148

functions fit to the average wait time dynamics for these groups. Rats with optimal and poor149

inference exhibited significantly different dynamics at transitions from mixed into low blocks,150

indicated by different inverse temperature parameters, but not into high blocks, (mix to low,151

p < 0.05, mix to high, p = 0.08, one-tailed permutation test, N =180 Fig. 3G). This suggests152

that λ may have captured variability in rats’ priors over low blocks in particular. There was no153

difference in the dynamics of trial initiation times for those same groups of rats (mixed to low:154

p = 0.3, mixed to high: p = 0.2, one-tailed permutation test, N = 180; Fig. 3G).155

Block sensitivity for wait times requires structure learning.156

Structure learning is the process of learning the hidden structure of environments, including157

latent states and transition probabilities between them (28). If wait and trial initiation times dif-158

ferentially required knowledge of latent task structure, they should exhibit different dynamics159

over training. In the final stage of training, when rats were introduced to the hidden states, their160

wait times for 20µL gradually became sensitive to the reward block (Fig. 4A). We observed161

a gradual increase in the magnitude of reward and block regression coefficients that mirrored162

the behavioral sensitivity to hidden states (Fig. 4B). In contrast, trial initiation times exhibited163
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block sensitivity on the first session in the final training stage (Fig. 4A). This sensitivity was164

comparable early and late in training, consistent with animals using previous rewards to a simi-165

lar extent at these timepoints (Fig. 4C). These data suggest that block sensitivity for wait times,166

but not trial initiation times, required learned knowledge of hidden task states, and that these167

decisions reflected computations with distinct learning dynamics.168

The modest increase in trial initiation time block sensitivity over training is consistent with169

the gradual use of a dynamic learning rate that reflected learned knowledge of the blocks. A170

hallmark of the dynamic learning rate was the “overshoot” after transitions from high to mixed171

blocks (difference between maximum trial initiation time after transitioning and the trial ini-172

tiation time 20 trials post-transition; Fig. 2B). The overshoot became more prominent with173

training (Fig. 4D), on a similar timescale as block sensitivity for wait times (Fig. 4E), suggest-174

ing a shared mechanism.175

Reducing state uncertainty did not change trial initiation times.176

Why would animals use a retrospective computation at trial initiation, but rely on an inferen-177

tial computation as rats deliberated just 1-2 seconds later? In non-human primates, the decision178

to initiate trials can also reflect retrospectively computed values that differ from the values gov-179

erning the subsequent choice (29,30). One possibility is that motivation and approach behavior180

rely on neural circuits that do not support inference (31). Another possibility is that actions181

more distal to rewards are more likely to be retrospective, because there are more steps required182

to mentally simulate outcomes for forward-looking strategies like planning (32,33). According183

to either hypothesis, the decision of when to initiate a trial is inherently retrospective.184

Theoretical work in reinforcement learning has suggested that the brain should select the185

strategy that is the fastest and most accurate when taking into account uncertainty (8,34). There-186

fore, perhaps trial initiation times are retrospective because the rats’ subjective beliefs about the187
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Figure 4: Block sensitivity for wait times requires structure learning. A. Wait time adap-
tation ratio (average wait time for 20 µL in high/low blocks) evolved over training, while trial
initiation time ratio (average in high/low blocks) was below 1 on first session. B. Linear regres-
sion coefficients for block and reward gradually evolved over training for wait time. C. Linear
regression coefficient for previous reward was relatively stable across training for trial initiation
time. D. Overshoot in trial initiation time (difference between maximum z-scored trial initia-
tion time and trial initiation time at trial 20 post-transition) was more prominent after structure
learning. E. Overshoot in trial initiation time dynamics evolved on a similar timescale as block
sensitivity for wait times.

12

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 15, 2023. ; https://doi.org/10.1101/2023.03.14.532617doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.14.532617
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 10 20 40 80

-1
0
1

Tr
ia

l i
ni

tia
tio

n 
tim

e 
(z

-s
co

re
)

5 10 20 40 80

-1

0
1

<20 >20
-2
-1
0
1

-20 0 20
-2

0

2

Playing offer 
cue before 
trial initiation

reduces state 
uncertainty

No pre-initation cue

Pre-initation cue

A

Offered reward (μL) Offered reward (μL)

x10-1 x10-1

x10-1 x10-1

Original task    Pre-init. cue Only pre-init. cue

Tr
ia

l i
ni

tia
tio

n 
tim

e 
(z

-s
co

re
)

Tr
ia

l i
ni

tia
tio

n 
tim

e 
(z

-s
co

re
)

N = 12 N = 4

B

C D

N = 16

Previous offer (μL) Trials from 
block transition

Figure 5: Value computations for motivation do not depend on state uncertainty. A.
Schematic of pre-initiation cue experiment. B. Trial initiation time varied as a function of
offered volume for rats that trained on the original task before transitioning to pre-initiation cue
task (left) and for rats that trained exclusively on the pre-initiation cue task (right). C. Trial
initiation times were still sensitive to previous reward (behavior on trials offering 20µL condi-
tioned on the previous reward offer) after training on the pre-initiation cue task. 13/16 rats had
p < 0.05 , Wilcoxon Rank-sum test, N = 16. D. Trial initiation times in mixed blocks depended
on previous block type in pre-initiation cue task.

inferred state have more uncertainty before they hear the reward offer. Model simulations of a188

Bayes’ optimal observer did show that the reward offer reduced the uncertainty of subjective189

beliefs about the hidden state (comparing variance of prior to variance of posterior, p << 0.001,190

Wilcoxon sign-rank test).191

To test this hypothesis, we modified the task so that some rats heard the reward cue before192

they initiated the trial, when the center light turned on; they heard the tone again at trial initia-193

tion, as in the standard task (Fig. 5A). Their trial initiation times became sensitive to the offered194
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reward (Fig. 5B). However, trial initiation times for 20µL in mixed blocks were still modu-195

lated by the previous reward, consistent with the use of incrementally updated estimates of the196

value of the environment within a block (p < 0.05 for 13/16 rats; Fig. 5C). Moreover, how197

quickly they initiated trials in mixed blocks continued to depend on the previous block identity198

(Fig. 5D). These data indicate that there may be something inherently retrospective about the199

motivational decision to initiate a trial.200

Discussion201

We used high-throughput training to collect statistically powerful datasets and leverage in-202

dividual variability across hundreds of animals. Consistent with previous work, rats adjusted203

their behavior as we varied the richness of the environment in a way consistent with foraging204

theories (14, 19, 35–37), and behavioral economic theories of reference dependence (38, 39).205

Notably, we found that animals used multiple, parallel computations to estimate the richness of206

the environment, and rapidly switched between these computations on single trials, indicating207

that value computations vary on fine timescales (seconds). Our data are consistent with evidence208

for multiple decision-making systems that rely on distinct neural circuits (40–43). While ani-209

mals’ decisions of how long to wait for rewards relied on hidden state inference, the decision of210

when to initiate the trial was governed by a retrospective computation that calculated the value211

of the environment as the running average of rewards. Reducing state uncertainty before the212

trial did not change the value computations governing trial initiation times, suggesting that this213

decision may be inherently retrospective, although influenced by subjective belief distributions214

via a dynamic learning rate.215

Recent work in psychology and machine learning has characterized how parallel value com-216

putations might be combined (4–8, 29). For instance, in multi-step decision tasks, interaction217

effects in regression models are thought to reflect the use of combined retrospective and inferen-218
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tial value estimates (9, 10), and hybrid strategies for computing values have been approximated219

as a weighted average of retrospective and inference-based values (29). Our findings add to this220

body of work. Instead of simply combining or averaging values that were computed in different221

ways, rats seemed to coordinate their dynamics: changes in subjective beliefs about inferred222

states acted as a gain on retrospective value learning rates.223

It may be counterintuitive that the retrospective computation produced faster dynamics at224

block transitions than hidden state inference (Fig. 1E,I). Two features of the models explain this225

observation. First, the inferential model selects the block with the maximum posterior proba-226

bility. This argmax operation nonlinearly thresholds whether changes in the posterior produce227

changes in the inferred state. In contrast, the retrospective model’s estimate of the value of the228

environment is directly influenced by graded, “subthreshold” changes in the posterior via the229

dynamic learning rate. Subthreshold changes in the posterior necessarily precede changes that230

cross threshold for inferring a state change. Second, the inferential model’s prior is recursive:231

the posterior on one trial becomes the prior on the next trial. This means that the prior accu-232

mulates information over trials to infer state changes, instead of making them instantaneously.233

Indeed, individual differences in the informativeness of rats’ priors predicted the dynamics of234

their inferred state changes (Fig. 3G).235

The contextual effects we observed likely reflect efficient coding of value (12, 44–46). Ac-236

cording to the efficient coding hypothesis, to represent stimuli efficiently, neurons should be237

tuned to stimulus distributions that animals are most likely to encounter in the world (47).238

Recent studies have shown that biases in value-based decision-making, including the contex-239

tual effects observed here, reflect efficient value coding (12, 44, 45). Previous studies exam-240

ined how neurons ”adapted” to reward or stimulus distributions over blocks of trials or ses-241

sions, implying gradual, experience-dependent adjustments in behavioral sensitivity and neural242

tuning (12, 48, 49). Our findings suggest that if animals have learned the reward or stimulus243
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distributions associated with a particular state, they can condition their subjective value rep-244

resentations on that inferred state, perhaps via discrete, state-dependent adjustments in neural245

sensitivity (50). A major future question is how multi-regional neural circuits represent be-246

lief distributions for hidden state inference, and condition rapid adjustments in efficient neural247

representations of value on inferred states.248

Methods249

Subjects250

A total of 240 Long-evans rats (148 male, 92 female) between the ages of 6 and 24 months251

were used for this study (Rattus norvegicus). The Long-evans cohort also included ADORA2A-252

Cre (N =10), ChAT-Cre (N =2), DRD1-Cre (N=3), and TH-Cre (N =12). Animal use procedures253

were approved by the New York University Animal Welfare Committee (UAWC #2021-1120)254

and carried out in accordance with National Institutes of Health standards.255

Rats were pair housed when possible, but were occasionally single housed (e.g. if fighting256

occurred between cagemates). Animals were water restricted to motivate them to perform be-257

havioral trials. From Monday to Friday, they obtained water during behavioral training sessions,258

which were typically 90 minutes per day, and a subsequent ad libitum period of 20 minutes.259

Following training on Friday until mid-day Sunday, they received ad libitum water. Rats were260

weighed daily.261

Behavioral training262

Rats were trained in a high-throughput behavioral facility in the Constantinople lab using263

a computerized training protocol. They were trained in custom operant training boxes with264

three nose ports. Each nose port was 3-D printed, and the face was protected with an epoxied265

stainless steel washer (McMaster-Carr #92141A056). All ports contained a visible light emit-266
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ting diode (LED; Digikey #160-1850-ND), and an infrared LED (Digikey #365-1042-ND) and267

infrared photodetector (Digikey #365-1615-ND) that enabled detection of when a rat broke the268

infrared beam with its nose. Additionally, the side ports contained stainless steel lick tubes269

(McMaster-Carr #8988K35, cut to 1.5mm) that delivered water via solenoid valves (Lee Com-270

pany #LHDA1231115H). There was a speaker mounted above each side port that enabled de-271

livery of stereo sounds (Bohlender Graebener). The behavioral task was instantiated as a finite272

state machine on an Arduino-based behavioral system with a Matlab interface (Bpod State Ma-273

chine r2, Sanworks), and sounds were delivered using a low-latency analog output module274

(Analog Output Module 4ch, Sanworks) and stereo amplifier (Lepai LP-2020TI).275

Research technicians loaded rats in and out of the training rigs in each session, but the train-276

ing itself was computer automated. All rig computers automatically pulled version-controlled277

software from a git repository and wrote behavioral data to a MySQL (MariaDB) database278

hosted on a synology server. Rig computers automatically loaded each rat’s training settings279

file from the previous session, and following training, wrote a new settings file to the server280

for the subsequent day of training. Rig computers automatically loaded files for specific rats281

based on a schedule on the MySQL database. Human intervention was possible but generally282

unnecessary.283

Sound Calibration284

We calibrated sounds using a hand-held Precision Sound Level Meter with a 1/2” micro-285

phone (Bruel & Kjaer, Type 2250). The microphone was calibrated with a sound level calibrator286

(Bruel & Kjaer, Type 4230). Tones of different frequencies (1, 2, 4, 8, 16kHz) were presented287

for 10 seconds each; these tones were selected because they are in the trough of the behav-288

ioral audiogram for rats (51). They are also on a logarithmic scale and thus should be equally289

discriminable to the animals. We adjusted the auditory gain in software for each frequency290
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stimulus to match the sound pressure level to 70dB in the rig, measured when the microphone291

was proximal to the center poke.292

Task Logic293

LED illumination from the center port indicated that the animal could initiate a trial by294

poking its nose in that port - upon trial initiation the center LED turned off. While in the center295

port, rats needed to maintain center fixation for a duration drawn uniformly from [0.8, 1.2]296

seconds. During the fixation period, a tone played from both speakers, the frequency of which297

indicated the volume of the offered water reward for that trial [1, 2, 4, 8, 16kHz, indicating298

5, 10, 20, 40, 80µL rewards]. Following the fixation period, one of the two side LEDs was299

illuminated, indicating that the reward might be delivered at that port; the side was randomly300

chosen on each trial. This event (side LED ON) also initiated a variable and unpredictable delay301

period, which was randomly drawn from an exponential distribution with mean = 2.5 seconds.302

The reward port LED remained illuminated for the duration of the delay period, and rats were303

not required to maintain fixation during this period, although they tended to fixate in the reward304

port. When reward was available, the reward port LED turned off, and rats could collect the305

offered reward by nose poking in that port. The rat could also choose to terminate the trial306

(opt-out) at any time by nose poking in the opposite, un-illuminated side port, after which a307

new trial would immediately begin. On a proportion of trials (15-25%), the delay period would308

only end if the rat opted out (catch trials). If rats did not opt-out within 100s on catch trials, the309

trial would terminate.310

The trials were self-paced: after receiving their reward or opting out, rats were free to311

initiate another trial immediately. However, if rats terminated center fixation prematurely, they312

were penalized with a white noise sound and a time out penalty (typically 2 seconds, although313

adjusted to individual animals). Following premature fixation breaks, the rats received the same314
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offered reward, in order to disincentivize premature terminations for small volume offers.315

We introduced semi-observable, hidden-states in the task by including uncued blocks of316

trials with varying reward statistics (12): high and low blocks, which offered the highest three317

or lowest three rewards, respectively, and were interspersed with mixed blocks, which offered318

all volumes. There was a hierarchical structure to the blocks, such that high and low blocks319

alternated after mixed blocks (e.g., mixed-high-mixed-low, or mixed-low-mixed-high). The first320

block of each session was a mixed block. Blocks transitioned after 40 successfully completed321

trials. Because rats prematurely broke fixation on a subset of trials, in practice, block durations322

were variable.323

Criteria for including behavioral data324

In this task, the rats were required to reveal their subjective value of different reward of-325

fers. To determine when rats were sufficiently trained to understand the mapping between the326

auditory cues and water rewards, we evaluated their wait time on catch trials as a function of327

offered rewards. For each training session, we first removed wait times that were greater than328

two standard deviations above the mean wait time on catch trials in order to remove potential329

lapses in attention during the delay period (this threshold was only applied to single sessions330

to determine whether to include them). Next, we regressed wait time against offered reward331

and included sessions with significantly positive slopes that immediately preceded at least one332

other session with a positive slope as well. Once performance surpassed this threshold, it was333

typically stable across months. Occasional days with poor performance, which often reflected334

hardware malfunctions or other anomalies, were excluded from analysis. We emphasize that the335

criteria for including sessions in analysis did not evaluate rats’ sensitivity to the reward blocks.336

Additionally, we excluded trial initiation times above the 99th percentile of the rat’s cumulative337

trial initiation time distribution pooled over sessions.338
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Shaping339

The shaping procedure was divided into 8 stages. For stage 1, rats learned to maintain a340

nose poke in the center port, after which a 20 µL reward volume was delivered from a random341

illuminated side port with no delay. Initially, rats needed to maintain a 5 ms center poke. The342

center poke time was incremented by 1 ms following each successful trial until the center poke343

time reached 1 s, after which the rat moved to stage 2.344

Stages 2-5 progressively introduced the full set of reward volumes and corresponding au-345

ditory cues. Rats continued to receive deterministic rewards with no delay after maintaining a346

1 second center poke. Each stage added one additional reward that could be selected on each347

trial- stage 2 added 40 µL, stage 3 added 5 µL, stage 4 added 80 µL, and stage 5 added 10 µL.348

Each stage progressed after 400 successfully completed trials. All subsequent stages used all 5349

reward volumes.350

Stage 6 introduced variable center poke times, uniformly drawn from [0.8-1.2] s. Addition-351

ally, stage 6 introduced deterministic reward delays. Initially, rewards were delivered after a 0.1352

s delay, which was incremented by 2 ms after each successful trial. After the rat reached delays353

between 0.5 and 0.8 s, the reward delay was incremented by 5 ms following successful trials.354

Delays between 0.8 and 1 s were incremented by 10 ms, and delays between 1 and 1.5 s were355

incremented by 25 ms. Rats progressed to stage 7 after reaching a reward delay of 1.5 s.356

In stage 7, rats experienced variable delays, drawn from an exponential distribution with357

mean of 2.5 seconds. Additionally, we introduced catch trials (see above), with a catch proba-358

bility of 15%. Stage 7 terminated after 250 successfully completed trials.359

Finally, stage 8 introduced the block structure (see above). We additionally increased the360

catch probably for the first 1000 trials to 35%, to encourage the rats to learn that they could361

opt-out of the trial. After 1000 completed trials, the catch probability was reduced to 15-20%.362

All data in this paper was from training stage 8.363
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Stage
Center poke

time
5µL 10µL 20µL 40µL 80µL

Reward
delay

Reward
probability

Blocks

1
Increment to

1s
X 0 1

2 1s X X 0 1
3 1s X X X 0 1
4 1s X X X X 0 1
5 1s X X X X X 0 1

6
Variable

(0.8-1.2s)
X X X X X Increment

to 1.5s
1

7
Variable

(0.8-1.2s)
X X X X X

Variable
(from ex-
ponential)

0.85

8
Variable

(0.8-1.2s)
X X X X X

Variable
(from ex-
ponential)

0.65-0.85 X

Training for male and female rats364

We collected data from both male and female rats (160 male, 114 female). Male and female365

rats were trained in identical behavioral rigs with the same shaping procedure described above.366

Early cohorts of female rats experienced the same reward set as the males. However, female367

rats are smaller, and they consumed less water and performed substantially fewer trials than368

the males. Therefore, to obtain sufficient behavioral trials from them, reward offers for female369

rats were slightly reduced while maintaining the logarithmic spacing: [4, 8, 16, 32, 64 µL]. For370

behavioral analysis, reward volumes were treated as equivalent to the corresponding volume for371

the male rats (e.g., 16 µL trials for female rats were treated the same as 20 µL trials for male372

rats). The auditory tones were identical to those used for male rats. We did not observe any373

significant differences between the male and female rats, in terms of the degree of wait time374

adaptation, and the qualitative nature of behavioral dynamics at block transitions (fig. S6).375

We tracked most female rats’ stages in the estrus cycle using vaginal cytology, with vaginal376

swabs collected immediately after each session using a cotton-tipped applicator first dipped377
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in saline. Samples were smeared onto a clean glass slide and visually classified under a light378

microscope. For the current study, data from female rats was averaged across all stages of the379

estrus cycle.380

Behavioral models381

We developed separate behavioral models to describe rat’s wait time and trial initiation time382

data. Both wait time and trial initiation time should depend on the value of the environment. For383

the wait time data, we adapted a model from (11) which described the optimal wait time, WTopt,384

in terms of the value of the environment (i.e., the opportunity cost), the delay distribution, and385

the catch probability (i.e., the probability of the trial being unrewarded). Given an exponential386

delay distribution, we defined the optimal wait time as387

WTopt = Dτ log

(
C

1− C
· R− κτ

κτ

)
.

where τ is the time constant of the exponential delay distribution, C is the probability of reward388

(1-catch probability), R is the reward on that trial, κ is the opportunity cost, and D is a scaling389

parameter. For the trial initiation time, we adapted a model from (2) which describes the optimal390

trial initiation time, TIopt, given the value of the environment, κ, as391

TIopt =
D

κ
,

where D is a scale parameter.392

We initially evaluated two different ways of calculating the value of the environment for393

these models, which are shared between the wait time and trial initiation time models: a retro-394

spective and inferential model (see below). We assumed independent log-normal noise for each395

trial, with a constant variance of 8 seconds for the wait time model and 4 seconds for the trial396

initiation time model. The log-normal noise model outperformed alternative noise models, such397
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as gamma and ex-Gaussian noise. The noise variance terms were selected from a grid search398

using data from a subset of animals.399

Inferential model400

The inferential model has three discrete value parameters (κlow, κmixed, κhigh), each associ-401

ated with a block. For each trial, the model chooses the κ associated with the most probable402

block given the rat’s reward history. Specifically, for each trial, Bayes’ Theorem specifies the403

following:404

P (Bt |Rt) ∝ P (Rt |Bt)P (Bt).

where Bt is the block on trial t and Rt is the reward on trial t. The likelihood, P (Rt |Bt), is the405

probability of the reward for each block, for example,406

P (Rt |Bt = Low) =

{
1
3
, if Rt = 5, 10, 20µL

0, if Rt = 40, 80µL.

To calculate the prior over blocks, P (Bt), we marginalize over the previous block and use the407

previous estimate of the posterior:408

P (Bt) =
∑
Bt−1

P (Bt |Bt−1)P (Bt−1 |Rt−1). (Eq. 1)

P (Bt | Bt−1), referred to as the “hazard rate,” incorporates knowledge of the task structure,409

including the block length and block transition probabilities. For example,410

P (Bt = Low|Bt−1) =


1−H0, for Bt−1 = Low
H0, for Bt−1 = Mixed
0, for Bt−1 = High

where H0 = 1/40, to reflect the block length. The model assumed a flat block hazard rate411

for the following reasons. (1) Since animals broke center fixation on a subset of trials, the412

actual block duration was highly variable. Based on the distributions of experienced block413

durations, it is unlikely that rats would have learned a perfect step function hazard rate. (2) The414
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blocks spanned several to tens of minutes, making it unlikely that rats would keep a running415

tally of trials on such long timescales. (3) Gradual changes in wait times at block transitions416

are not consistent with the use of a veridical step-function hazard rate. (4) We considered an417

alternative parameterization in which the veridical step function hazard rate was blurred with a418

Gaussian, but this would have required a number of nontrivial design choices, such as whether419

the trial counter should be reset after “misinferred” block transitions, regardless of when they420

occurred in the actual block. (5) Wait times reflected misinferred blocks based on a constant421

block hazard rate (fig. S4), suggesting that this simplification was a reasonable approximation422

of the inference process. Including H0 as an additional free parameter did not improve the423

performance of the wait time model evaluated on held-out test data in a subset of rats (data not424

shown), so H0 was treated as a constant term.425

Belief state model426

Like the inferential model (above), the belief state model has three distinct value parameters427

and calculates the probability of being in each block using Bayes Rule. However, rather than428

selecting a single value associated with the most probable block, the model uses the sum of429

each value, weighted by that probability, that is,430

κt =
∑
Bt

P (Bt |Rt)κBt .

Inferential model with lambda parameter431

To account for potentially sub-optimal inference across rats, we developed a second in-432

ferential model. This model also uses Bayes rule to calculate the block probabilities, except433

with a sub-optimal prior, Priorsubopt. Specifically, we introduce a parameter, λ, that generates434

the sub-optimal prior by weighting between the true, optimal prior (P (Bt), Eq. 1), and a flat,435
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uninformative prior (Priorflat, uniformly 1/3), that is,436

Priorsubopt = λP (Bt) + (1− λ)Priorflat.

When λ = 1, this model reduces to the optimal inferential model, and when λ = 0, this model437

uses a flat prior and the block probabilities are driven by the likelihood.438

Retrospective model439

The retrospective model has a single, trial-varying κ variable which represents the recency-440

weighted average of all previous rewards. This average depends on the learning rate parameter441

α with the recursive equation442

κt+1 = κt + αtδt,

where κt is the value of the environment on trial t, rt is the reward on trial t, δt = rt − κt is the443

reward prediction error (RPE), and αt is a dynamic learning rate given by αt = G · α0. In order444

to capture the dynamics of the trial initiation times around block transitions, we included a gain445

term, Gt on the learning rate, which is inversely related to the trial-by-trial change in the mixed446

block probability from by the inferential model, given by447

Gt =
1

1− |P (Bt = Mixed|Rt)− P (Bt−1 = Mixed|Rt−1)|
.

We used trial-by-trial changes in the mixed block probability as a summary statistic of changes448

in the full posterior distribution. Given the distribution of rewards and the transition structure449

between blocks, there is always some ambiguity about whether the hidden state is a mixed450

block, and the posterior block probabilities sum to one. Therefore, changes in the mixed block451

probability reflect changes in the full posterior on every trial.452

The dynamic learning rate we implemented is consistent with previous work showing that453

humans and animals can adjust their learning rates depending on the volatility and uncertainty454

in the environment (25–27). Other models using either (1) a single, static learning rate (G = 1),455
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or (2) a dynamic learning rate where the gain term was the unsigned reward prediction error on456

that trial (G = |δt|) were unable to capture the observed trial initiation time dynamics at block457

transitions (fig. S2).458

Fitting and evaluating models459

We used MATLAB’s constrained minimization function, fmincon, to minimize the sum of460

the negative log likelihoods with respect to the model parameters. 5-10 random seeds were used461

in the maximum likelihood search for each rat; parameter values with the maximum likelihood462

of these seeds were deemed the best fit parameters. Before fitting to rat’s data, we confirmed463

that our fitting procedure was able to recover generative parameters (fig. S7). When evaluating464

model performance fit to rat data, we performed 5-fold cross-validation and evaluated the pre-465

dictive power of the model on the held-out test sets. To compare the different models, we used466

Bayesian Information Criterion (BIC), BIC = log(n) · k + 2 · nLL, where n is the number of467

trials, k is the number of parameters, and nLL is the negative log-likelihood of the best-fit model468

evaluated on all data. We confirmed the model comparison by also comparing Akaike Informa-469

tion Criterion (AIC) and cross-validated negative log-likelihood, which gave similar results to470

BIC.471

We only fit models to the rats’ wait time data. This is because the distribution of trial472

initiation times was generally heavy-tailed, and seemed to reflect multiple processes on different473

interacting timescales (e.g., reward sensitivity on short timescales, attention, motivation, and474

satiety on longer timescales). These processes made it challenging to fit the data with a single475

process model. Therefore, we used the inferential and retrospective trial initiation time models476

to generate qualitative predictions that we could compare to the rats’ data.477
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Statistical analyses478

Wait time and trial initiation times: sensitivity to reward blocks479

For all analyses, we removed wait times that were one standard deviation above the pooled-480

session mean. When assessing whether a rat’s wait time differed by blocks, we compared each481

rat’s wait time on catch trials offering 20 µL in high and low blocks using a non-parametric482

Wilcoxon rank-sum test, given that the wait times are roughly log-normally distributed. We483

defined each rat’s wait time ratio as the average wait time on 20µL catch trials in high blocks/low484

blocks. For trial initiation times, we compared all trial initiation times for each block, again485

using a non-parametric Wilcoxon rank-sum test. We defined each rat’s trial initiation time ratio486

as the average trial initiation time in high blocks/low blocks.487

Trial initiation times were bimodally distributed, with the different modes reflecting whether488

previous trials were rewarded or not. Unrewarded trials included opt-out trials and trials where489

rats prematurely terminated center fixation (“violation trials”). Analyzing these trial types sep-490

arately showed that trial initiation times following unrewarded trials were modulated by blocks491

in a similar pattern as the wait times, with rats initiating trials more quickly in high compared492

to low blocks (fig. S8). While we used all behavioral trials for analyses of trial initiation times493

throughout the manuscript, we note that trial initiation times following rewarded trials exhibited494

a different pattern (fig. S8), consistent with previous studies showing that response outcomes495

gate behavioral strategies (52, 53). Specifically, following rewarded trials, there was a weak496

positive correlation between reward magnitude and trial initiation time, in contrast to the strong497

negative correlation we observed following unrewarded trials. We interpret the positive corre-498

lation as potentially reflecting micro-satiety effects. However, as these effects were weak, most499

of the variance in the trial initiation times were driven by those following unrewarded trials.500

To assess block effects across the population, we first z-scored each rat’s wait time on all501

catch trials and trial initiation time on all trials. For wait times, we computed the average z-502
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scored wait time on catch trials offering 20 µL in high and low blocks for each rat, and compared503

across the population using a paired Wilcoxon sign-rank test. Similarly for trial initiation times,504

we averaged all z-scored trial initiation times for high and low blocks for each rat, and compared505

across the population using a paired Wilcoxon sign-rank test.506

Block transition dynamics507

To examine behavioral dynamics around block transitions, for each rat, we first z-scored508

wait-times for catch trials of each volume separately in order to control for reward volume509

effects. We then computed the difference in z-scored wait times for each volume, relative to the510

average z-scored wait time for that volume, in each time bin (trial relative to block transition),511

before averaging the differences over all volumes (∆ z-scored wait time). For trial initiation512

times, we z-scored all trial initiation times. In order to remove satiety effects, for each session513

individually, we regressed trial initiation time against z-scored trial number and subtracted the514

fit.515

For each transition type, we averaged the ∆ z-scored wait times and trial initiation times516

based on their distance from a block transition, including violation trials (e.g., averaged all wait517

times four trials before a block transition). Finally, for each block transition type, we smoothed518

the average curve for each rat using a 10-point moving average, before averaging over rats.519

When comparing block transition dynamics in rats with different quality priors, specifically520

from mixed blocks to high or low, we chose rats in the top or bottom 40th percentile of fit λ’s521

and averaged each group’s block transition dynamics for both wait time and trial initiation time.522

We then normalized each curve by subtracting the average wait or initiation time value before523

the block transition. To compare the normalized dynamics of each group, we fit 3-parameter524

logistic functions of the following form:525

y = D/(1 + exp(−C(x− x0)))
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to the behavioral curves and compared the three parameters: D (the upper asymptote), C (the526

inverse temperature), and x0 (x-value of the the sigmoid’s midpoint). To determine significance527

for our observed differences, we performed a non-parametric shuffle test. We generated null528

distributions on differences in the fit parameters by shuffling the labels of the upper and lower529

percentile λ rats, refitting the logistic to the new shuffled groups’ average dynamic curves, and530

comparing the fit parameters 500 times. We then used these null distributions to calculate p-531

values for the observed differences in parameters: the area under this distribution evaluated532

at the actual difference of parameter values (between high and low λ rats) was treated as the533

p-value.534

Trial history effects535

To assess wait time sensitivity to previous offers, we focused on 20 µL catch trials in mixed536

blocks only. We z-scored the wait times of these trials separately. Next, we averaged wait times537

depending on whether the previous offer was greater than or less than 20 µL. For trial initiation538

times, we used all 20 µL trials in mixed blocks. We averaged z-scored trial initiation times539

depending on whether the previous offer was greater or less than 20 µL. For both wait time540

and trial initiation time, we defined the sensitivity to previous offers as the difference between541

average wait time (trial initiation time) for trials with a previous offer less than 20 µL and542

trials with a previous offer greater than 20 µL. We compared wait time and trial initiation time543

sensitivity to previous offers across rats using a paired Wilcoxon signed-rank test.544

To capture longer timescale sensitivity across rewards, we regressed previous rewards against545

wait time and trial initiation time. We focused only on mixed blocks. Additionally, we lin-546

earized the rewards by taking the binary logarithm of each reward (log2(reward)). For wait547

time, we z-scored wait times for catch trials in mixed blocks. Then, we regressed wait times548

on these trials against the current offer and previous 9 log2(reward) offers, including violation549
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trials, along with a constant offset term. Reward offers from a different block (e.g., a previous550

high block) were given NaN values. For trial initiation times, we again z-scored for mixed551

block trials only. Then, we regressed against the previous 9 log2(reward) offers, not including552

the current trial, along with a constant offset. Additionally, we set the reward for violation and553

catch trials to 0, since rats do not receive a reward on these trials.554

For both wait time and trial initiation time, we used Matlab’s builtin regress function to555

perform the regression. With the coefficients, we found the first non-significant coefficient (co-556

efficient that whose 95% confidence interval contained 0), and set that coefficient and all fol-557

lowing coefficients to 0. Finally, we fit a negative exponential decay curve, y = D exp−x/τ ,558

to each rat’s previous trial coefficients (that is, only the previous 9 trial coefficients) for both559

wait time and trial initiation time and reported the time constant of the exponential decay (tau)560

for each. If all previous trial coefficients were equal to 0 (as was the case for a vast majority of561

the wait time coefficients), the time constant was reported as NaN. We correlated wait time re-562

gression time-constants and trial initiation time regression time-constants using Matlab’s builtin563

corr function.564

Learning Dynamics565

To assess learning dynamics, we included all sessions after stage 8, not just the sessions566

that passed criteria for inclusion (above). Because of data limitations examining each session567

individually (e.g., not every session included both a high and low block), we grouped subse-568

quent sessions into pairs (i.e., we grouped sessions 1 and 2, sessions 3 and 4, etc.). For each569

session-pair, we calculated the wait time and trial initiation time ratios as above. To assess the570

emergence of block effects on wait time data, we regressed wait time for each session against571

both the current reward and a categorical variable representing the current block identity (1 =572

low block, 2 = mixed block, 3 = high block). To assess the emergence of previous trial effects573
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on trial initiation time, we regressed trial initiation time for each sessions against the previous574

reward. We smoothed each regression coefficient over sessions using a 5-session moving av-575

erage. Finally, we set outlier coefficients (3 scaled median absolute deviations away from a576

5-point moving median, using Matlab’s builtin isoutlier function) to NaN. Finally, we averaged577

regression coefficients over sessions across rats.578

Pre-initiation cue task579

To modulate the subjective uncertainty in the rat’s estimate of state (block) before trial580

initiation time, we ran a subset of rats on a variation of the task where we cued reward offer581

before rats initiated a trial (N =16). All other aspects of the task remained identical: reward offer582

cued played again after the rat initiated the trial, rats waited uncued exponentially-distributed583

delays for rewards, etc. We included both rats that initially trained on the original task before584

switching to the pre-initiation cue task (N = 12), as well as rats who were trained only on the585

pre-initiation cue task (N = 4). To allow the rats who had started on the original task time to586

adjust to the new task, we only included data after 30 pre-initiation cue sessions. For the rats587

who were exclusively trained on the pre-initiation cue task, we included all stage 8 sessions.588

For all rats, we did not exclude sessions using the wait time critera (see above).589

To compare effects for rats who had started on the original task, we performed all analyses590

for data collected on the original task and on the pre-initiation cue task. First, to confirm that the591

rats learned that the tone before trial initiation indicated the upcoming reward, we averaged z-592

scored trial initiation times by the offered reward in mixed blocks. We excluded post-violation593

trials in the original task session, because those trials repeat the same volume as the previ-594

ous trial so the rat could conceivably use that to modulate their trial initiation time. All other595

analyses (sensitivity to the previous reward and previous reward regression) were performed as596

described above.597
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Fig. S1: Dynamics of wait times (top) and trial initiation times (bottom) at transitions
from mixed to high (red) or low (blue) blocks. Long timescale effects were observable for
trial initiation times but not wait times: even by the end of the mixed block, how quickly rats
initiated trials depended on the previous block identity.
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Fig. S2: Alternative retrospective models fail to capture both fast and slow trial initiation
time dynamics at block transitions. Trial initiation time model transitions from low (blue) or
high (red) blocks to mixed blocks. Top: A “vanilla” learning rate model with a single, static
learning rate. Bottom: a dynamic learning rate model where learning rate gain is equal to the
unsigned RPE of that trial.
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Fig. S3: All forms of model comparison favor the inferential over retrospective model as a
description of rat’s wait times. Wilcoxon signed-rank test, N = 240
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Fig. S4: Inferential model identifies mistaken inferences during mixed blocks across rats.
A. Average wait time curves conditioned by model-inferred block in mixed blocks only in held-
out test set across rats. B. Wait time ratio (wait time on 20 µL inferred high/low trials) is
modulated by inferred block (p << 0.001, Wilcoxon Signed-rank test, N = 240)
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Fig. S5: Sub-optimal inferential model with lambda. Distribution of λ fit over rats.
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Fig. S6: Males and females have comparable wait time ratios (top) and trial initiation time
ratios (bottom). Wait time p = 0.98, Wilcoxon Rank-sum test, N = 148 males, 92 females.
Trial initiation time p = 0.12, Wilcoxon Rank-sum test, N = 148 males, 92 females.
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Fig. S7: Models are able to recover generative parameters. N = 48 random parameter sets.
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Fig. S8: Trial initiation times depend on previous trial outcome. A. Trial initiation times af-
ter unrewarded trials were faster in high blocks compared to low blocks (p << 0.001, Wilcoxon
Signed-rank test, N = 240). B. Trial initiation times after unrewarded trials were negatively
modulated by the previous offer in mixed blocks (linear regression slope < 0, p << 0.001, Stu-
dent’s t-test, N = 240). C. Trial initiation times were slightly slower following larger volume
rewarded trials (linear regression slope > 0, p < 0.05, Student’s t-test, N = 240). D. Correlation
coefficient between previous reward offer and trial initiation time across rats differed both in
sign and magnitude following rewarded and unrewarded trials (p << 0.001, Wilcoxon signed-
rank test, N = 240).
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