S

ELS

Since January 2020 Elsevier has created a COVID-19 resource centre with
free information in English and Mandarin on the novel coronavirus COVID-
19. The COVID-19 resource centre is hosted on Elsevier Connect, the

company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related
research that is available on the COVID-19 resource centre - including this
research content - immediately available in PubMed Central and other
publicly funded repositories, such as the WHO COVID database with rights
for unrestricted research re-use and analyses in any form or by any means
with acknowledgement of the original source. These permissions are
granted for free by Elsevier for as long as the COVID-19 resource centre

remains active.



ScienceDirect

Available online at www.sciencedirect.com

IFAC i

CONFERENCE PAPER ARCHIVE

IFAC PapersOnLine 55-10 (2022) 2920-2925

A Vehicle Routing Problem with Time
Windows and Workload Balancing for
COVID-19 Testers: A Case Study

S. Shahnejat-Bushehri* A. Kermani* O. Arslan*
J.-F. Cordeau™* R. Jans*

* Department of Logistics and Operations Management, HEC
Montréal, 3000 Chemin de la Céte-Sainte-Catherine, Montréal,
Canada (e-mail: {sina.shahnejat-bushehri, ali.kermani, okan.arslan,
jean-francois.cordeau, raf.jans} @hec.ca).

Abstract: Due to the COVID-19 pandemic, laboratories have faced unprecedented demand
for in-home delivery test services. This drastic demand increase requires a rapid reaction
from laboratories to manage their testers in order to respond to the high demand volume
and avoid unnecessary costs. This study provides an optimization model based on the vehicle
routing problem with time windows by considering the testers’ workload balancing to improve
laboratories’ assignment and routing policies. A medical lab that has faced this situation for
its in-home test services is taken as a real-world case in the current study. A mixed-integer
programming model is solved for small instances using the CPLEX solver, and an adaptive
large neighborhood search algorithm is implemented for large instances. Ultimately, the
obtained solutions are compared to the real-world implementation of the lab on a dataset of
six consecutive days, and the results are further discussed.
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1. INTRODUCTION

The COVID-19 pandemic refers to the spread of the
SARS-CoV-2 virus that started in the early 2020 and
rapidly became a significant concern for all countries
worldwide. According to the World Health Organization,
more than 288 million infected cases and more than 5.4
million deaths have been reported until January 2022
(WHO, 2022). This pandemic created numerous challenges
for many organizations, especially medical centers and
healthcare service providers. Preventive policies such as
quarantine and lock-down that governments had to take to
control the disease caused the most severe depression since
1930, and reports show that the global GDP has reduced
between 2.9% and 2.4% in 2020 (Gupta et al., 2020).

The preventive policies increased the demand for home
delivery services and made them more popular than ever,
providing an extraordinary opportunity for online retailers
to improve their market share. On the other hand, some
organizations were unprepared to offer home delivery ser-
vices to their customers on a large scale, so managing their
resources became a significant challenge. Medical labora-
tories are one of those organizations that had a limited
number of in-home test deliveries before the pandemic;
however, their demand for home COVID-19 tests (i.e.,
PCR tests) abruptly increased. Patients can receive the
service in their home by paying an extra transportation fee
if they prefer to avoid going to laboratories to reduce the

risk of getting infected or if they have to take in-home tests
due to the regulations. Therefore, the demand exceeds the
laboratories’ capacities for home services, and there is a
need for these service providers to manage their resources
efficiently to meet their demand.

The idea of the home delivery tests is connected to
the home health care (HHC) services literature. There
are several benefits in receiving HHC, including reduced
hospital demand and bed occupations that may allow
hospitals to serve more patients. In addition, the provided
treatment procedure by the HHC companies are more
customized and specialized due to their ability to focus
on particular patients’ needs (Cissé et al., 2017).

In 2011, around 4.7 million patients in the US received
home-care services, and at that time, 12,200 HHC com-
panies were operating in the US with around 143,600
caretakers (Fikar and Hirsch, 2017). HHC services are es-
timated to account for up to 5% of the health sector’s total
budget (Genet et al., 2012). In an HHC company, supply
chain and transportation are critical activities necessary
for delivering drugs and equipment to patients’ locations,
transporting caretakers or physicians to the predefined lo-
cations and returning them to the medical center. Another
responsibility of this part of an HHC network is taking
the biological samples from patients using professional
nurses and transferring these tests to the laboratories for
performing examinations (Liu et al., 2013). A survey in
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Norway shows that, on average, transportation between
patients and hospitals accounts for more than 20% of HHC
caretakers’ work shifts (Holm and Angelsen, 2014). For
more details on the HHC literature, the reader is referred
to a recent literature survey and bibliometric analysis by
Di Mascolo et al. (2021).

A vehicle routing problem (VRP) can be used to minimize
the transportation costs assuming a set of customers with
known demands that must be satisfied by a supplier.
Although reducing the transportation costs is usually the
primary goal of VRP, other factors such as consistency,
customer satisfaction, and resource balancing can also
affect the quality of the solutions in practice (Matl et al.,
2018). The literature on the VRP with workload balance
is scarce despite the importance of the subject in practical
situations. For instance, the workload balance of nurses
who perform the in-home sample taking is essential not
only to reduce the risk of them being affected but also to
increase employee satisfaction. The former can be obtained
by balancing the number of patients each nurse visits
during a day, and the latter is achieved by balancing
the work pressure. Based on the problem characteristics,
one may consider the number of visited customers or the
length of the tour assigned to each driver as the workload
by adding a second objective function to the problem or
using balance constraints (Mancini et al., 2021). Kritikos
and Ioannou (2010) propose the balancing on the vehicle
load in a vehicle routing problem with time windows
(VRPTW). de Freitas Aquino and Arroyo (2014) propose a
bi-objective formulation for the VRPTW and minimize the
route length imbalance in the second objective function.
An iterated local search (ILS) algorithm is used to find
near Pareto-optimal results for the problem. Mancini et al.
(2021) impose a lower bound on the number of customers
that are assigned to a carrier in a collaboration setting that
different carriers are able to share their fleets. They use an
efficient metaheuristic and an ILS algorithm to solve the
problem. For more detail on VRP with workload equity,
the reader is referred to Matl et al. (2018).

This study introduces a vehicle routing problem with time
windows and workload balancing (VRPTWWB) to im-
prove laboratory resource management, balance the home
testers’ workload, and reduce transportation costs. To the
best of our knowledge, this paper is the first study that
considers COVID-19 laboratory’s requirements, including
workload balance and working time, while minimizing the
total traveling costs. We consider the number of visited
patients by a nurse each day as the workload. Although it
may result in different shift duration for testers, it can
reduce their exposure to possible infected patients and
increase their safety. A medical laboratory is considered as
the case study for this research. This laboratory has faced
a massive demand for in-home PCR tests during the pan-
demic since it is one of the few laboratories that is accepted
by airlines and international organizations requiring a
valid negative PCR test result to serve their customers.
The proposed VRPTWWB formulation aims to provide
patients with high-quality services in their specified time,
reduce the routing costs, reduce the number of testers, and
balance the testers’ workload. The main contributions of
this paper can be summarized as follows:
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Table 1. Sets, parameters, and decision vari-
ables
Sets
v Set of all nodes including patients and laboratory,
v =A{0,1,...,|V|}
N Set of all patient nodes, N' = {1, ..., [V|}
A Set of all arcs
K Set of testers, K = {1, ..., |K|}
Parameters
Cij Transportation cost from node ¢ € V to node j € V
ti; Travel time from node ¢ € V to node j € V
Si Service time at node ¢ € V
e; The earliest time that patient ¢ € V can be visited
l; The latest time that patient ¢ € V can be visited
w The maximum working time for each tester predefined
by the lab
P Penalty cost for one unit of the maximum deviation

Decision Variables
fj 1 if and only if tester k € I visits patient j € V right
after visiting patient ¢ € V
2k 1 if and only if patient ¢ € N is visited by tester k € K
Tk Time at which tester k € K visits patient i € N/
n Maximum deviation among all testers’ workload

T

e Developing a VRPTWWB mathematical model to
meet laboratory’s requirements, including workload
balancing and working time.

e Developing an Adaptive Large Neighborhood Search
(ALNS) algorithm to solve the given problem for
large-sized instances.

e Applying the proposed model and metaheuristic al-
gorithms to a real-case study.

The remainder of this study is organized as follows. Section
2 discusses the assumptions and formulations of the prob-
lem. In Section 3, we describe the main elements of our
ALNS metaheuristic algorithm and computational results
are provided in Section 4. We conclude the study in Section
5.

2. MATHEMATICAL MODELLING

In this section, a mathematical formulation for the
VRPTWWRB is presented. The proposed MIP model mini-
mizes the transportation cost of testers as well as the non-
uniformity of testers’ workload.

Let G = (V,A) be a complete directed graph where
YV = {0,1,..., N} denotes the set of all nodes including
laboratory and all patients. Node 0 € V is the laboratory
from where all testers must start and end their routes. A
is the set of arcs, and I is the set of testers. Each patient
i must be visited in their time windows [e;, [;], while ¢;;
represents the travel time from node ¢ to node j, and ¢;;
is the cost of a tester traversing the arc. The work shift
for each tester is W hours meaning that they must return
to the laboratory no later than W hours. Parameter s;
represents service time of patient .

The first decision variable of this problem is acf”'j which
equals 1 if tester k visits patient j after visiting patient 7.
Variable TF is the time that tester k visits patient i. Table
1 summarizes the parameters, sets and decision variables
of the problem. The mathematical formulation for this
problem is as follows:
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(VRPTWWB) minimize Z Zcijxfj—ﬁ—Pn (1)
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ieN ieEN
Yoab=1 ieN (3)
kel
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n=>0 (13)

Objective function (1) minimizes the total transportation
cost of testers and the total penalty of the maximum devi-
ation of the testers’” workload. The maximum deviation is
modeled in constraints (2). Constraints (3) and (4) ensure
that all patients are visited exactly once. Constraints (5)
guarantee flow conservation. Testers start and end their
routes at the laboratories due to Constraints (6) and
(7). All patients must be served during their predefined
time window which is ensured by constraints (8) and (9).
Constraints (10) guarantee that a tester does not exceed
his work shift duration. The nature of the variables and
their domains are stated by constraints (11)—(13).

3. SOLUTION METHOD

In this section, we present an ALNS algorithm for solving
the VRPTWWB. The solution representation is presented
in Section 3.1. The proposed algorithm for generating
the initial solution is described in Section 3.2, and the
structure of the ALNS algorithm is explained in detail in
Section 3.3.

3.1 Solution representation

The encoding method for representing the solution is
proposed by Shi et al. (2017). In this method, a list table
is used for sorting the solutions, such that each row of
the table is associated with a route of a specific tester.
A tester’s route starts and ends at the lab; thus, the
first and the last elements of each list is the lab (depot).
The remaining elements of the list represent the visiting
sequence of the patients. This encoding is displayed in Fig.
1.
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Tl Lab 13 3 g 6 Lab
1 Lab 2 7 ‘ Lab

T3 Lab 9 4 10 Lab ‘

T4 Lab 5 1 Il 12 ‘ Lab

Fig. 1. An example of the solution representation

3.2 Initial solution

The tour-building algorithms for the VRPTWWB use
two methods, including sequential and parallel algorithms.
The former performs customer scheduling through the
construction of one route at a time, whereas the latter
schedules several routes simultaneously. Prior to beginning
the processes, one can consider the number of routes
either to be fixed or vary in a problem-dependent manner
(Solomon, 1987). In this study, an approach proposed
by Shahnejat-Bushehri et al. (2021) is adapted to our
problem, which can rapidly generate initial solutions of
high quality. For more details, the reader is referred to
Shahnejat-Bushehri et al. (2021).

8.8 Adaptive large neighborhood search

This study develops an adaptive large neighborhood search
(ALNS) in a simulated annealing framework as a solution
method. Ropke and Pisinger (2006) introduced ALNS,
which consists of removal and insertion algorithms. ALNS
differs from traditional LNS in that it uses several removal
and insertion heuristics that are selected based on collected
statistics at each iteration, as well as a simulated annealing
metaheuristic for the acceptance process. The ALNS has
been used to solve several VRP variants, including the
HHC with time windows (Di Gaspero and Urli, 2014;
Liu et al., 2019), which is closely related to our problem.
Several studies have demonstrated ALNS’ superior perfor-
mance in handling a variety of real-world transportation
problems, such as orienteering (Santini, 2019), and routing
problems (Goeke and Schneider, 2015; Keskin and Catay,
2016; Schiffer and Walther, 2018). Overall, ALNS can be
considered a reliable and efficient metaheuristic algorithm
to solve routing and scheduling problems. A brief overview
of the proposed ALNS’s detailed implementation steps is
given in the following subsections.

Neighborhood structure: — Patients’ requests for HHC ser-
vices should be fulfilled within specific and usually tight
time windows. The preserved visiting order does not allow
traditional improvement operators such as 2-opt, 2-opt*,
exchange operator, and a relocation move to improve the
operation significantly as the nature of such operators
is random. With restricted time windows for HHC ser-
vices, adopting an inefficient operator would lead to a
time-consuming neighboring solution construction process.
Therefore, this study uses a modified insertion operator
proposed by Shahnejat-Bushehri et al. (2021) which is ca-
pable of generating feasible neighboring solutions rapidly.
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Fig. 2 depicts an example of the proposed insertion oper-
ator.

I T [~ T
‘TZ Lab | 14 141 6 Lab T2 Lab| 10 | 14 3 6 |Lab
|

I . =
T8 [Lab| 5 18 ‘ 20 |1 |Lab T8 |Lab| 5 It ‘ 20 1 Lab
| i
l T5 Lab 15 4 ‘ 8 | Lab
T2 [Lab| 10 | 6 |Lab l
T2 | Lab 10 ‘ 14 | Lab
TS Lab| 5 | 18 ‘ 20 |4‘ 1 | Lab

T8 Lab| 6 | 18 20 | 1 |Lab

TS | Lab 15‘ 5 4 8 |Lab

Fig. 2. An example of the modified insertion operator
mechanism

Pseudo code of ALNS: 1In the ALNS, the large neigh-
borhood search is extended by selecting each operator
at each iteration based on their performance in previous
searches. The entire search is broken down into segments.
A segment is a number of ALNS heuristic iterations (i.e.,
100 iterations). When starting each segment, the score
of all operators is reset to zero. A simulated annealing
acceptance criterion is used in this paper to diversify the
solutions and to avoid being trapped in local optima. This
algorithm starts with an initial solution and continues until
the current temperature is lower than the final temper-
ature. At each iteration, the operator described in the
previous section is selected to remove g customers from the
current solution and insert them back into other positions
of the current solution. With different values for ¢, we can
have multiple removal and insertion heuristics that can be
used in the implementation of ALNS. The current solution
is destroyed and repaired by one operator at each iteration.
Each operator ¢ at segment j has weight w;;, and score 7;
obtained during the last segment. At the start of ALNS,
all operators have an identical weight of one and scores
of zero. The probability of selecting an operator in each
iteration is determined in the same way as in Ropke and
Pisinger (2006), using the scores accumulated throughout
the search.

There are three ways to increase an operator’s score. The
operator’s score is improved by o if the operator can
achieve a new global best solution. The score is enhanced
by o9, if the operator’s procedure produces a previously
unaccepted solution and the new solution’s cost is lower
than the current solution’s cost, and o3, if the new solution
is more costly than the existing one, but the solution
was accepted. The weights of operators are modified at
the end of each segment based on their performance as
w; j4+1 = wij(1 —r) +rgt where 6; is the number of times
operator ¢ is employed in the previous segment, and r is a
reaction parameter that controls the weight adjustment’s
inertia. The related operators are chosen independently for
each segment using a roulette wheel selection process. The
probability of selecting the ith operator for segment j is
w;;/ 2513:1 wg;, where € is the number of operators. The
procedures for implementation of the ALNS is described
in Algorithm 1. The algorithm starts with the production
of the initial solution as explained in Section 3.2. The
algorithm continues until the current temperature T, is
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Algorithm 1. ALNS

1. CurrentSolution < InitialSolution

2. BestSolution <— CurrentSolution

3. While CurrentTemp > TempLow do:

4. j=1 7,0, =0 Vi e Q

5. For 100 iteration do:

6 Probabilistically select an operator ¢ and 0; = 6; + 1
7

8

9

NewSolution < operator(CurrentSolution)

Tré =0

if f(NewSolution) < f(CurrentSolution) then:
10. CurrentSolution < NewSolution
11. T, =03
12. if f(CurrentSolution) < f(BestSolution) then:
13. BestSolution < CurrentSolution
14. T, =01
15. end if
16. else:
17. Randomly generate r € [0, 1]

—(f(NewSolution)— f(CurrentSolution))

18. ifr<e Te then:
19. CurrentSolution < NewSolution
20. 7r£ =03
21. end if
22. end if
23. T = T + 7}
24.  end for

25. CurrentTemp < Cool Rate.CurrentTemp
26.  Update operator weights by w; j+1 = w;;(1 —7) + r%
27. end while

below the final temperature Ty. Non-improving solutions
are accepted in order to prevent being trapped in a local
optimum, as described in Algorithm 1.

4. RESULTS

In the following sections, small-size instances are solved us-
ing the CPLEX solver. When the number of customers (pa-
tients) increases, the solution times also increase rapidly,
which makes using CPLEX inefficient for large instances.
The proposed metaheuristic algorithm results are com-
pared with the optimal results for the small-size instances,
and the analysis of these results indicates that for the con-
sidered instances, the algorithm finds the optimal solutions
in a much shorter amount of time. Finally, the algorithm

Table 2. Characteristics of the generated test
problems for small-size instances

Parameters Lower bound Upper bound
Cij = tij 20 60
Si 10 20
e 0 360
li =e€;+30 - -

Table 3. Parameters and values for ALNS

Parameters Values
InitialTemp 10

TempLow 0.1

Cool Rate 0.9

q {1,2,4,5,7,10}
o1 30

o2 1

o3 10
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Table 4. Experimental results for the small-size instances

CPLEX ALNS
NO NC NT TC n CT(s) TC n CT(s) Gap*(%)
1 3 3 265.60 0 0.20 265.60 0 3.13 0
2 4 2 19094 0 0.30 190.94 0 3.15 0
3 5 3 29796 1 0.80 297.96 1 3.34 0
4 6 2 316.56 0 0.30 316.56 0 4.31 0
5 7 3 315.86 1 0.40 315.86 1 4.53 0
6 8 3 33796 1 0.80 337.96 1 4.32 0
7 9 4 436.71 1 0.60 436.71 1 6.98 0
8 10 5 484.44 0O 1.40 484.44 0 6.83 0
9 12 5 550.56 1 2.31 550.56 1 5.93 0
10 13 6 614.52 2 1002.27 614.52 2 7.61 0
11 14 5 702.36 1 240.43 702.36 1 8.02 0
12 15 6 756.26 1 408.20 756.26 1 8.13 0

* Relative gap compared to the results obtained by CPLEX

is applied to real data from the aforementioned laboratory,
and the results are compared with the implemented routes
over a six-day horizon.

4.1 Ezxperimental results for small-size instances

The first set of experiments is conducted to show the
efficiency of the proposed metaheuristic algorithm. These
experiments are small-size instances, which can be solved
optimally by general purpose optimization solvers within
an acceptable time. In all of the test problems, parameters
are generated by a uniform distribution, as shown in Table
2.

CPLEX 12.10.0 is used to solve the problems optimally.
The proposed ALNS algorithm is employed to solve the
same instances, and their results are compared with the
optimal solutions. The ALNS algorithm is run on an Intel
Core i7 2.00 GHz CPU with 16 GB of RAM by MATLAB
2017. The main parameters for the ALNS algorithm are
shown in Table 3. The results of this comparative exper-
iment are provided in Table 4, where NO, NC, NT, CT,
and TC stand for the instance ID, the number of serviced
customers, the number of testers, the computing time,
and the total traveling cost. For the number of testers,
the minimum possible value which can obtain a feasible
solution is considered for each instance. The proposed
metaheuristic algorithm’s results are optimal for all 12
instances in Table 4, requiring far less computing time
than the CPLEX solver for larger instances. Due to the
complexity of the problem, the proposed ALNS algorithm
can be an alternative to find near-optimal solutions within
an acceptable time. Therefore, the proposed algorithm is
used for our case study.

4.2 Case study

In this part, the data are obtained from a medical labora-
tory for six days. The scheduling manager must assign the
patients to the testers and define the routes on each day.
After obtaining the patients’ locations, we used Google
Maps to find the approximate location of each patient in a
2D plane. We define the lab as the depot located at point
(15,15), and other locations are defined accordingly. After
receiving a request, A patient is offered a 15-minute time
range for tester arrival, which is considered as the model’s
time window. The maximum number of testers is nine due

to the medical laboratory limit, yet the algorithm may
choose to use a lower number of testers that can reduce
the costs.

Table 5 demonstrates the transportation costs, the number
of testers, and 7 for both the manual procedures by the
medical laboratory and the suggested routes found by the
algorithm for each of the six days. The CPU time of the
solution method and the relative solution improvement
is also provided. An average of 12.66% improvement in
the total traveling cost is obtained compared to the lab-
oratory’s manual planning. Also, the ALNS improves the
workload balancing of the testers.

5. CONCLUSION

Since the beginning of the coronavirus outbreak, govern-
ments have been working to establish programs that will
ensure access to rapid and reliable testing. Testing for
COVID-19 is one of the essential strategies to prevent the
spread of infection, and there are several laboratories that
offer home testing services. In order to obtain a reliable
plan to address a routing and scheduling problem arising
from the logistic activities of these laboratories, this study
provides an optimization model based on VRPTW that
additionally considers workload balancing. To solve the
proposed model, we developed an ALNS algorithm with a
new insertion operator to solve large-size instances.

We conducted a series of experiments to test the pro-
posed ALNS. The results obtained from solving the math-
ematical model using the CPLEX solver are compared to
the results of the proposed metaheuristic method. The
results obtained from different instances show that the
proposed metaheuristic method performs well in terms of
obtaining the optimal objective function value on small-
size instances. After demonstrating the efficiency of the
ALNS, this algorithm is used to solve instances arising
from a real case study, which contains six planning days
in a medical laboratory. The ALNS algorithm obtained a
12.66% improvement in comparison to their manual plan-
ning within a very short period of time, which is only 26.30
seconds on average. In our future works we aim to improve
our assumption by considering more health related factors
such as patients waiting time in the objective function. In
addition, we will apply a sensitivity analysis to illustrate
models’ reaction to different parameter settings.
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Table 5. Comparison of the ALNS results with those of the laboratory in real-world case study.

Manual procedure

ALNS solution

Day NC TC NT n TC NT n CPU time (sec) Improvement(%)
1 68 350.72 7 11 311.99 7 3 23.33 12.41
2 62 365.84 7 7 302.95 6 5 27.93 20.76
3 69 360.28 6 8 328.25 6 8 32.27 9.76
4 65 356.82 8 10 308.19 7 6 26.42 15.78
5 56 340.26 7 10 306.16 6 8 20.99 11.14
6 70 368.88 6 4 347.66 6 3 26.88 6.11

Avg - 357.13  6.83 833 | 317.53 6.33 5.50 26.30 12.66

Considering uncertainty in the travel time of the testers windows. Transportation Research Part C: Emerging

could be a possible future direction for this study. This
can be done either by using stochastic programming or
by using a dynamic horizon after visiting each node by
a tester. One can also apply service-level on demand
satisfaction to make sure a specific portion of the orders are
always met by the laboratory. Another interesting topic
would be using the idea of crowdsourcing in this problem
based on distributing testing kits throughout the city and
collecting them at specific times.
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