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Abstract: The application of cryptotanshinone (CT), a diterpenoid obtained from the root of Salviae
miltiorrhiza, is significantly hindered due to its poor aqueous solubility. The aim of the present
research was to develop an optimal solvent for analytical and preparative procedures of prospective
dermal hydrogel formulations with CT. The influence of pH, temperature, and cosolvent presence
on the solubility of CT was examined. Various components were applied to increase CT solubility,
i.e., ethanol, 2-amino-2-methyl-1,3-propanediol, 2-amino-2-(hydroxymethyl)-1,3-propanediol, 2,2′,2”-
nitrilotriethanol, and triisopropanoloamine. The concentration of CT was analyzed by spectral
and chromatographic methods, including UV–vis and HPLC methods. The increased solubility of
CT was demonstrated in alkaline solvents with ethanol as a cosolvent. CT solutions doped with
alcoholamines are more stable compared to CT solutions doped with NaOH.
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1. Introduction

Solubility is an important factor determining the pharmaceutical availability and
bioavailability of a drug. It influences the optimal form of the preparation administered
to the patient and has a significant effect on the blood concentration of the drug and the
expected pharmacological response [1]. Drugs of weak aqueous solubility, presumed for
circulatory absorption, often require higher doses than water-soluble medicines. More than
40% of newly developed pharmaceuticals have very low solubility; therefore, the problem
is significant in the context of formulation and pharmacokinetics [2]. Many biologically
active substances of natural origin are characterized by low water solubility. One of them
is cryptotanshinone (CT) [3].

The compound has been isolated from Salviae miltiorrhizae radix et rhizoma (Lamiaceae)
and is widely studied [4–10]. It was proposed for the prevention and therapy of cardio-
vascular diseases [11], cognitive disorders [12], kidney and liver dysfunctions [13,14], and
gynecological diseases [15]. In vitro and in vivo studies in rats presented reduced oxygen
consumption in the myocardium and improved coronary circulation [16], as well as cardio-
protective [17,18] and hypotensive activity [19]. Neuroprotective properties in Alzheimer’s
disease [20], as well as anticancer properties, were reported [4,6,21–23]. Antimicrobial
activity in a wide range of infections by Gram-positive and Gram-negative bacteria, as well
as other microorganisms, was evaluated [6,10,11,24–26].

CT is a diterpene compound (Figure 1) of 4.9 pKa. CT. As a lipophilic compound, it
is slightly soluble in water (0.00976 mg/mL) [3] but very soluble in dimethyl sulfoxide,
methanol, ethanol, chloroform, and ether [27].
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Figure 1. Chemical structure of cryptotanshinone (1,2,6,7,8,9-hexahydro-1,6,6-trimethyl-(R)-fenanth [1,2-b] furan-10,11-
dione) (a) [4] and its enol form (b) [28]. 

In the last two decades, the dissolution and bioavailability of CT has been studied, 
including very modern approaches, such as solid dispersion [14,27,29,30], ethosomal [31], 
niosomal [32], cerasomal [33], and solid lipid nanoparticles [30], and cyclodextrin com-
plexation [22,34]. Studies of the influence of pH on CT solubility revealed structural mod-
ifications of the compound above pH 11.0 and even destruction below pH 1.0, which was 
discovered during research on fluorescence properties [35], whereas the highest stability 
of CT structure was recorded between pH 8.0 and pH 12.0 in absorbance tests using the 
UV–vis method [34]. The tetrahydrofuran ring of CT collapsed in strongly alkaline condi-
tions [28,36] with an enol form of tanshinone V has been established (Figure 1b). 

The alkaline environments may be induced both by strong inorganic hydroxides, e.g., 
NaOH, or by alcoholamines, which are bifunctional components, combining the proper-
ties of alcohols and amines [37]. Aminomethyl propanediol (AMPD), tromethamine 
(TRIS), triethanolamine (TEOA), and triisopropanolamine (TIPA) are components of high 
interest due to potential application in pharmaceutical and cosmetic industries as fatty 
acid binders [37–39] (Figure 2). TEOA is applied as antiacne preparation in the form of 
salicylate. AMPD may react with the methyl esters of the organic acids forming amides 
[40]. TRIS and TIPA may be used in the synthesis of surface-active agents as emulsifying 
agents and emulsion stabilizers in pharmaceutical applications [41,42]. TIPA reacts rap-
idly with acids forming amine salts [41]. AMPD and TIPA enable pH neutralization in 
cosmetic preparations, e.g., lotions, aerosols, and tonics [40,41]. TRIS is administered for 
the treatment of salicylates, barbiturates, and methanol intoxications, and it may be used 
for plasma alkalization [42]. NaOH and alcoholamines are used in pharmaceuticals and 
could serve as potential ingredients of the preparation for external application. Applica-
tion of selected alkaline components may enhance the aqueous solubility of CT in phar-
maceutical preparation. 

The aim of this work was to evaluate the aqueous solubility of CT in an alkaline en-
vironment and the selected factors influencing the process of dissolution. 

  

Figure 1. Chemical structure of cryptotanshinone (1,2,6,7,8,9-hexahydro-1,6,6-trimethyl-(R)-fenanth [1,2-b] furan-10,11-
dione) (a) [4] and its enol form (b) [28].

In the last two decades, the dissolution and bioavailability of CT has been studied,
including very modern approaches, such as solid dispersion [14,27,29,30], ethosomal [31],
niosomal [32], cerasomal [33], and solid lipid nanoparticles [30], and cyclodextrin com-
plexation [22,34]. Studies of the influence of pH on CT solubility revealed structural
modifications of the compound above pH 11.0 and even destruction below pH 1.0, which
was discovered during research on fluorescence properties [35], whereas the highest stabil-
ity of CT structure was recorded between pH 8.0 and pH 12.0 in absorbance tests using
the UV–vis method [34]. The tetrahydrofuran ring of CT collapsed in strongly alkaline
conditions [28,36] with an enol form of tanshinone V has been established (Figure 1b).

The alkaline environments may be induced both by strong inorganic hydroxides, e.g.,
NaOH, or by alcoholamines, which are bifunctional components, combining the properties
of alcohols and amines [37]. Aminomethyl propanediol (AMPD), tromethamine (TRIS),
triethanolamine (TEOA), and triisopropanolamine (TIPA) are components of high inter-
est due to potential application in pharmaceutical and cosmetic industries as fatty acid
binders [37–39] (Figure 2). TEOA is applied as antiacne preparation in the form of salicylate.
AMPD may react with the methyl esters of the organic acids forming amides [40]. TRIS
and TIPA may be used in the synthesis of surface-active agents as emulsifying agents and
emulsion stabilizers in pharmaceutical applications [41,42]. TIPA reacts rapidly with acids
forming amine salts [41]. AMPD and TIPA enable pH neutralization in cosmetic prepara-
tions, e.g., lotions, aerosols, and tonics [40,41]. TRIS is administered for the treatment of
salicylates, barbiturates, and methanol intoxications, and it may be used for plasma alkaliza-
tion [42]. NaOH and alcoholamines are used in pharmaceuticals and could serve as poten-
tial ingredients of the preparation for external application. Application of selected alkaline
components may enhance the aqueous solubility of CT in pharmaceutical preparation.

The aim of this work was to evaluate the aqueous solubility of CT in an alkaline
environment and the selected factors influencing the process of dissolution.
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Figure 2. Schematic representation of the variability of the applied alcoholamine molecules: AMPD (a), TRIS (b), TEOA 
(c), and TIPA (d). 

2. Materials and Methods 
2.1. Materials 

Cryptotanshinone of 99.26% purity (Selleckchem, Poznań, Poland), ≥99.9% methanol 
for HPLC (Chempur, Piekary Śląskie, Poland), 96% ethanol (Stanlab Sp. J., Lublin, Po-
land), ≥99.5% isopropanol (Fluka: BioChemika, Buchs, Switzerland), sodium hydroxide 
(Stanlab Sp. J.), 2-amino-2-methyl-1,3-propanediol (AMPD, Sigma-Aldrich, Poznań, Po-
land), 2-amino-2-(hydroxymethyl)-1,3-propanediol (TRIS, Sigma-Aldrich), 2,2′,2″-nitrilot-
riethanol (TEOA, Sigma-Aldrich), tris(2-propanol)amine (TIPA, Sigma-Aldrich), 96% sul-
furic acid (VI) (Stanlab Sp. J., Lublin, Poland), 35–38% hydrochloric acid (HCl, POCH 
BASIC, Gliwice, Poland), acetonitrile for HPLC (Sigma-Aldrich), formic acid for HPLC 
(Sigma-Aldrich), and deionized water were used in the experimental procedures. 

2.2. Preliminary Evaluation of the CT Solubility Performance in Various Solvents 
The visual appearance of the CT samples in a variety of solvents was evaluated. The 

solvents presented in Table S1 (Supplementary Materials) were used. A 1 mg amount of 
CT was weighed and placed in 2 mL of solvent in a test tube, as described in Table S1 
(Supplementary Materials). Observations were made after 24 h and after 8 days. The 
tested samples were protected from light at 25 °C. 

For microscopic evaluation, samples of 0.2 mg/mL CT concentration in 96% ethanol 
(S1), aqueous solution of 8% ethanol (S2), and aqueous solution of 8% ethanol with a 0.1 
mol/L solution of NaOH were prepared (S3) and assessed with an optical microscope 
(Delta Optical Evolution 100) with photo processing software (DLT-Cam PRO 18MP, Delta 
Optical, Poland). 

The influence of temperature and sonification was further evaluated on the selected 
solvent: 0.1 mol/L NaOH. The system of 5 mg of CT and 100 mL of 0.1 mol/L NaOH was 
sonicated at 40 kHz (Sonic-5, Polsonic, Warsaw, Poland) for 1, 5, or 10 min at temperatures 
of 30 ± 1.5, 40 ± 1.5, 50 ± 1.5, and 60 ± 1.5 °C. The resulting change in color was recorded as 
present or absent. 

2.3. Absorbance Studies of CT in Varied Alkaline Solvents 
A standard curve for CT was prepared in methanol at a wavelength of 271 nm [19], 

according to available literature [43]. The achieved standard curve prepared by the meth-
anol solution equation was y = 0.052x, and the linear determination index R2 was 0.9998 

Figure 2. Schematic representation of the variability of the applied alcoholamine molecules: AMPD (a), TRIS (b), TEOA (c),
and TIPA (d).

2. Materials and Methods
2.1. Materials

Cryptotanshinone of 99.26% purity (Selleckchem, Poznań, Poland), ≥99.9% methanol
for HPLC (Chempur, Piekary Śląskie, Poland), 96% ethanol (Stanlab Sp. J., Lublin, Poland),
≥99.5% isopropanol (Fluka: BioChemika, Buchs, Switzerland), sodium hydroxide (Stanlab
Sp. J.), 2-amino-2-methyl-1,3-propanediol (AMPD, Sigma-Aldrich, Poznań, Poland), 2-
amino-2-(hydroxymethyl)-1,3-propanediol (TRIS, Sigma-Aldrich), 2,2′,2”-nitrilotriethanol
(TEOA, Sigma-Aldrich), tris(2-propanol)amine (TIPA, Sigma-Aldrich), 96% sulfuric acid
(VI) (Stanlab Sp. J., Lublin, Poland), 35–38% hydrochloric acid (HCl, POCH BASIC, Gliwice,
Poland), acetonitrile for HPLC (Sigma-Aldrich), formic acid for HPLC (Sigma-Aldrich),
and deionized water were used in the experimental procedures.

2.2. Preliminary Evaluation of the CT Solubility Performance in Various Solvents

The visual appearance of the CT samples in a variety of solvents was evaluated. The
solvents presented in Table S1 (Supplementary Materials) were used. A 1 mg amount of
CT was weighed and placed in 2 mL of solvent in a test tube, as described in Table S1
(Supplementary Materials). Observations were made after 24 h and after 8 days. The tested
samples were protected from light at 25 ◦C.

For microscopic evaluation, samples of 0.2 mg/mL CT concentration in 96% ethanol
(S1), aqueous solution of 8% ethanol (S2), and aqueous solution of 8% ethanol with a
0.1 mol/L solution of NaOH were prepared (S3) and assessed with an optical microscope
(Delta Optical Evolution 100) with photo processing software (DLT-Cam PRO 18MP, Delta
Optical, Poland).

The influence of temperature and sonification was further evaluated on the selected
solvent: 0.1 mol/L NaOH. The system of 5 mg of CT and 100 mL of 0.1 mol/L NaOH was
sonicated at 40 kHz (Sonic-5, Polsonic, Warsaw, Poland) for 1, 5, or 10 min at temperatures
of 30 ± 1.5, 40 ± 1.5, 50 ± 1.5, and 60 ± 1.5 ◦C. The resulting change in color was recorded
as present or absent.
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2.3. Absorbance Studies of CT in Varied Alkaline Solvents

A standard curve for CT was prepared in methanol at a wavelength of 271 nm [19], ac-
cording to available literature [43]. The achieved standard curve prepared by the methanol
solution equation was y = 0.052x, and the linear determination index R2 was 0.9998 (n = 3).
The UV–vis spectra of CT in Samples 2 and 8–11 were evaluated using a UV–vis spectropho-
tometer (Halo DB-20, Dynamica, Poland) in the range of 245–300 nm. The determination of
the content of alkaline groups that could potentially bind acidic groups of cryptotanshinone
was based on the modified pharmacopoeial method for the acid number determination [44].
In the modified method, the absorbance of Samples 2 and 8–11 after sonication for 10 min
in 60 ± 1.5 ◦C was measured at 271 nm. Solvent 2 or 8–11 was added in 1 mL portions
until a volume of 8 mL was obtained, and the absorbance was measured after every 1 mL.

2.4. Potentiometric and Conductometric Studies

Samples P1–P2 presented in Table S2 (Supplementary Materials) were titrated with
0.1 mL portions of 0.001 mol/L NaOH until a volume of 10.0 mL was obtained in a TitraLab
AT 1000 Series titrator potentiometer (Hach Lange, Düsseldorf, Germany), with a CC-505
conductivity sensor (Elmetron, Zabrze, Poland) and a PHC 805 pH-electrode (Hach Lange,
Düsseldorf, Germany), to provide an insight into the initial phase of CT neutralization. In
P2, 1.2 mL of 96% ethanol as a cosolvent was added to 5.0 mg of CT and left for 20 h, then
35 mL of distilled water was provided. The solutions without CT, P1r and P2r, were used
as blank samples.

2.5. HPLC Analysis

The HPLC method was used to overcome the limitations of the UV–vis spectropho-
tometric method due to the standard curve. The analytical methods of tanshen and
tanshinones were previously been performed [5,8,43]. The method was modified to an-
alyze the concentration of CT in the studied solutions. The method was set as follows:
a flow rate of 0.4 mL/min, a column temperature of 40 ◦C, and a wavelength of 280 nm
were applied. The mobile phase consisted of distilled water, 0.1% formic acid (phase A)
and acetonitrile, and 0.1% formic acid (phase B). The gradiented A/B was set, respectively,
as 98:2–1:99 and 1:99–98:2 v/v% for 28 min. Powdered CT of purity 99.26%, dissolved
in methanol, was used as a standard. To adapt to the concentration range, two standard
curves were prepared: one for alcoholamine solutions (S1) and the other for the NaOH
solutions (S2).

The HPLC system (Ultimate 3000 model, Thermo Fisher Scientific, Schwerte, Germany)
consisted of a pump (LPG-3400SD), an autosampler (WPS-3000TSL), a column thermostat
(TCC-3000SD), a UV detector (UV, DAD-3000), and a column (Kinetex 2.6 µm C18 100Å,
Phenomenex, Torrance, CA, USA). The solutions were filtered through 0.22 µm pores filters.
The mixtures were prepared using an ultrasonic washer for 10 min at 40± 1.5, 50± 1.5, and
60 ± 1.5 ◦C and ethanol as a cosolvent at an amount of 8% w/w. Various concentrations of
NaOH and different temperatures of 1% alcoholamine exposure to ultrasound waves were
tested (Table S3, Supplementary Materials). The chromatographic measurements of CT in
ethanol (E) and water (W) were executed as standards. The alkaline solvents were added to
obtain a saturated solution of CT (approximately 1.0 mg of CT in 5.0 g of solvents). HPLC
measurements were performed after preparation and after 1, 2, 3, 6, and 8 weeks. The pH
measurements of the samples designed for HPLC assays were carried out on the first day
of sample preparation at a temperature of 25.0 ± 0.5 ◦C.

3. Results
3.1. Visual Appearance of CT–Solvent Systems

The color intensity in the test tubes after 24 h and after 8 days in the respective solvents
doped with CT is presented in Figure 3 (left panel). The most intense color was observed
in the case of methanol, ethanol, and isopropanol, which was derived from dissolved CT.
The aqueous samples, acidic samples, and alcoholamine samples remained colorless with
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undissolved particles of CT floating on the surface of the solutions. The exception was the
NaOH solution, where, in addition to floating particles of CT, slight color was observed.

The 96% ethanolic solutions were transparent and colorful directly after the implemen-
tation of CT and after 5 min (S1a, S1b), with separated particles of undissolved CT in the
observation field (S1c), whereas the CT aqueous dispersion doped with 0.5 mL of ethanol
(8% ethanol) provided a turbid system, with observable, floating, insoluble CT particles
(S2a, S2b) of longitude in the range of 25 µm (S2c). The solution was colorless. The system
with a low ethanol content (8%), but with a 0.1 mol/L solution of NaOH, showed turbidity;
however, the entire solution was colored, which indicated the partial dissolution of CT.
The solid particles also floated, and their dimensions were in the range of 5 µm (Figure 3,
right panel).

A further evaluation of CT in the presence of 0.1 mol/L NaOH revealed color in
the selected samples, whereas the others were colorless, as presented in Table 1. For the
summarized factors overcoming a time of 5 min and a temperature of 40 ◦C, the color
appeared what was accepted as CT solubilization in the respective fluid.
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marized factors overcoming a time of 5 min and a temperature of 40 °C, the color appeared 
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Table 1. Color appearance in the 5 mg CT sample in the 0.1 mol/L NaOH solution under the influ-
ence of ultrasounds and increased temperature for 1–10 min. P—presence of color; A—absence of 
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Figure 3. Left panel: macroscopic illustration of CT in various solvents and color intensity on
the first (A) and eighth days (B) after dissolution in the solvents: distilled water (1), 0.1 mol/L
sodium hydroxide (2), 1.0 mol/L sulfuric acid (VI) (3), 0.5087 mol/L hydrochloric acid (4), methanol
(5), ethanol (6), isopropanol (7), AMPD (8), TRIS (9), TEOA (10), and TIPA (11). Middle panel:
macroscopic illustration of CT in 96% ethanol (S1), 8% ethanol (S2), and 8% ethanol with a 0.1 mol/L
solution of NaOH (S3). Illustration of the influence of ethanol on the solubility of CT in the 0.1 mol/L
solution of NaOH immediately (a) and after 5 min (b), and a microscope image of the powdered CT
particle in the air. Right panel: microscope images of a drop taken from the surface of the samples in
the test tubes S1b, S2b and S3b, respectively. The bar represents the same longitude (200 µm). The
details are in the text.
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Table 1. Color appearance in the 5 mg CT sample in the 0.1 mol/L NaOH solution under the influence
of ultrasounds and increased temperature for 1–10 min. P—presence of color; A—absence of color.

Time (min)
1 5 10

Temperature (◦C)

30 A A P
40 A P P
50 P P P
60 P P P

3.2. UV–Vis Spectrophotometric Evaluation of CT Solubility

In order to evaluate the neutralization of acidic groups of CT via alkaline components,
the CT solution was combined with increasing volumes of NaOH solution or alcoholamine
solutions, as presented in Figure 4. The equilibrium was observed at 6 mL of 0.001 mol/L
NaOH added to 5 mg of CT, whereas the equilibrium point for alcoholamines was in the
range of 4.5–6 mL.
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Figure 4. Influence of solutions (0.001 mol/L NaOH, 1% AMPD, 1% TRIS, 1% TEOA, and 1% TIPA (n = 3)) on the
spectrophotometrically estimated neutralization of CT by the alkaline components.

The resulting molar proportion of NaOH/CT was ca. 27, whereas the same amounts
of CT solved in various alcoholamine solutions provided varied proportions (Table 2).
The equilibrium state in the case of the AMPD solution as a solvent for CT provided a
molar ratio of AMPD/CT 889, and for the TRIS solution, the molar ratio of TRIS/CT in the
equilibrium state was 1514. Similar ratios were observed, as when TEOA was applied, the
TEOA/CT molar ratio reached a value of 1089. The lowest molar ratio was recorded in the
TIPA solution, where the value was 737 in the equilibrium state. The mean pH values of
the overtitrated systems at 8 mL are presented in Table 2 and were 10.07, 10.08, 9.16, 9.46,
and 9.18.
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Table 2. The results of the pilot study of the solubility of 5 mg of CT, i.e., 1.68·10−5 mol, in the alkaline solutions of NaOH,
AMPD, TRIS, TEOA, and TIPA.

Solvent Solution of:

NaOH AMPD TRIS TEOA TIPA

Molar mass (g/mol) 39.99 105.14 121.14 149.18 191.27
Alkalic component concentration (mol/L) 0.001 0.095 0.083 0.067 0.052

The plateau volume (mL) 6.0 5.0 4.5 5.0 4.5
Amount of alkali component (mmol) 0.0066 0.475 0.374 0.335 0.234

The preliminary molar ratio alkali component/CT 27 889 1514 1089 737
pH after establishing the plateau volume (8 mL) 10.07 ± 0.20 10.08 ± 0.10 9.16 ± 0.20 9.46 ± 0.10 9.18 ± 0.20

3.3. Titration Studies

The addition of the 0.001 mol/L solution of NaOH resulted in a respective increase
in pH and conductivity (Figure 5a,b). The range of the pH of CT in water titrated by
0.001 mol/L NaOH was 6.37–10.09, and a plateau phase was established. In the case of
conductivity, the range was 0.00045–0.00516 S/m. The range of the pH of CT in 3.3%
ethanolic solution titration with 0.001 mol/L NaOH was 6.21–10.18, and a plateau phase
was established, as in the previous case (Figure 5c). The range of conductivity was
0.00069–0.00663 S/m (Figure 5d). Theoretical potentiometric titration plot was added
to Figure 5a,c to reflect the influence of CO2 from the atmosphere in a concentration of ca.
0.004 mmol/L, which could interfere with the results.
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3.4. HPLC Studies

Equations of standard plots for the evaluation of CT concentration in the HPLC assays
are presented in Table 3.
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Table 3. Equations of standard plots for the evaluation of CT concentration in the HPLC assays.

Standard
Solution

Retention
Time (min) Slope Intercept r2 Linearity

(µg/mL)
Peak Area

(mAU ×min)

S1 17.6361 0.4839 0.0948 0.999 1–15 0.5–6
S2 17.6361 0.4302 0.8644 0.999 20–235 10–105

The quantification of CT in the assessed solutions was performed by HPLC, with
respective CT retention times in different solvents (Figure 6).
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The highest concentration of CT was observed in NaOH solutions of 1.0, 0.1, and
0.01 mol/L, respectively (Figure 7a), whereas the concentration of CT in 0.001 mol/L
NaOH was close to the concentration of CT in 1% AMPD solution (Figure 7b). The CT
concentrations in other alcoholamines, TRIS, TEOA, and TIPA, were ca. ten-fold lower than
the CT concentrations in NaOH of 1.0, 0.1, and 0.01 mol/L concentrations. An increase
in the values of CT concentrations was observed with an increase in the temperature of
the solution prepared with alcoholamines (Figure 7b–d). Moreover, a decrease in the
concentration of CT in NaOH solutions was noticed after 21 days, whereas in the case of
CT in alcoholamine solutions, a decrease was observed after 42 days (Figure 7).
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4. Discussion

The stability of the CT molecule depends on the pH value. Below pH 2, CT tends to
be degraded, whereas over pH 11, structural changes are observed [36]. The pH range
of 2–8 mildly influences the solubility, whereas pH 10 to 12 strongly favors the aqueous
dissolution of CT [4]. In our study, an alkaline environment between pH values of 10.0
and 12.70 was chosen to establish optimal conditions for CT solubility and stability in
the solution. Concentrations of 0.001, 0.01, 0.1, and 1.0 mol/L sodium hydroxide were
selected with pH values of 10.07, 11.70, 12.55, and 12.66, respectively. The solutions of 1%
of aminomethyl propanediol (AMPD), tromethamine (TRIS), triethanolamine (TEOA), and
triisopropanolamine (TIPA) were characterized by the following pH values: 10.08, 9.16,
9.46, and 9.18 (Table 2). The relationship between the aqueous CT solubility and pKa of
selected solvents was confirmed. The variability of the pKa of alcoholamines (Figure 8)
was reflected in the solubility pattern, where the AMPD with the highest pKa provided the
best results in terms of CT solubility compared with Figure 9 (inserted panel).

4.1. Visual Results

Despite the numerous therapeutic properties of CT, a diterpene compound, its practical
application encounters hindrances, resulting from low water solubility and low bioavail-
ability [3]. A visual examination of the impact of the series of solvents on the solubility
of CT illustrated high solubility in alcohols, i.e., methanol, ethanol, and isopropanol.
Lower solubility was observed in sodium hydroxide solutions, whereas CT was practically
insoluble in distilled water, sulfuric acid (VI) solution, hydrochloric acid solution, and
alcoholamine solution (Figure 3). In alcoholic solvents and in sodium hydroxide solution,
CT dissolved to form yellow-colored solutions, which may be regarded as a confirmation
of CT dissolution. Alcohols with a low molecular mass favor the solubility of CT, which
was availed in solubility studies [45,46]. However, the presence of long hydrocarbon chains
destroys the association between water and alcohol. We observed an increase in the color
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of the alcoholic solution of CT (Figure 3, left panel). Our observation showed that the
addition of water to the solution of CT dissolved in alcohol caused the precipitation of CT,
whereas the addition of 0.1 mol/L NaOH solution triggered better CT dissolution. Different
dispersions and particle sizes of CT were observed under 10×microscope magnification.
There were many differences between the crystal form of CT and that dissolved in ethanol.
It was noticed that under the influence of the addition of 0.11 M NaOH solution, the CT
particles were broken down and dispersed to a greater extent compared to the sample
in pure ethanol. The addition of water resulted in the formation of elongated and thin
structures (Figure 3, right panel). The varied behavior of the CT alcoholic solution after the
addition of water or NaOH solution should be further examined to elucidate the possible
intermolecular interactions, resulting from the slightly acidic nature of alcohols.
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4.2. The Approximated Concentrations of CT under the Influence of Various Alkaline Solutions

The variability of concentrations obtained from the spectrophotometric assays in-
dicated that the solubility of CT in alkaline solutions was limited, and saturation could
be deduced when the volume of the alkaline component was in the range of 4.5–6 mL
(Figure 4). The concentration of the alkaline component of ca. 0.05–0.1 mol/L for the
alcoholamines resulted in CT dissolution of ca. 15–30 mg/L, whereas the NaOH solu-
tion of a much lower concentration of 0.001 mol/L provided comparable solubility of
ca. 10 mg/L. The obtained saturation values were of preliminary guidance quality data
due to the high volume of added solutions. However, the calculation of the CT/alkaline
component ratio provided an assumption to the statement that the CT saturation state in
the assessed aqueous systems is possible in the presence of ca. 27 particles of NaOH per
one particle of CT, whereas in the case of alcoholamines, the ratio was in the range of ca.
737 to 1514 particles per one particle of CT. The difference may be connected to the lower
alkalinity of alcoholamines compared to NaOH; however, the pattern is disturbed by the
higher pH in the case of the AMPD solution compared to the NaOH solution (Table 2).
Other factors, such as the logP of the alkaline components, may also influence the solubility
of CT. The logP may be of special interest for the apparent permeability coefficient in
cellular monolayers [3].

4.3. Titration Studies

Evaluation of the influence of increasing concentrations of NaOH on the pH and
conductivity of CT dispersions revealed that only slight differences were observed when
CT was present in the system. The pH plot for the titration of CT was adjacent to the plot for
the titration of water (Figure 5a). The course of the dependence was compared to the case of
the neutralization of CO2, usually present in water; however, we used deionized water. The
conductivity data provided more insight into the CT–water–NaOH interaction (Figure 5b).
In the presence of CT, the conductivity increased faster compared to the aqueous system.
This increase was effectively observed after CO2 neutralization, which was confirmed by
plotting the pH with the experimental and theoretical curves. CO2 neutralization took place
at approximately 1 mL of NaOH 0.001 mol/L. The higher conductivity values (black dots)
reflected the dissolution of CT under the influence of NaOH solution. Interestingly, when
the ethanol–water system was applied in the same conditions, the pH variability between
the sample with CT and without CT was less pronounced, supposedly due to the lower
content of ionizable water generating the protons (Figure 5c). The conductivity pattern
suggests that ethanol supported the dissolution of CT, which is visible when comparing the
plots in Figure 5b,d. The conductivity at the initial point was higher when the ethanol was
present in the sample, and also, an increasing conductivity tendency was observed. Ethanol
has low conductivity compared to water [47,48], and the presence of alcohol should favor
a decrease in conductivity; however, in the presence of NaOH, a reduction in conductivity
was not noticed (Figure 10).

4.4. HPLC Studies

The HPLC method was widely applied to qualitatively and quantitatively assay CT
in several compositions [5,49], as well as the active substances of Salvia miltiorrhiza [27]
or the CT release processes [32]. Our HPLC studies confirmed the correlation between
the temperature conditions of the dissolving procedure. The increased temperature fa-
vored the higher solubility of CT in the solutions of alcoholamines (Figure 10, inserted
plot). The NaOH solutions enabled an increase in CT concentrations up to the range of
0.056–0.320 mmol/L, depending on the NaOH concentrations. When compared to NaOH
solutions, the 1% solutions of TRIS, TEOA, and TIPA provided a moderate increase in CT
aqueous solubility. The resulting CT concentrations were in the range of 0.01–0.03 mmol/L
compared to the aqueous solubility of CT of ca. 0.003 mmol/L. The 1% AMPD solution was
distinguished out of the alcoholamine solutions and enabled the highest concentrations
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of CT in the range of 0.03–0.06 mol/L, and CT solubilization varied depending on the
temperature of the dissolution process (Figure 9).
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The molar ratios of alcoholamine/CT achieved the lowest values for the AMPD
solution, which confirms its highest efficacy in terms of the CT solubility increase in aqueous
solutions of the selected alcoholamines—AMPD, TRIS, TEOA, and TIPA (Figure 11a). The
stability of CT was higher in the solutions of alcoholamines compared to the NaOH
solutions, which is very interesting from the practical point of view. The stable content of
CT was retained two-fold longer in the case of alcoholamines, i.e., for 42 days, whereas the
NaOH solutions retained the initial level of CT only for ca. 21 days.
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The molecular peculiarity of AMPD in comparison to TEOA, TIPA and TRIS is based
on the number of OH groups in the particle, which are attached to the nonlinear carbon
chain with the primary amine group. Both the OH groups’ number and the number of
carbon chains attached to the nitrogen atom may influence the dissolving potential of
alcoholamines against CT (Figure 10). The number of NaOH molecules interacting with
CT increases with the increase in NaOH concentration, and the pattern is close to the
linear dependence. The ethanol solution fits the pattern observed for NaOH solutions
(Figure 11b). The stability of CT solutions in alkaline solutions depended on the type of
alkaline component. In the NaOH solutions, regardless of the NaOH concentrations, the
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level of CT decreased after 21 days, whereas in the case of alcoholamines, the CT level
decreased after 42 days (Figure 7a–d). The short shelf time of CT may depend on the storage
conditions of the solutions at 25 ◦C in the absence of direct light. CT solutions were also
heated up to 40–60 ◦C, as temperature may affect the solubility of CT. CT is temperature
sensitive, so the producer’s specification recommends storage of the powder at –20 ◦C and
CT in solvent at −80 ◦C [50]. Song and coworkers found the instability of CT in methanol
at room temperature and after exposure to light [51]. Our research was preparatory to the
final hydrogel’s formulation of CT. Further steps will include stabilization of the samples
via proper storage of the mixtures, e.g., in low temperatures, in the absence of direct
light, or via inhibition of the degradation processes with the use of selected substances,
which will be developed in the future. However, the most interesting option includes
the ex tempore preparation of the mixtures prescribed for an individual patient. Some
preparations against acne have been developed in the ex tempore form, i.e., due to the
instability of erythromycin in suspension with zinc salt, clindamycin hydrochloride in
lotion [52], or azelaic acid in a liposomal formulation [53].

5. Conclusions

Alcohols, including methanol, ethanol, and isopropanol, are good solvents for CT.
The alkalic environment of NaOH solutions, as well as the alcoholamine solutions, favor
the dissolution of CT. CT dissolution is mainly dependent on the pH, and the presence of
ethanol is a conducive factor for CT aqueous solubility, similar to the increased temperature
and sonification applied during the dissolution procedure. There are only slight differences
between TIPA, TEOA, and TRIS in the solubilizing potential. Between the analyzed
alcoholamines, AMPD seems to be the most interesting alkalic component, which may be
used to enhance the solubility of CT, as confirmed by the number of AMPD particles on
the CT particle in the aqueous solution. Alcoholamines enable higher stability compared to
NaOH in respective solutions, which is very important for the further development of CT
in various pharmaceutical formulations.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
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studies, Table S3: The composition and preparation parameters of the HPLC samples.
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39. Kostrzębska, A.; Musiał, W. The influence of increasing concentrations of AMPD on the efficacy of its penetration into a model
skin sebum layer. Pharmaceutics 2020, 12, 1228. [CrossRef]

40. Burnett, C.L.; Bergfeld, W.F.; Belsito, D.V.; Klaassen, C.D.; Marks, J.G.; Shank, R.C.; Slaga, T.J.; Snyder, P.W.; Andersen, F.A.
Final amended report on safety assessment on aminomethyl Propanol and aminomethyl propanediol. Int. J. Toxicol. 2009, 28,
141S–161S. [CrossRef]

41. Liebert, M.A. Final Report on the Safety Assessment of Diisopropanolamine, Triisopropanolamine, Isopropanolamine, and Mixed
Isopropanolamine. J. Am. Coll. Toxicol. 1987, 6, 53–76.

42. Becker, L.C.; Bergfeld, W.F.; Belsito, D.V.; Hill, R.A.; Klaassen, C.D.; Liebler, D.C.; Marks, J.G.; Shank, R.C.; Slaga, T.J.; Snyder, P.W.;
et al. Safety Assessment of Tromethamine, Aminomethyl Propanediol, and Aminoethyl Propanediol as Used in Cosmetics. Int. J.
Toxicol. 2018, 37, 5S–18S. [CrossRef]

43. Shi, Z.; He, J.; Yao, T.; Chang, W.; Zhao, M. Simultaneous determination of cryptotanshinone, tanshinone I and tanshinone IIA
in traditional Chinese medicinal preparations containing Radix salvia miltiorrhiza by HPLC. J. Pharm. Biomed. Anal. 2005, 37,
481–486. [CrossRef]

44. Polish Pharmacopeia XI, 11th ed.; President of the Office for Registration of Medicinal Products: Warsaw, Poland, 2017; p. 279.
45. Song, M.; Hang, T.J.; Zhang, Z.; Chen, H.Y. Effects of the coexisting diterpenoid tanshinones on the pharmacokinetics of

cryptotanshinone and tanshinone IIA in rat. Eur. J. Pharm. Sci. 2007, 32, 247–253. [CrossRef]
46. Kim, H.-K.; Woo, E.-R.; Lee, H.-W.; Park, H.-R.; Kim, H.-N.; Jung, Y.-K.; Choi, J.-Y.; Chae, S.-W.; Kim, H.-R.; Chae, H.-J. The

Correlation of Salvia miltiorrhiza Extract–Induced Regulation of Osteoclastogenesis with the Amount of Components Tanshinone
I, Tanshinone IIA, Cryptotanshinone, and Dihydrotanshinone. Immunopharmacol. Immunotoxicol. 2008, 30, 347–364. [CrossRef]

47. Frank, F.; Ives, D.J.G. The structural properties of alcohol–water mixtures. Q. Rev. Chem. Soc. 1966, 20, 1–44. [CrossRef]
48. Personna, Y.; Slater, L.; Ntarlagiannis, D.; Werkema, D.; Szabo, Z. Electrical signatures of ethanol-liquid mixtures: Implications for

monitoring biofuels migration in the subsurface. J. Contam. Hydrol. 2013, 144, 99–107. [CrossRef] [PubMed]
49. Cheng, H.T.; Li, X.L.; Li, X.R.; Li, Y.H.; Wang, L.J.; Xue, M. Simultaneous quantification of selected compounds from Salvia herbs

by HPLC method and their application. Food Chem. 2012, 130, 1031–1035. [CrossRef]
50. Cryptotanshinone. Available online: https://www.selleckchem.com/products/Cryptotanshinone.html (accessed on 21 June

2021).
51. Song, M.; Hang, T.J.; Zhang, Z.X.; Du, R.; Chen, J. Determination of cryptotanshinone and its metabolite in rat plasma by liquid

chromatography-tandem mass spectrometry. J. Chromat. B 2005, 827, 205–209. [CrossRef]
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