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Lipids constitute the bulk of the dry mass of the brain and have been associated
with healthy function as well as the most common pathological conditions of the
brain. Demographic factors, genetics, and lifestyles are the major factors that influence
lipid metabolism and are also the key components of lipid disruption in Alzheimer’s
disease (AD). Additionally, the most common genetic risk factor of AD, APOE ε4
genotype, is involved in lipid transport and metabolism. We propose that lipids are
at the center of Alzheimer’s disease pathology based on their involvement in the
blood-brain barrier function, amyloid precursor protein (APP) processing, myelination,
membrane remodeling, receptor signaling, inflammation, oxidation, and energy balance.
Under healthy conditions, lipid homeostasis bestows a balanced cellular environment
that enables the proper functioning of brain cells. However, under pathological
conditions, dyshomeostasis of brain lipid composition can result in disturbed BBB,
abnormal processing of APP, dysfunction in endocytosis/exocytosis/autophagocytosis,
altered myelination, disturbed signaling, unbalanced energy metabolism, and enhanced
inflammation. These lipid disturbances may contribute to abnormalities in brain function
that are the hallmark of AD. The wide variance of lipid disturbances associated with
brain function suggest that AD pathology may present as a complex interaction between
several metabolic pathways that are augmented by risk factors such as age, genetics,
and lifestyles. Herewith, we examine factors that influence brain lipid composition, review
the association of lipids with all known facets of AD pathology, and offer pointers for
potential therapies that target lipid pathways.

Keywords: amyloid precursor protein, apolipoproteins, blood-brain barrier, energy metabolism, inflammation,
late-onset Alzheimer’s disease, mitochondria, myelination

BACKGROUND

The Importance of Cellular Lipid Membranes
Cell membranes are composed of several lipid classes and membrane-bound proteins/receptors
that interface cellular organelles, and cells with their environment. It is now recognized that
these membrane lipids are important in maintaining cellular functions. Several studies show that
perturbation of membrane lipids can have devastating consequences on the brain. These changes
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underlie Alzheimer’s disease (AD) pathology depicted in
Figure 1. We will examine factors that affect lipid metabolism,
describe the functions of brain lipids, and examine the
consequences and contributions of lipid dyshomeostasis
on AD pathology.

Brain Lipids in Healthy Aging and AD
Pathology
Most of the brain is composed of lipids, which can be
grouped as sphingolipids, glycerophospholipids, and cholesterol
(Svennerholm et al., 1994; O’Brien and Sampson, 1965;
Kishimoto et al., 1969). The brain consists of straight-chain
monocarboxylic acids ranging from C12 to C26, and omega-3 (n-
3) and omega-6 (n-6) fatty acids are most abundant (Kishimoto
et al., 1969; Siegel, 1999). Docosahexaenoic acid (DHA) and
eicosapentaenoic acid (EPA) are prominent polyunsaturated fatty
acids (PUFA) in the brain that are derived from alpha-linolenic
acid (ALA), an omega-3 fatty acid (Chappus-McCendie et al.,
2019). Arachidonic acid (AA) and docosatetraenoic acid (DPA)
constitute a large proportion of PUFA’s that are derived from
linolenic acid (LNA), an omega 6 fatty acid (Leonard et al., 2000;
Sinclair et al., 2007).

FACTORS THAT AFFECT BRAIN LIPIDS

Demographic Factors That Influence
Brain Lipids
Brain Lipids Changes in Aging
These PUFA’s are incorporated into membrane phospholipids
and therefore play a significant role in structural integrity and
function of cell membranes. Lipid metabolism is changed during
aging (Montanini et al., 1983; Yehuda et al., 2002; Whelan,
2008; Denis et al., 2015; Cutuli, 2017; Chappus-McCendie et al.,
2019), as shown by a decline in omega-3 fatty acids and an
increase in lipid peroxidation (Chen et al., 2017). Omega-3
fatty acids have antioxidant properties, and a lack of these fatty
acids in one’s diet may accelerate neuronal degeneration (Yehuda
et al., 2002; Janssen and Kiliaan, 2014). Susceptibility of lipids
to peroxidation increases with age (Bourre, 1991; Spiteller, 2010;
Denis et al., 2015; Chen et al., 2017), which supports using the
level of oxidative stress as a critical determinant of neuronal
health and longevity (Hulbert et al., 2006). Previous studies have
suggested that DHA and EPA may protect against peroxidation
and the effects of age-related brain pathology (Hasadsri et al.,
2013; Chen et al., 2017). Lipids are involved in cellular signaling,
energy balance, blood-brain barrier (BBB), and inflammation
(Song et al., 2008; Willis et al., 2009), and such age-dependent
lipidome changes that disrupt these functions may contribute to
neurodegenerative diseases (Arnoldussen et al., 2016; Bos et al.,
2016; Hooper et al., 2018; Luo et al., 2018; McNamara et al., 2018;
Lepping et al., 2019), such as Alzheimer’s disease (AD) (Schmitt
et al., 2014; Hussain et al., 2019).

Lipids and Race/Ethnicity
Race and ethnicity play a significant role in the risk of AD
and related disorders. In 2014, nearly 5 million people over

the age of 65 had been diagnosed with Alzheimer’s disease
or related dementias (ADRD) (Matthews et al., 2019). African
Americans and Hispanics had the highest prevalence of ADRD
(13.8% and 12.2%, respectively), while ADRD was least common
in Asian and Pacific Islanders (8.4%), followed by American
Indian/Alaska Natives (9.1%), non-Hispanic whites (10.3%),
and people with two or more races (11.5%) (Matthews et al.,
2019). Ethnic and racial backgrounds impact many aspects of
health, including diet, stress, access to medical treatment, and
biological factors of disease. From past research, we can clearly
see the ways in which ethnicity, race, and lipids overlap. Most
clearly seen in the high incidence of both dyslipidemia, or
abnormal amounts of lipids in the blood, and cardiovascular
disease observed in minority populations (Frank et al., 2014),
race/ethnic disparities affect the regulation of lipid metabolism.
Increased concentrations of triglycerides (TG) and decreased
levels of lipid carriers, such as HDL-C (high-density lipoprotein-
cholesterol) in the blood of Mexican, Filipino, Indian, and
Vietnamese people compared to whites may provide a possible
explanation for higher risk of both ADRD and cardiovascular
disease within these populations (Frank et al., 2014; Gazzola
et al., 2017). HDL-C is often referred to as “good cholesterol,”
has beneficial antioxidant and anti-inflammatory effects in the
body, and has been observed to modulate ß-amyloid (Aß)
production in the brain, a key biomarker of AD pathogenesis
(Reitz, 2012; Hottman et al., 2014). Lowered levels of HDL-
C have been associated with increased cognitive decline and
poor cardiovascular health outcomes (Hottman et al., 2014).
TG, which is increased in almost every minority population,
except African Americans, has been shown to relate to central
leptin- and insulin resistance in the brain and decreases in
cognition (Sumner, 2009; Frank et al., 2014; Banks et al.,
2018). In light of the less marked changes in lipid make-
up and metabolism seen in African American populations at
increased risk of ADRD, it has been suggested that African
Americans are underdiagnosed with metabolic syndromes and
vascular-cognitive disorders (Sumner, 2009). Furthermore, it
has been observed that there is a differential expression of
various molecular biomarkers of AD (phosphorylated tau and
total tau) in African Americans compared to whites (Morris
et al., 2019), suggesting even small, imperceptible changes
in lipid distribution in this population may be sufficient
to affect cognition negatively. It is important to note that
despite the disproportionate impact ADRD has on minority
populations, these individuals continue to be considerably
underrepresented in ADRD research, contributing to large gaps
in our understanding of brain lipid metabolism as it pertains to
race and ethnicity (Gilmore-Bykovskyi et al., 2019).

Lipids and Sex
Sex continues to be one of the largest risk factors for developing
AD. Females not only makeup two-thirds of all cases of AD
diagnoses but also possess a greater lifetime risk of dementia
compared to men due to longer life expectancy (Viña and
Lloret, 2010; Mielke, 2018). Increased prevalence and risk
of AD and other age-related disorders among females have
been attributed to not only extended life expectancy but

Frontiers in Physiology | www.frontiersin.org 2 June 2020 | Volume 11 | Article 598

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-11-00598 June 6, 2020 Time: 15:34 # 3

Chew et al. Lipids, Alzheimer’s Pathology, and Therapies

FIGURE 1 | Factors that affect brain lipid metabolism and the importance of lipids in healthy aging and AD. Factors that affect brain lipid metabolism – Demographic
factors, genetics, lifestyle, the environment, and trauma can influence lipid metabolism in the brain. Interestingly, these factors that influence lipid metabolism are also
recognized risk factors of AD. Abnormalities in lipid metabolism can contribute to dysfunctional brain networks that associate with AD pathology. Importance of lipid
metabolism in brain function and AD pathology – In healthy aging, normal transport of lipids through apolipoproteins contribute to the function of the brain.
Homeostatic control of the brain lipid environment is responsible for sustaining a normal BBB, providing the right environment for normal APP processing, the right
composition for ion channels and receptors, cytosis, vesicle formation, and secretion, signaling, inflammation, oxidation, energy balance, and membrane
biosynthesis and remodeling. Dyshomeostasis in lipid delivery into the brain and its metabolism attributes to disturbed BBB, abnormal APP processing, disturbance
in cytosis, signaling, energy balance, and enhanced/sustained inflammation and oxidation. Over time, these processes lead to neuronal death that is the hallmark of
AD pathology.

also to sudden decreases in estrogen post-menopause, among
many other factors including education level and mental
health status (Viña and Lloret, 2010; Mielke, 2018). Despite
the many factors that may contribute to increased risk of
AD in women, the contribution of sex-hormone levels and
differential lipid distribution play evident roles in cognitive
decline are not fully understood. Not only is fat in the form
of TG distributed differently in the adipose tissue of male
and females, which can be attributed in part to sex-hormone
signaling, but concentrations of long-chain PUFAs (LC-PUFAs)
have also been observed to be increased in women pre-
menopause compared to men (Decsi and Kennedy, 2011; Lohner
et al., 2013). Correspondingly, a positive association has been
established between omega-3 LC-PUFA biosynthesis, i.e., the
production of EPA and DHA, and circulating concentrations
of estrogen and progesterone (Childs et al., 2008). Estrogen,
an ovarian steroid hormone, is hypothesized to affect lipid
metabolism at several points during biosynthesis, including
playing a key role in lipid transport and exchange, increasing
expression of metabolic enzymes, and reducing the oxidation
of α-linoleic acid (ALA), the deriving fatty acid in n-3 LC-
PUFA production (Childs et al., 2008; Decsi and Kennedy,

2011; Lohner et al., 2013; Palmisano et al., 2018). Estrogen has
also been directly associated with inhibiting memory function
impairment in premenopausal women following the surgical
removal of their ovaries and loss of the ability to produce
estrogen endogenously (Duka et al., 2000; Sherwin, 2012). In
a study of trans-sexual subjects, those transitioning from male
to female and receiving estrogen observed an increase in DHA
plasma levels while those transitioning from female to male
and receiving testosterone treatment experienced a marked
decrease in plasma DHA (Giltay et al., 2004). The decrease in
estrogen levels, as seen in post-menopausal women, has also
been associated with increased TG content and lower HDL-
C, both of which have been linked to cognitive decline (Derby
et al., 2009; Anceline et al., 2014). This is to say, the increased
prevalence and risk for AD among women can be explained
in part by the abrupt decrease in estrogen production that
accompanies the post-menopausal state. Not only does the lack
of estrogen decrease concentrations of anti-inflammatory LC-
PUFAs and HDL-C in the body, but it also increases TG levels,
augmenting secretion of VLDL (very-low density lipoprotein),
a lipid carrier known to induce neuroinflammation (Burgess
et al., 2006; Chen et al., 2014; Nägga et al., 2018). Additionally,
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genetic factors, such as ApoE status, and social determinants,
such as education, mental illness, and diet, interact with the
post-menopausal state to amplify these detrimental effects,
increasing risk of AD.

Lipids and Lifestyle
Diet
Dietary lipids play an integral part in physiological lipid
metabolism and, consequently, in the risk of AD and
cardiovascular disease. Essential fatty acids like DHA (n-3)
and AA (n-6) are largely derived from the dietary consumption
of their shorter-chained, slightly less-saturated counterparts
ALA (n-3) and LA (n-6), respectively (Schmitz, 2008; Morris
and Tangney, 2014). After consumption of these deriving fatty
acids, the body is able to anabolize them, creating the LC-PUFAs
that contribute to neural processes (Morris and Tangney, 2014).
Early on in human existence, our diet consisted of an equal
balance of n-6 to n-3 essential fatty acids, but as we have
evolved, the n-3 to the n-6 ratio of dietary fatty acids has greatly
shifted to one side (Simopoulos, 2006). Today, the Western
diet has a ratio of about 17 to 1 n-6 to n-3 fatty acids, meaning
most Americans have a lot more LA, AA, and DPA in their
bodies, which are able to produce relatively large quantities
of inflammatory and oxidative mediators (Simopoulos, 2006).
Increased ratios of n-6 to n-3 dietary fatty acids have also
been directly associated with increased cognitive decline and
risk of AD (Loef and Walach, 2013; MacDonald-Wicks et al.,
2019). DHA, on the other hand, an n-3 LC-PUFA usually
found in fish and algae, is not largely found in the Western
diet. Studies suggest, however, that DHA supplementation
may work to combat neuroinflammation, oxidative stress,
and cognitive decline. Fish oil supplements containing large
amounts of DHA, given to older adults with varying levels of
cognition, found that supplementation resulted in decreased
brain atrophy and less cognitive decline compared to controls
in an APOE allele-dependent manner (Daiello et al., 2015).
Similarly, Morris et al. observed among subjects over the age
of 65 that those who ate fish at least once a week had 60% less
risk of AD than those who rarely or never ate fish (Morris et al.,
2003). Dietary DHA has also been shown to improve cognition,
memory, and brain development from the earliest stages of
life through adulthood (Dunstan et al., 2008; McNamara
et al., 2010; Muldoonm et al., 2010; Stonehouse et al., 2013;
Weiser et al., 2016).

It is important to note that diet can be particularly impacted
by race/ethnicity, as well as physical geography, helping to
explain differences in AD risk among ethnic groups. According
to a global survey of 298 studies, highest levels of DHA and
EPA, another n-3 fatty acid, were observed among Japanese,
Scandanavian, and indigenous populations, as well as in areas
where the Westernized diet had not been fully adopted (Stark
et al., 2016). Authors of this survey argue increased consumption
of seafood, as dictated by culture or geographical location, greatly
impact n-3 LC-PUFA levels in the bloodstream, which offer
protective cognitive effects at every stage in life (Joffre et al., 2014;
Stark et al., 2016; Weiser et al., 2016).

Genetical Evidence for the Importance of
Lipid Metabolism in AD Pathology
Genetic Risk Factors of AD-Related to Lipid
Metabolism
Genome-wide Association Studies GWAS and Transcriptome-
Wide Association Studies (TWAS) associate AD pathology with
several lipid genes (Shi et al., 2010; Hao et al., 2018). While
the APOE4 allele carries the greatest risk for AD, other genes
and gene-products commonly associated with AD pathology
are linked to or interact with lipid metabolism. Several lipid
genes associated with AD pathology have recently been reviewed
(Tindale et al., 2017). Table 1 is the list of the major genes from
GWAS that are linked with lipid metabolism (Jones et al., 2010).

Genome-wide Association Studies suggest that age-related
changes in brain lipid metabolism may be essential to healthy
aging and longevity (Tindale et al., 2017). Identification of AD-
related genes and how these interact with specific risk factors may
provide the rationale for designing effective therapies.

The onset of age related disease can be accelerated
with suppression of anti-aging genes, such as Sirtuin 1
(SIRT1). SIRT1 is a histone deacetylase involved with gene
expression related to metabolic activity (Grabowska et al.,
2017). SIRT1 interacts with lipid metabolism regulation and
hepatic oxidative stress and inflammation (Ding et al., 2017).
It also regulates circadian rhythms in the liver and brain,
maintaining the body’s regulation of glucogenesis, fatty acid
beta-oxidation, and cholesterol biosynthesis (Bellet et al., 2016).
Its involvement in metabolism explains its effects on energy
metabolism, neurogenesis, glucose and cholesterol metabolism,
and amyloidosis. Sirt 1 also contributes to neuron apoptosis
and survival. Downregulation of this anti-aging gene may
lead to acceleration of neurodegenerative disease. Nutritional
interventions, such as a reduction in overconsumption of
carbohydrates, are recommended because they may be associated
with preventing cell senescence and maintaining anti-aging gene
activity (Martins et al., 2017). SIRT1 expression promotes APP
processing on a non-amyloidogenic pathway and clearance of
tau from the brain (Herskovits and Guarente, 2014). SIRT1’s
deacetylase activity increases the activity of lysosome-related
genes, facilitating Aβ degradation (Li et al., 2018). SIRT1 is a
potential therapeutic target for AD because of its involvement in
many amyloid beta and cholesterol pathways.

CONTRIBUTION OF LIPIDS TO AD
PATHOLOGY

Although the brain has a very high concentration of long-
chain omega-3 and omega-6 fatty acids, there is no conclusive
explanation for how these fatty acids participate in various
signaling cascades and in AD (Torres et al., 2014; Mohaibes
et al., 2017). However, lipodomic studies related to AD pathology
have demonstrated a decrease in DHA levels within the brain,
predominantly in the hippocampus (Belkouch et al., 2016).
Damage to the hippocampus is associated with impaired
learning and memory abilities, a symptom of AD onset
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TABLE 1 | Lipid metabolism-associated genes with SNP (<0.001) linked with AD from GWAS.

Gene Symbol
[Chromosome location
(Mb)] (Jones et al., 2010)

The function of the gene product# Changes and known effects on AD pathology

APOE [19 (50)] As part of lipoproteins, ApoE is involved in the transport and
distribution of lipids into various tissues via plasma and other
interstitial fluids (Huang and Mahley, 2014)

Polymorphism of APOE is associated with age of onset (do Couto
et al., 1998; Vermunt et al., 2019), cognitive and memory decline
(Asada et al., 1996; El Haj et al., 2016), amyloid load (Mecca et al.,
2018), cholesterol homeostasis (Leduc et al., 2010), inflammation
(Tzioras et al., 2019)

APOC1 [19 (50)] Involved in HDL and VLDL metabolism, inhibitor cholesteryl ester
transfer protein in plasma

Gene polymorphism (Prendecki et al., 2018), oxidative stress
(Prendecki et al., 2018), interaction with ApoE (Lucatelli et al., 2011),
cognitive impairment (Zhou et al., 2014)

CLU [8 (28)] Clusterin (ApoJ) is a component of lipoproteins associated with
lipids in plasma and CSF

Polymorphism (Shuai et al., 2015; Zhu et al., 2018), interaction with
PICALM (Harold et al., 2009; Kamboh et al., 2012), hippocampal
function (Erk et al., 2011).

APOC2 [19 (50)] A component of triglyceride (TG)-rich lipoproteins, including VLDL,
HDL), and chylomicrons involved metabolism of these particles;
promote VLDL1 secretion, inhibit lipoprotein lipase enzyme activity

Polymorphism associated with AD (Sun et al., 2005), decreased
expression associated with increased risk (Lin et al., 2015)

APOC4 [19 (50)] A lipid-binding lipoprotein thought to play a role in lipid metabolism Decreased expression associated with increased risk (Lin et al., 2015)

ABCA7 [19 (1)] Member of the ATP-binding cassette (ABC) superfamily of
transporters; catalyzes the translocation of specific phospholipids
from the cytoplasmic to the extracellular/lumenal leaflet of the
membrane coupled with ATP hydrolysis, lipid homeostasis, binds
APOA1, apolipoprotein-mediated phospholipid efflux from cells,
cholesterol efflux, lipid raft organization

Polymorphism correlate with memory impairment (Chang et al., 2019),
amyloid plaque burden (Zhao Q. F. et al., 2015), cognitive impairment
(Chung et al., 2014; Berg et al., 2019)

ABCA1 [9 (107)] A membrane of the superfamily of ATP-binding cassette (ABC)
transporters with cholesterol as its substrate, it functions as a
cholesterol efflux pump in the cellular lipid removal pathway

Polymorphism in AD (Chu et al., 2007; Wavrant-De Vrieze et al., 2007;
Wang et al., 2013), modulates cholesterol efflux (Shibata et al., 2006;
Khalil et al., 2012; Marchi et al., 2019), influences age of onset
(Wollmer et al., 2003a)

ABCA12 [2 (216)] A membrane of the superfamily of ATP-binding cassette (ABC)
transporters involved in the transport of molecules across the
cellular membrane

SNP with p < 0.001 and significantly enriched in AD (Jones et al.,
2010)

LIPC [15 (57)] Hepatic triglyceride lipase is a triglyceride hydrolase and ligand/
bridging factor for receptor-mediated lipoprotein uptake

Gene variant might influence AD susceptibility (Xiao et al., 2012)

ATP8A1 [4 (42)] ATPase Phospholipid Transporting 8A1 catalyzes ATP hydrolysis
that is coupled to the transport of aminophospholipids from the
outer to the inner leaflet of membranes to maintain their
asymmetric distribution

SNP with p < 0.001 and significantly enriched in AD (Jones et al.,
2010)

ATP8B4 [15 (48)] Amninophospholipid transport across cell membranes SNP with p < 0.001 and significantly enriched in AD (Jones et al.,
2010)

MALL [2 (110)] Member of the MAL proteolipid family localizes in glycolipid- and
cholesterol-enriched membrane (GEM) rafts, and interacts with
caveolin-1

SNP with p < 0.001 and significantly enriched in AD (Jones et al.,
2010)

ATP8A2 [13 (25)] Involved in flipping phospholipids from the exoplasmic leaflet to
the cytosolic leaflet of the cell membrane to generate or maintain
membrane lipid asymmetry

SNP with p < 0.001 and significantly enriched in AD (Jones et al.,
2010)

OSBPL7 [17 (43)]
OSBPL9 [1 (59)]

Oxysterol-binding protein (OSBP) family, intracellular lipid receptors
Oxysterol-binding protein (OSBP) family, a group of intracellular lipid
receptors; cholesterol transfer protein and regulation of Golgi
structure and function

Differential expression (BrownIII, Theisler et al., 2004; Herold et al.,
2016)

SCARB1 [12 (124)] Scavenger Receptor Class B Member 1 is a plasma membrane
receptor for HDL that also mediates cholesterol transfer to or
from HDL

Cholesterol efflux and anti-inflammation (Khalil et al., 2012),
endocytosis, transcytosis and Abeta removal (Mackic et al., 1998;
Srivastava and Jain, 2002)

VPS4B [18 (59)] Vacuolar Protein Sorting 4 Homolog B involved in late endosomal
multivesicular bodies (MVB) pathway. Degradation of lysosomal
enzymes and lipids.

SNP with p < 0.001 and significantly enriched in AD (Jones et al.,
2010)

ABCG1 [21 (42)] Coupled to ATP hydrolysis, catalyzes the efflux of sphingomyelin,
cholesterol, and oxygenated derivatives like
7-beta-hydroxycholesterol.

Cholesterol efflux (Hirsch-Reinshagen and Wellington, 2007; Wollmer
et al., 2007; Marchi et al., 2019)

LIPG [18 (43)] Diverse class of lipase enzymes includes diacylglycerol lipase
(DAGL) and lipoprotein lipase (LPL) and endothelial lipase (LIPG).
Hydrolyzes HDL more efficiently than other lipoproteins

Polymorphism and mutation (Baum et al., 1999; Blain et al., 2006),
cholesterol homeostasis (Blain and Poirier, 2004; Fidani et al., 2004),
stimulation in nucleus basalis and hippocampus (Farooqui et al., 1988)

(Continued)
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TABLE 1 | Continued

Gene Symbol
[Chromosome
location (Mb)] (Jones
et al., 2010)

The function of the gene product# Changes and known effects on AD pathology

PCTP [17 (51)] Phosphatidylcholine (PC) Transfer Protein; PC synthesis and
metabolism, binds single PC molecule and transfers
between membranes

Cholesterol transport (Knebl et al., 1994; Demeester et al.,
2000)

SLC27A4 [9 (130)] Family of fatty acid transport proteins; translocation of long-chain fatty
acids across the plasma membrane, has acyl-CoA ligase activity for
long-chain and very-long-chain fatty acids (VLCFAs)

SNP with p < 0.001 and significantly enriched in AD (Jones
et al., 2010)

NPC1 [18 (19)] Intracellular cholesterol transporter which is important in cholesterol
removal from endosomal/lysosomal compartment

Increase expression (Kagedal et al., 2010; Maulik et al., 2015),
neurocognitive deficit (Johnen et al., 2018)

APOA1 [11 (116)] Apolipoprotein A-I is the major protein HDL in plasma. It promotes
cholesterol efflux from tissues to the liver for excretion and is a cofactor
for lecithin cholesterol acyltransferase (LCAT), an enzyme that forms
cholesteryl ester

Polymorphism and decreased expression (Helbecque et al.,
2008; Smach et al., 2011; Shibata et al., 2013; Lin et al., 2015)

APOC3 [11 (116)] A component of triglyceride-rich VLDL, and HDL in plasma. Important
in triglyceride homeostasis: promotes hepatic VLDL1 assembly and
secretion, attenuates hydrolysis and clearance of triglyceride-rich
lipoproteins, impairs TRL lipolysis by inhibiting lipoprotein lipase and the
hepatic uptake of TRLs by remnant receptors

Polymorphism and decreased expression (Lin et al., 2015; Sun
et al., 2005)

APOA4 [11 (116)] Apolipoprotein A4 is a major component of HDL and chylomicrons.
Important in chylomicrons and VLDL secretion and catabolism.
Required for lipoprotein lipase activation by ApoC-II, a potent activator
of LCAT

Decreased expression (Lin et al., 2015), enhanced susceptibility
(Papassotiropoulos et al., 2005)

AGTR1 [3 (1490)] Angiotensin II is a primary regulator of aldosterone secretion Signal transduction abnormality (Pang et al., 2019)

SOAT1 [1 (177)] Sterol O-Acyltransferase-1 is an acyltransferase that catalyzes the
formation of fatty acid and cholesterol esters, which is important in
lipoprotein assembly and dietary cholesterol absorption. It may also act
as a ligase

Polymorphism (Lamsa et al., 2007), Cholesterol levels, amyloid
load (Wollmer et al., 2003b)

#https://www.genecards.org/.

(Sarrafpour et al., 2019). With growing evidence that AD is
associated with dysregulation of fatty acid metabolism, fatty acid
levels may be potential biomarkers of this disease (Fonteh et al.,
2014; Wong et al., 2017). In addition to omega fatty acids, the
levels of several lipids change with AD pathology (Table 2).

Lipid Transport: Apolipoproteins
Brain Lipoproteins and Their Function
Lipoproteins are molecules with a hydrophobic lipid core
composed of cholesterol, esters, and triglycerides and a
hydrophilic exterior of phospholipids, apolipoproteins, and free
cholesterol (Alaupovic, 1996; Hoofnagle and Heinecke, 2009;
Braun and Hantke, 2019). Lipoproteins assist with the transport
of lipids and amphipathic compounds throughout the body
(Feingold and Grunfeld, 2000). However, circulating plasma
lipoproteins differ from those within the CNS because only
high-density lipoproteins (HDL) can cross the blood-brain
barrier (Balazs et al., 2004). The most abundant apolipoproteins,
apolipoprotein E (ApoE), and apolipoprotein J (ApoJ) are
synthesized by astrocytes and serve as enzyme cofactors and
receptor ligands on HDL (Pitas et al., 1987; Feingold and
Grunfeld, 2000; Ito et al., 2014).

Apolipoproteins are greatly involved in metabolism, serving
as both activators and inhibitors of metabolic enzymes,
ligands for lipoprotein receptors, and providing structural
support (Feingold and Grunfeld, 2000; Bolanos-Garcia and

Miguel, 2003; Filou et al., 2016). They also regulate lipid
transport by controlling interactions with receptors, enzymes,
and lipid-transport proteins (Bolanos-Garcia and Miguel, 2003;
Ramasamy, 2014). Apolipoproteins have receptor binding
domains containing low-density lipoprotein (LDL) receptors
that direct lipid and substrate delivery to specific brain cells
(Clavey et al., 1995; Dehouck et al., 1997; Herz, 2001). Their
amphipathic-helices facilitate lipid-binding and lipid transport
(Clavey et al., 1995; Prevost and Kocher, 1999; Elliott et al., 2010).
LDL receptors also facilitate the clearance of amyloid peptides
through the BBB (Shibata et al., 2000).

Contribution of Lipoproteins to AD Pathology
Brain lipoproteins with ApoE are responsible for phospholipid
and cholesterol transport (Growdon and Hyman, 2014; Wong
et al., 2019). ApoE is mainly expressed in astrocytes and
microglia and appears as three major isoforms, ApoE2, ApoE3,
and ApoE4, of which ApoE4 is the strongest genetic risk
factor for AD (Stone et al., 1997; Ito et al., 2005; Vance and
Hayashi, 2010; Chung et al., 2016; Liu et al., 2017; Montoliu-
Gaya et al., 2018; Tulloch et al., 2018). ApoE4 demonstrates a
lower affinity for lipids than ApoE2 and ApoE3, limiting CNS
transport of lipids needed for neuronal remodeling and repair
(Bradley and Gianturco, 1986; Barbagallo et al., 1998; Li et al.,
2002; Frieden et al., 2017). Furthermore, levels of ApoE LDL
receptors directly correlate with Aβ clearance, and promoting
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TABLE 2 | Summary of lipids that change in AD.

Lipids Changes observed in AD

Fatty acids

Omega-3 fatty acids
(#DHA, EPA, DPA, ALA)

DHA decreased in brains, circulation, and CSF of AD individuals (Fonteh et al., 2014, 2020; de Wilde et al., 2017; Snowden et al., 2017;
Hosseini et al., 2020). EPA decreased in brain and circulation of AD individuals (Hosseini et al., 2020). DPA increased in livers of AD
(Dyall, 2015). ALA increased in plasma and peripheral tissues (Cherubini et al., 2007).

Omega-6 fatty acids (#AA,
LA)

AA increased in brains, erythrocytes, and CSF of AD individuals (Thomas et al., 2016; Goozee et al., 2017; Fonteh et al., 2020). LA
decreased in AD brain and plasma (Snowden et al., 2017; Cunnane et al., 2012).

Saturated fatty acids (#PA,
SA, C15:0)

Increased in the CSF and brains of AD individuals (Fonteh et al., 2014). Odd chain saturated fatty acids derived from microbiome or
measures of dairy consumption decreased in CSF of AD (Fonteh et al., 2014; Nasaruddin et al., 2016).

Eicosanoids Pro-inflammatory eicosanoid pathways are upregulated in AD individuals, while anti-inflammatory eicosanoids are decreased (Biringer,
2019). Prostaglandin and thromboxane B2 increased in AD brains (Iwamoto et al., 1989). Pro-resolvin mediators, such as lipoxins, are
reduced in AD brains (Wang et al., 2015b).

Endocannabinoids Decreased levels of endocannabinoids and receptors in AD brains (Bedse et al., 2015).

Glycerolipids

Triglycerides Total TG lipid levels decreased in the serum of individuals with probable AD (Lepara et al., 2009). Polyunsaturated TG decreased in AD
brains (Bernath et al., 2019).

Glycerophospholipids

Phosphatidylcholine (PC)
Phosphatidylethanolamine
(PE) Phosphatidylserine
(PS)

Total PC lipids decreased in AD brains (Wood, 2012). PC species decreased in CSF of AD individuals #PC32:0, PC34p:0/34e:1,
PC34:1, PC34:0, PC36:1, PC38a:5 (PC-EPA), PC36:0/38p:6, 38a:6 (PC-DHA) (Fonteh et al., 2013). PC species decreased in plasma
of AD individuals. PC36:5 (PC-EPA), PC38:6 (PC-DHA), PC40:6 (PC-DHA) (Whiley et al., 2014). PC species increased in the prefrontal
cortex of AD individuals. PC38:6 (PC-DHA), PC40:6 (PC-DHA) (Igarashi et al., 2011). Total PE lipids decreased in the hippocampus of
AD individuals (Prasad et al., 1998). PE species decreased in the hippocampus of AD individuals. PE-SA, PE-OA, PE-AA, PE-DHA
(Guan et al., 1999). A decrease in PE plasmalogen in AD (Farooqui and Horrocks, 1998). Total PS lipids decreased in the occipital lobe
and inferior parietal lobule of AD brains (Farooqui and Horrocks, 1998).

Sphingolipids

Sphingomyelin (SM)
Ceramides (CM) Sulfatides
Gangliosides

Total SM lipids lower in CSF of AD individuals (Fonteh et al., 2015). SM species decreased in the CSF of AD individuals #SM18/14:0,
SM18/16:0, SM18/16:1, SM18/17:0 SM species (SM18/18:0, SM18/18:1) increased in the CSF of prodromal AD individuals (Kosicek
et al., 2012). Total CM lipids increased in AD brains (Filippov et al., 2012). CM species increased in AD brains and plasma CM16:0 (PA),
CM18:0 (SA), CM20:0, CM24:0, CM24:1 (Kim et al., 2017). Total sulfatide levels significantly lower in AD brains in both gray and white
matter. The compositional distribution of sulfatide subtypes is unaltered (Han et al., 2002). Ganglioside lipid levels reduced in the
temporal lobe of AD brains (Molander-Melin et al., 2005).

Sterols

Cholesterol Oxysterols
Hormones

Cholesterol decreased, and oxysterol/cholesterol precursors increased in MCI and sporadic AD brains (Hascalovici et al., 2009). Total
oxidized cholesterol increased in AD brains (Heverin et al., 2004). Oxidized cholesterol species decreased in AD brains,
24S-hydroxycholesterol (Heverin et al., 2004). Oxidized cholesterol species increased in AD brains, 27-hydroxycholesterol (Heverin
et al., 2004). Lower estrogen increases the risk of AD (Ratnakumar et al., 2019; Uddin et al., 2020). Increased basal cortisol levels in the
plasma of demented individuals (Csernansky et al., 2006). Association of cortisol with Aβ deposition (Toledo et al., 2012) and with
hypometabolism (Wirth et al., 2019).

#DHA, Docosahexaenoic acid (C22:6, n-3); EPA, Eicosapentaenoic acid (C20:5, n-3); DPA, Docosapentaenoic acid (C22:5, n-3); ALA, Alpha-linolenic acid (C18:3, n-3);
AA, Arachidonic acid (C20:4, n-6); LA, Linoleic acid (C18:2, n-6); PA, Palmitic acid (C16:0); SA, Stearic acid (C18:0); OA, Oleic Acid (C18:1, n-9); PC, phosphatidylcholine;
PCxxa:#, PC specie with xx carbon number and acyl-linked fatty acid at the sn-1 position containing # (number) double bonds; PCxxp:#, PC specie with xx carbon number
and alk-1-enyl (plasmalogen)-linked fatty acid at the sn-1 position containing # (number) double bonds PCxxe:# PC specie with xx carbon number and alkyl (ether)-
linked fatty acid at the sn-1 position containing # (number) double bond; PE, phosphatidylethanolamine; PS, phosphatidylserine; SM, sphingomyelin; CM, ceramide;
TG, triglyceride.

the expression of these receptors are potential therapeutic targets
for AD treatment (Zhao et al., 2018). ApoJ, also known as
clusterin, is expressed in astrocytes, neurons, and ependymal
cells (Nuutinen et al., 2005, 2007). This neuroprotectant
initiates a defense response to neuronal damage and clears Aβ

across the BBB via LDLR-2 (Merino-Zamorano et al., 2016;
Nelson et al., 2017; Zandl-Lang et al., 2018). ApoJ’s role in
Aβ accumulation and toxicity is still undetermined because
variability under different contexts and environments confound
results (Foster et al., 2019).

Lipids and the Blood-Brain Barrier
The Blood-Brain Barrier
The blood-brain barrier (BBB) is a semipermeable membrane
that carefully regulates the exchange of solutes between blood

and brain to maintain CNS homeostasis and block entry of
toxins and pathogens into the CNS (Bradbury, 1984; Abbott
et al., 2010; Betsholtz, 2014; Daneman and Prat, 2015; Ferreira,
2019; Moura et al., 2019). The integrity of the BBB is largely
dependent on its tight junctions (Brown and Davis, 2002; Castro
Dias et al., 2019), adherens junction proteins, and ability to
control the vesicular movement of macromolecules through
transcytosis and pinocytosis (Dehouck et al., 1997; Baldo et al.,
2014). The BBB permits free diffusion of gases, such as oxygen
and carbon dioxide, but small solutes such as lipophilic molecules
and ions enter through receptor-mediated transcytosis or via
channels (Fishman et al., 1987; Zlokovic, 2008; Preston et al.,
2014; Andreone et al., 2017; Villasenor et al., 2017; Ayloo
and Gu, 2019). The BBB is critical in linking multiple major
organ systems, and any dysfunction in the lipid bilayer’s ability
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to act as a barrier may lead to neuronal degeneration (Zhao
Z. et al., 2015; Halliday et al., 2016; Muszynski et al., 2017;
Nation et al., 2019).

Importance of Lipids in BBB Function
In addition to composing the BBB lipid bilayer, lipids, including
phospholipids, sphingolipids, and cholesterol, also compose the
plasma membrane of vesicles involved with receptor-mediated
transcytosis within the CNS (Kramer et al., 2002; Dodelet-
Devillers et al., 2009; Campbell et al., 2014; Andreone et al.,
2017). The formation and function of vesicles required to
transport essential macromolecules across the BBB may be
affected by the plasma membrane lipid composition (Lingwood
et al., 2009; Lingwood and Simons, 2010; Kaiser et al., 2011).
In particular, DHA disrupts the membrane domains necessary
to form such transport vesicles and therefore contributes
to BBB integrity and suppression of transcytosis (Ouellet
et al., 2009; Freund Levi et al., 2014; Pan et al., 2015,
2016; Belayev et al., 2018). There is also recent evidence
that the membrane transport protein, Mfsd2a, controls lipid
exchange and plays a key role in the transport of DHA
into the brain, though this pathway is largely undetermined
(Segi-Nishida, 2014; Zhao and Zlokovic, 2014; Keaney and
Campbell, 2015; Andreone et al., 2017). Loss of Msfd2a
transport function resulted in decreased DHA transport and
increased activity levels of transcytosis within CNS endothelial
cells (Andreone et al., 2017). A leaky barrier increases the
brain’s susceptibility to toxins and pathogens and homeostasis
disruption, and ultimately, neuronal dysfunction (Abbott,
2000; Hutchinson, 2010; Ikeshima-Kataoka and Yasui, 2016;
Block, 2019).

The Contribution of the BBB to AD Pathology
Loss of BBB function may contribute to neurodegenerative
diseases, including AD (Banks, 1999; Gilgun-Sherki et al., 2001;
Zlokovic, 2008; Carvey et al., 2009; Karamanos et al., 2014;
Sweeney et al., 2018; Katt et al., 2019). According to multiple
independent studies, BBB breakdown in AD is demonstrated
by decreased integrity of BBB tight junctions, pericyte and
endothelial degeneration, RBC extravasation, and brain capillary
leakages (Zlokovic, 2008; Carvey et al., 2009; de Vries et al.,
2012; Nelson et al., 2016; Sweeney et al., 2018). A buildup of
blood proteins and macromolecules due to barrier leakiness
may damage vasculature and brain parenchyma, which induces
neuronal degeneration. Studies have also indicated that AD
pathology includes reduced expression of glucose transporters
in the BBB (Kalaria and Harik, 1989; Harik and Kalaria, 1991;
Guo et al., 2005; Agrawal et al., 2017; Block, 2019). This
may exacerbate AD cerebrovascular degeneration and cognitive
function, considering that the brain requires a continuous supply
of glucose and utilizes the most glucose of the major organs
(Benton et al., 1996; Dienel et al., 1997; Benton, 2001; Gong
et al., 2006). The BBB contains a wide variety of structural
components to regulate the brain’s health and function, but
a loss of function in any such component may lead to
dyshomeostasis and a rapid cascade of dysfunctions in other
structures within the brain.

Lipids Contribute to Amyloid Precursor
Protein Processing
Amyloid Precursor Protein Processing
Amyloid precursor protein (APP) is a type I transmembrane
protein that is cleaved into amyloid β-peptide (Aβ) by β-
and γ-secretases (Nunan and Small, 2000; Hartmann, 2012).
APP is synthesized in the endoplasmic reticulum and is found
in the highest concentrations in neuron’s trans-Golgi-network,
suggesting that APP is associated with secretory pathways
(Palacios et al., 1992; Stephens and Austen, 1996; Kitazume et al.,
2001; Tam et al., 2014; Toh et al., 2017; Liu et al., 2019). There
are two accepted proteolytic pathways for APP processing −

non-amyloidogenic and amyloidogenic (Ishiura, 1991; Kojima
and Omori, 1992; Sisodia, 1992; Roberts et al., 1994; Mills and
Reiner, 1999; Soriano et al., 2001; Irizarry et al., 2004; Song
et al., 2004; Chow et al., 2010; Wang et al., 2010; Tomita and
Wong, 2011). The non-amyloidogenic pathway involves cleavage
of APP by α-secretase at the plasma membrane, releasing soluble
APPα (sAPPα) fragments into the extracellular environment, and
normalizes AG genes and memory (Volmar et al., 2017). The
amyloidogenic pathway involves cleavage of APP by β-secretase
in early endosomes, releasing sAPPβ fragments in the endosomal
lumen, and increasing susceptibility to Aβ plaques that are
relevant to AD pathology (Estus et al., 1992; Golde et al., 1992;
Saftig et al., 1996; Ehehalt et al., 2003; Andrew et al., 2016; Grimm
et al., 2016).

The Role of Lipids in APP Processing
The β-site APP-cleaving enzyme 1 (BACE-1) is the major
β-secretase that targets endosomes with APP in transit to
endocytosis sites on the plasma membrane (Shimokawa et al.,
1993; O’Brien and Wong, 2011; Chun et al., 2015; Audagnotto
et al., 2018). Both APP and BACE-1 are associated with lipid
rafts, which are membrane domains enriched with cholesterol,
sphingolipids, and gangliosides that are crucial to vesicle
trafficking and intracellular transport (Ehehalt et al., 2003;
Yoon et al., 2007; Marquer et al., 2011; Bhattacharyya et al.,
2013). Recent studies have proposed that BACE-1 in cholesterol
depleted environments displayed inhibited β-secretase activity,
suggesting that cholesterol and lipid composition of the
intracellular environment may be a large determinant of whether
BACE-1 can access APP endosomes (Dash and Moore, 1993;
Cheng et al., 2014; Mukadam et al., 2018). However, other studies
suggest that both homeostasis of lipid composition and oxidation
state of lipids, including DHA, are critical to APP processing
(Grimm et al., 2012; Bhattacharyya et al., 2013; Figure 2). Under
conditions with high concentrations of oxidized lipids, levels
of sAPPα fragments decreased while sAPPβ levels increased
(Grimm et al., 2016). A novel mechanism of proteolytic activity
regulation of secretases involves a separating lipid boundary
with their substrates, APP (Kaether and Haass, 2004). Lipid
mediators of inflammation also interact with APP processing
at the level of O-GlcNAcylation (Sastre et al., 2008; Jean-Louis
et al., 2018). Thus, oxidized or inflammatory lipids may shift APP
processing from the non-amyloidogenic to an amyloidogenic
pathway (Figure 2).
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FIGURE 2 | The importance of Lipids on APP processing – APP is a transmembrane protein that is cleaved by several proteases: α-secretase, β-secretases, and
γ-secretases. Non-amyloidogenic processing of APP− In a cell with a membrane containing normal or high amounts of unsaturated fatty acids, especially DHA,
preference is given to cleavage by α-secretase In this case, a well-structured membrane holds onto an intact APP as it is cleaved by the α-secretase and
subsequently the α-secretase releasing the secreted ectodomain sAPPα, along with a small protein fragment, p3, and APP intracellular C-terminal domain (AICD)
peptide in the extracellular space. sAPPα and p3 do not form neurotoxic fibrils and plaques, and so this process is referred to as non-amyloidogenic APP
processing. Amyloidogenic processing of APP – In contrast, PUFA enriched structure of healthy neurons, the presence of saturated and oxidized fatty acids results
in the disruption of the cell membrane structure, and this favors β-secretase activation. APP is cleaved at its’ N-terminus by β-secretase, releasing a soluble
ectodomain sAPPβ into the extracellular space. γ-secretase subsequently cleaves the cell-associated C-terminus releasing and Aβ peptides of varying lengths into
the extracellular space. Insoluble Aβ fibrils aggregate as oligomers that ultimately clump to form plaques within the brain. These plaques contribute to oxidative
stress, neuroinflammation, and eventually decreased brain function.

The Intersection of Lipids, APP Processing, and AD
Pathology
The Aβ fragments of APP is the major component of AD
amyloid plaques, and such dysregulation of APP trafficking
and processing are relevant to understanding AD pathology
(Caporaso et al., 1994; Thinakaran and Koo, 2008; Zhang

et al., 2011; Tan and Gleeson, 2019; Yuksel and Tacal,
2019). Intracellular Aβ accumulation in neurons of patients
with AD and metabolic analysis of brain function indicate a
possible dysfunction in Aβ transport exiting the brain (O’Brien
and Wong, 2011; Yuksel and Tacal, 2019). Lipids rafts play
important roles in APP trafficking (Yoon et al., 2007; Yang
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et al., 2013). Moreover, palmitoylation dictates how APP is
processed (Bhattacharyya et al., 2013). Trans fatty acids influence
amylogenic APP processing, while the level of fatty acid
unsaturation determines the activity of secretases (Yang et al.,
2011; Grimm et al., 2012). Future research relating to changes in
brain lipid composition in pre-symptomatic AD may provide a
link with early disease onset, dysregulation of lipid metabolism,
and APP processing.

The Intersection of Lipid Rafts, APP Processing, and
AD Pathology
Lipid rafts are dynamic clusters of membrane lipids that
interact with protein complexes to promote intracellular
signal transduction (Mesa-Herrera et al., 2019). Normal aging
is associated with gradual reductions in cholesterol and
polyunsaturated fatty acids (PUFAs) in lipid rafts. With
age-related changes lipid rafts composition, alterations in
intracellular communication may be associated with age-
associated reductions in synaptic plasticity. In neurodegenerative
diseases, the composition of lipid rafts changes more rapidly,
most notably in n-3 and n-6 PUFAs (Li et al., 2018). Lipid raft
aging appears to be exacerbated in Alzheimer’s Disease, which
may serve as the underlying contribution to disrupted signal
transduction, increased APP processing, and rapid formation
of AB aggregates (Grassi et al., 2019). Normal APP signal
transduction involves cleaving APP into AB into the extracellular
environment. However, if APP interacts with ApoE and tau on a
lipid raft with an atypical lipid composition, signal transduction
may be disrupted, promoting the formation of AB aggregates.
Other alterations include reductions in unsaturation of FA in AD
patients, as compared to controls (Kao et al., 2020). Lipid raft
aging also appears to exhibit gender differences, such that women
had more severe changes in lipid raft composition as compared
to men. This may serve as supportive evidence for the finding
that postmenopausal women are more likely to progress from
MCI to AD than age-matchd men (Herrera). Considering that
lipid raft function is sensitive to aging, further characterization of
composition changes in lipid rafts within the brain may be useful
as a biomarker of neurodegenerative stages.

Lipids and Cellular Remodeling
Role of Lipid Remodeling in Synaptogenesis
Lipid bodies (LBs) are spherical lipid-rich organelles associated
with lipid storage, metabolism, cell signaling, and inflammation
(Schmitz and Muller, 1991; Melo et al., 2011). At regulated
levels, LBs maintain lipid homeostasis and cellular function,
but in response to brain inflammation and increased neuronal
oxidative stress, these LBs grow in size and accumulate within
microglial cells (Tremblay et al., 2016; Hu et al., 2017). Though
the pathway is still largely undiscovered, LBs in microglia appear
to communicate with organelles such as the mitochondria, which
control cell-death mechanisms (Tyurina et al., 2014). When
exposed to lipopolysaccharides, LBs contact to mitochondria was
disrupted, but DHA treatment reduced such effects. DHA may be
a key factor in preserving mitochondrial health and regulation
of microglial activity (Tremblay et al., 2016; Maysinger et al.,
2018). When regulated in rodent models of AD, microglia slows

the accumulation of Aβ plaques, but a proliferation of microglia
activity may result in brain inflammation and degradation of
neuronal synapses (Lim et al., 2000; Stahl et al., 2006; McClean
et al., 2015). Microglial dysfunction has been implicated as a
contributor to AD pathogenesis (Hansen et al., 2018). Microglia
cells in the brain contribute to the reorganization of neuronal
circuits by phagocytosing dead neurons and their dendritic
spines and axon terminals. These immune cells contribute to
neural plasticity (Wu and Zhuo, 2008; Yates, 2014; Yang et al.,
2019), which refers to the brain’s ability to maintain, modify,
and strengthen these synapses in order to permit neuronal
communication (Tremblay et al., 2011).

Importance of Lipid Remodeling/Synaptogenesis in
AD Pathology
Synaptogenesis is the formation of nerve synapses involving the
reorganization of cell structural components (Aoki et al., 2003;
Kelsch et al., 2010). Several studies suggest that presynaptic
and postsynaptic development is initiated by signaling pathways
involving cholesterol (Mauch et al., 2001; Fester et al., 2009).
Changes in fatty acid content occur prior to synaptogenesis
in cones (Martin and Bazan, 1992). Studies have shown that
neurons deprived of lipid rafts underwent a cascade of effects
inhibiting synaptic growth and development (Bazan, 2005;
Welberg, 2014; Mochel, 2018). Depletion of lipid rafts decreased
dendritic density and increased the synapse, disrupting neuronal
communication (Martin, 2000; Hering et al., 2003; Sebastiao
et al., 2013; Wang, 2014). The transport protein, apolipoprotein E
(apoE), monitors cholesterol transport from glial cells to neurons,
and impaired ApoE is implicated in deficits in synaptic plasticity
and cognitive function (Periyasamy et al., 2017). Of the three
isoforms of ApoE, ApoE4 is a prevalent risk factor that is
synergistic with obesity and age for AD (Butler, 1994; Riedel et al.,
2016; Jones and Rebeck, 2018; O’Donoghue et al., 2018; Glorioso
et al., 2019). ApoE4 binds fewer lipids and is most likely involved
in changes in cholesterol flux and metabolism (de Chaves and
Narayanaswami, 2008; van den Kommer et al., 2012; Mahley,
2016; Nunes et al., 2018), accounting for altered synaptogenesis
and neural plasticity.

Lipids and Myelination
The Importance of Myelination
Action potentials propagate along axons through rapid saltatory
conduction. Synthesized by oligodendrocytes in the CNS and
Schwann glial cells in the PNS, myelin membranes act as electrical
insulators, permitting higher nerve conduction velocities and
greater neuronal communication efficiency (Almeida and Lyons,
2014; Almeida and Lyons, 2017). Without myelin, axons would
require more energy to depolarize its membrane (Stassart et al.,
2018). Myelin is composed of several lipids and protein layers
that wrap around most of the axon, except at nodes of Ranvier,
which are regions highly concentrated with sodium ion channels
(Finean and Robertson, 1958; Davison, 1972; Burgisser et al.,
1986; Wender et al., 1988; Ando et al., 2003; Schmitt et al.,
2015; Montani and Suter, 2018). Myelination of axons is a
dynamic process through development and adulthood, and this
process, in addition to myelin sheath modification and myelin
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repair, contributes to synaptic remodeling and neural plasticity
(Zatorre et al., 2012).

The Role of Lipids in Myelination
The myelin membrane consists of myelin-specific proteins and
high-level synthesis of lipids representative of all major classes,
such as cholesterol, glycosphingolipids, glycerophospholipids,
and galactolipids (Chrast et al., 2011). Lipids comprise
approximately 80% of myelin’s dry weight, accounting for
glia’s high demand for fatty acids, which are fundamental
building blocks of its lipid structure (Dimas et al., 2019). Myelin
accounts for a majority of the white matter in the brain, which is
consistent with reported reduced myelin density associated with
AD white matter changes in the brain (Nasrabady et al., 2018).

Brain Myelination and AD Pathology
Reduced number and activity of oligodendrocytes and precursor
cells can damage myelin integrity, contributing to AD pathology’s
characteristic neuronal loss (Bartzokis, 2011). Oligodendrocytes
support and regulate neurons, but they are primarily responsible
for myelin production (Simons and Nave, 2015). Myelinating
oligodendrocytes are sensitive to lipid peroxidation because
oxidative stress inhibits expression of genes that promote
oligodendrocyte differentiation (French et al., 2009). This implies
that disruption of myelin synthesis may be a central feature of AD
pathology, and can be exploited for therapy (Desai et al., 2010).
Dysfunction in these processes may be linked to white matter
abnormalities and cognitive impairment associated with AD
due to damaged signal conductivity and synchronicity needed
for information processing between neurons (Ihara et al., 2010;
Alexander, 2017; Nasrabady et al., 2018). The causal relationship
between myelination and AD has not been elucidated, but
white matter changes arising from myelination dysfunctions have
been described in AD brains (Kohama et al., 2012). Additional
evidence for the contribution of myelin breakdown on AD
pathology comes from studies showing that the rate and severity
of myelin breakdown in healthy seniors are associated with APOE
status, a major risk factor of AD (Bartzokis et al., 2006).

Lipids and Receptor-Mediated Signaling
Neuronal Receptor Signaling Pathways
Neurons communicate via electrochemical signals and
neurotransmitters across gaps called synapses associated
with several integrated networks (Mayer, 1993; Laughlin
and Sejnowski, 2003; Salinas, 2009; Hahn et al., 2019).
The presynaptic neuron releases neurotransmitters through
exocytosis, and those chemicals bind to the postsynaptic neuron’s
neurotransmitter receptors to alter postsynaptic neuronal activity
(Kennedy, 2013). One class of neurotransmitter receptors, called
ligand-gated ion channel receptors, opens an ion pore through
the membrane upon ligand binding. Ions cannot travel through
the hydrophobic lipid membrane and, therefore, can only pass
through channels controlled by these receptors. Ions entering
the ligand-gated channel can initiate excitatory or inhibitory
signals, but both rapidly influence neuronal function (Cantor,
2018). Another class of neurotransmitter receptors, G-protein-
coupled receptors (GPCRs), bind to the ligand and initiate an

intracellular mechanism in which its G-proteins alter cAMP
levels to stimulate or inhibit the neuron, and may involve
lipid agonists (Hansen, 2015). Unlike ligand-gated ion channel
receptors, GPCRs are slower but longer-lasting in affecting
neuronal activity (Lovinger, 2008).

Role of Lipids in Neuronal Signaling
While cascades of protein kinases and phosphatases have been
largely studied, there is an increasing interest in lipid-based
pathways involving lipid kinases and phosphatases. Lipids are
versatile in signal transduction pathways and act as hormones,
ligands, substrates, and mediators (Eyster, 2007; Piomelli et al.,
2007; Piomelli, 2012). Sphingolipids and cholesterol comprise
lipid rafts, which are regions in the plasma membrane that
organize signaling molecules, amplify intracellular signaling
cascades, and regulate both neurotransmission and membrane
protein trafficking (Levental and Veatch, 2016). Additionally,
lipids are integral to GPCR signaling cascades. Following GPCR
binding, phospholipase C (PLC) cleaves the polar phosphate head
of phospholipids and forms diacylglycerol (DAG), a lipid second
messenger (Black et al., 2016). Fatty acids (FAs), especially those
belonging to the omega-3 and omega-6 classes, act as ligands
for membrane receptors in a variety of pathways (Mobraten
et al., 2013). The wide diversity of lipids and their structures
contributes to AD, and their multiple roles in signal transduction
may influence AD pathology.

Signaling Lipids Contribute to AD Pathology
Endocannabinoid signaling is responsible for inhibition and
excitation in modulating synaptic strength, implicating its
possible role in AD and associated inflammatory pathology
(Skaper and Di Marzo, 2012). Although the mechanism has
not been elucidated yet, free radicals and oxidative stress
increase GPCR cannabinoid 2 receptors (CB2) expression in AD
microglial cells, increasing neuroinflammation (Paloczi et al.,
2018). Inflammation protects the brain against neurotoxins, but
excessive inflammation may contribute to neurodegeneration.
Another study suggested that monoacylglycerol lipase (MAGL)
produces neuroinflammatory prostaglandins through the
hydrolysis of endocannabinoids (Piro et al., 2012). Inhibiting
MAGL activity is a potential AD therapeutic target because it is
reported to prevent neuroinflammation, neurodegeneration, and
impaired synaptic plasticity (Chen et al., 2012). Dysregulation
in neuronal signaling cascades may contribute to increased
susceptibility to neuronal dysfunction and are, therefore,
important in studying its effects and relation to AD.

Lipids and Inflammation
The Importance of Inflammation
Inflammation is a defense mechanism initiated by the immune
system in response to pathogens, injured cells, infections, and
other toxic stimuli. A signaling cascade results in leukocyte
migration to damaged sites, in which released cytokines recruit
other immune cells to heal injured tissue (Robinson et al., 2018).
Specifically, within the CNS, activation of microglia and its
associated cytokine production are primarily responsible for the
inflammatory responses (Frank et al., 2007; Ghosh et al., 2012;
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Zhu et al., 2019). However, unregulated inflammation, excessive
cytokine production, and failure to resolve inflammatory
responses all contribute to chronic neuroinflammation, a
biomarker of many neurodegenerative diseases, including AD
(Wang et al., 2015a).

Lipids and Inflammation
Several studies implicate the role of lipids and lipid metabolism
in inflammatory responses (Janciauskiene and Wright, 1998;
Kang and Rivest, 2012; Zhang et al., 2018; Ntambi, 2019).
Eicosanoids are a class of lipid mediators inflammation produced
by innate immune cells that contribute to acute inflammation,
resulting in pain, loss of function, heat, and swelling (Higgs
et al., 1984; Williams and Higgs, 1988; Hedqvist et al., 1991;
Umamaheswaran et al., 2018). Following the elimination of
toxic stimuli, innate immune cells cease the production of
eicosanoids and begin production of specialized pro-resolving
lipid mediators (SPMs) to resolve inflammation (Serhan, 2010;
Chandrasekharan and Sharma-Walia, 2015; Chiurchiu et al.,
2018; Maclean et al., 2018). Synthesized from omega-3 fatty acids,
docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA),
SPMs resolve inflammation by inhibiting polymorphonuclear
leukocytes (PMN) and lowering vascular permeability This
process may be impaired in AD (Whittington et al., 2017).

Inflammatory Lipids and AD Pathology
A disproportionate level of inflammation can disrupt the balance
between eicosanoids and SPMs, overwhelming the brain’s ability
to return to a non-inflammatory state. This suggests the brain’s
dependence on SPMs and its omega-3 precursors, DHA, and
EPA (Serhan et al., 2018). AD pathology includes decreased
DHA levels (Fonteh et al., 2014; Yassine et al., 2017), which
may account for heightened brain inflammation that leads to
declining cognitive health. Moreover, many studies have reported
alterations to the eicosanoid pathway in AD (Biringer, 2019),
further heightening research interest in the balance between
eicosanoids and SPMs (Serhan et al., 2015). AD is also associated
with elevated microglia-induced neuroinflammation, increases
in proinflammatory cytokines, and upregulated expression of
phagocytic receptors in white matter microglia (Zheng et al.,
2016). One receptor, CD36, promotes both pro-inflammatory
and oxidative pathways upon binding to ligands, including
lipids and Aβ (Doens et al., 2017). Overexpression may lead
to dysregulated inflammation and increased oxidative stress,
a biomarker of the inflammatory response, and AD (Park
et al., 2014; Koizumi et al., 2016). White matter is critical to
neuronal connectivity and processing speed, and such white
matter inflammation may result in neurodegeneration and,
therefore, the cognitive decline (Raj et al., 2017). Further
studies aim to determine if inflammation contributes to the
onset of AD or exacerbates already-existing neuropathology
(Heppner et al., 2015).

Lipids and Oxidative Stress
Oxidative Stress
Oxidative stress is defined as a disruption in homeostasis
between antioxidants and oxidants, and more specifically, an

accumulation of reactive oxidative species (ROS) and reactive
nitrogen species (RNS) (Apak et al., 2016; Hameister et al.,
2020). ROS belongs to a family of compounds containing
partially reduced oxygen species, such as O2– and HO-, that
are generated primarily by the electron transport chain during
aerobic respiration (Zhao et al., 2019). ROS are involved
in many redox-dependent processes, including cell signaling,
homeostasis, immune system responses, energy metabolism, and
tissue remodeling. However, an excess of ROS or impaired
control of the balance between antioxidants and oxidants leads
to oxidative stress, which is implicated in the progression of
neurodegenerative diseases (Cheignon et al., 2017). Because the
brain consumes approximately 25% of the body’s glucose, its high
energy consumption increases neurons’ susceptibility to oxidative
stress and overproduction of ROS (Wezyk et al., 2018).

Membrane Lipids Are Damaged During Oxidative
Stress
Excess ROS can lead to increased lipid peroxidation within
the brain, altering membrane permeability and activity of
membrane receptors and their associated enzymes (Birben et al.,
2012). Lipid peroxidation produces reactive aldehydes, including
malondialdehyde (MDA) and 4-hydroxynonenal (HNE), that
modify and bind to proteins involved in metabolism, antioxidant
defense systems, and axonal growth. By modifying Tau protein, 4-
HNE can indirectly lead to an increase in neurofibrillary tangles,
which is consistent with proteomic reports of increased 4-HNE
in AD hippocampal tissue and neurofibrillary tangles (Cheignon
et al., 2018). Moreover, low-density lipid lipoprotein receptor-
related protein (LRP1) is involved in Aβ peptide removal. LRP1
is oxidized by Aβ, inhibiting its ability to clear Aβ and therefore
leading to Aβ accumulation in the brain (Shinohara et al.,
2017). LRP1 is another protein that is covalently modified by
4-HNE, further supporting that unrestrained lipid peroxidation
produces excess reactive products that initiate a cascade of
dysregulations within pathways necessary to neuronal health
(Butterfield et al., 2002). Oxidant/antioxidant imbalance forms
blood-based biomarkers that can be used for early, non-invasive
diagnosis (Wojsiat et al., 2018), or for AD therapies (Yatin et al.,
2000; Sultana et al., 2004).

Oxidative Stress and AD Pathology
Many trials seek to assess different antioxidant therapeutic
approaches to alleviate oxidative stress, a key biomarker of AD.
CoQ10, creatine, idebenone, latrepirdine, triterpenoids, omega-3
PUFAs, vitamin E, and vitamin C are just a few antioxidants that
are extensively studied in their treatment of neurodegenerative
diseases (Yatin et al., 2000; Kumar and Singh, 2015).

Lipids and Immune Response
The Immune System
The immune system, which is divided into the innate and
adaptive immune system, is critical to defending the body against
infectious and toxic stimuli (Simon et al., 2015). The innate
immune system utilizes cytokine production and modulation to
mount a quick but sufficient response to pathogens, including
viruses, bacteria, and parasites. The innate immune system is also

Frontiers in Physiology | www.frontiersin.org 12 June 2020 | Volume 11 | Article 598

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-11-00598 June 6, 2020 Time: 15:34 # 13

Chew et al. Lipids, Alzheimer’s Pathology, and Therapies

responsible for activating the adaptive immune system, which
is slower due to the lengthy production of specific antibodies
to the foreign antigen (Iwasaki and Medzhitov, 2015). Studies
in the past 20 years have refuted the notion of the brain as
being “immunologically privileged” in relying largely on innate
immune system mechanisms within the CNS. While it was
thought that the CNS and immune system were separate due
to the blood-brain barrier, the detection of lymphatic vessels
connecting T-cells in lymph nodes to cerebrospinal fluid (CSF) in
the meninges provided evidence for the brain’s semi-dependence
on the adaptive immune system (Louveau et al., 2015).
Neuroimmune processes are activated by vagal nerve signaling,
immune signals, and complement proteins, resulting in increased
activity of microglia and astrocytes (Tchessalova et al., 2018).

Lipids and Immunity
Studies reported increased levels of platelets and vascular lesions
in AD patients outside of the brain, contributing to cerebral
amyloid angiopathy, a biomarker of AD that shows increased
amyloid protein in the brain arteries (Kniewallner et al., 2015).
Although platelets combat vascular injury, they are also involved
in APP processing, and transitively, the formation of Aβ plaques
(Evin et al., 2003; Evin and Li, 2012). The balance of omega-3 and
omega-6 PUFAs may affect platelet levels, as membrane essential
fatty acids (EFAs), primarily DHA and EPA, form prostaglandins
PGE1, PGE2, and PGE3, all of which participate in a variety of
immunological and signaling pathways in the brain (Chang et al.,
2009). PGE1 has anti-inflammatory properties, and conversely,
PGE2 strongly promotes inflammation by acting on different
receptors (Iyu et al., 2011). PGE3 is responsible for regulating
PGE2’s inflammatory effects by competing with its formation
from precursor EFAs (Chang et al., 2009). Imbalances in the
omega-6 to omega-3 PUFA ratios disrupt the formation of PGE3,
which minimizes the regulation of PGE2 induced inflammation.
Moreover, this imbalance of PUFAs is associated with changes
in neuronal brain composition that, in combination with drug
therapies, can reduce the risks and slow the progression of AD
(Giulietti et al., 2016).

Immunity and AD Pathology
An impaired BBB is implicated with the onset of AD, which
may increase the BBB’s permeability to pathogens and immune
cells (Veerhuis et al., 2011). Levels of cytotoxic and helper
T-cells are upregulated in brain parenchyma of AD patients
(Oberstein et al., 2018). Helper T cells and pro-inflammatory
cytokines target neurofibrillary tangles and plaques composed
of Aβ and Tau and activate microglia at these sites, further
exacerbating neuroinflammation (Gold et al., 2014; Martinez-
Frailes et al., 2019). One class of cytokines, called chemokines,
stimulates leukocyte migration from blood to tissues. CCL5 is
a chemokine that is amplified in response to reactive oxygen
species and oxidative stress within the brain’s endothelial cells,
promoting even more T cell migration across the leaky BBB.
These inflammatory mediators are elevated in the CSF and blood
and are possible biomarkers for detecting AD and its progression
(Mietelska-Porowska and Wojda, 2017).

Lipids and Energy Regulation
Sources of Brain Energy
Although the human brain comprises only 2% of the body weight,
it consumes approximately 20% of glucose, demonstrating its
disproportionately high energy demand (Mergenthaler et al.,
2013). The majority of the energy utilized by the brain is
dedicated to returning neurons to their resting states after
depolarization, and the remaining 20−25% of energy is allocated
toward synthesizing vesicles and neurotransmitters (Harris et al.,
2012). The brain relies on a constant flow of glucose and
oxygen, which are delivered through the blood. However, during
fasting periods, when glucose levels are decreased, the liver
can supply ketone bodies to support metabolism within the
brain (Patel et al., 1975; Hawkins and Biebuyck, 1979; Nehlig,
2004). These delivered ketone bodies are primarily utilized by
astrocytes, and upon arrival, ketolysis of the ketone bodies
generates acetyl CoA, an important substrate for the tricarboxylic
acid (TCA) cycle and therefore, ATP production. Although the
brain has a large ATP requirement, it does not utilize these
ketone bodies or fatty acids as a significant source of energy
like in other organs, such as the liver. It is hypothesized that
evolution selected against this pathway because it produces ROS
and therefore, contributes to oxidative stress that contributes to
neurodegeneration (Schonfeld and Reiser, 2017).

Role of Brain Energy Regulation in AD Pathology
Transport and utilization of glucose within the brain are
tightly regulated, but mitochondrial dysfunction and decreased
expression of glucose transporters (GLUT) are potential
contributors to AD (Yin et al., 2016). Highly concentrated in the
BBB, GLUT1 transports glucose across the endothelium and into
astrocytes, whereas GLUT3 is predominantly found in axons and
dendrites, underscoring its role in neuronal glucose transport
and distribution (Vannucci et al., 1998). Reduced GLUTs
expression at the BBB and within neurons is associated with AD,
which may explain overall decreased glucose metabolism in AD
pathology (Yin et al., 2016).

Mitochondrial Dysfunction and AD Pathology
Mitochondria are organelles central to brain energy processes,
and altering glucose availability or dysregulating oxidative
phosphorylation can have direct effects on neuronal function
and cognitive health (Picard and McEwen, 2014; Anderson,
2018). Recent reports have hypothesized that Aβ may initiate
mitochondrial dysfunction, and one theory proposes that
Aβ raises cytosolic calcium levels, inhibiting oxidative
phosphorylation and, therefore, ATP production (Cardoso
et al., 2001; Eckert et al., 2010; Spuch et al., 2012; Kaminsky
et al., 2015; Brewer et al., 2020). Moreover, mitochondria
delivery to needed brain regions is dependent on tau, a protein
related to microtubules (Quintanilla et al., 2012; Amadoro
et al., 2014). Mitochondria are observed to be differentially
localized in AD brains, suggesting that mitochondria trafficking
is affected (Nicholls and Budd, 2000; Duchen, 2012; Devine and
Kittler, 2018; Son and Han, 2018; Rangaraju et al., 2019), and
provides further support for mitochondrial-based contributors
to neurodegeneration.
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TABLE 3 | Lipid diets and their effects on AD.

Lipid diet interventions Effects on AD

Algal DHA#; 2 g daily for 18 months Supplementation with DHA compared with placebo did not slow the rate of cognitive and functional
decline in patients with mild to moderate Alzheimer’s disease (Quinn et al., 2010).

Consumption of fish once or more per week In adults above the age of 65, participants who consumed fish once or more per week had 60% less risk
of developing Alzheimer’s compared to participants who rarely or never ate fish (Morris et al., 2003).

Omega-3 PUFA; 600 mg EPA and 625 mg DHA daily for
4 months

In adults with mild cognitive impairment and probable AD, omega-3 supplementation had negligible
effects on cognition or mood (Phillips et al., 2015).

EPA-DHA for 26 weeks; stratified into high-dose (180 mg
EPA-DHA daily) and low-dose (400 mg daily)

In cognitively healthy adults over 65 years old, there were no significant differential changes in any of the
cognitive domains for either low-dose or high-dose fish oil supplementation compared with placebo (van
de Rest et al., 2008).

Study participants are postmenopausal women
(60−84 years); 1g DHA, 160 mg EPA, 240 mg Ginkgo
biloba, 60 mg PS, 20 mg per day for 6 months

In a randomized, double-blind study, a high dose of omega-3 nutrients has cognition and mobility benefits
to older women (Strike et al., 2016).

DHA-EPA; 1.7 g DHA and 0.6 g EPA daily for 6 months
(OmegAD Study)

Omega-3 fatty acids did not delay the rate of cognitive decline, nor did it have marked effects on
neuropsychiatric symptoms except for possible positive effects on depressive symptoms in non-APOE4
carriers and agitation symptoms in APOE4 carriers (Freund-Levi et al., 2006; Freund-Levi et al., 2008).
Plasma levels of AA decreased while DHA and EPA levels increased at 6 months. Specialized
pro-resolving mediators (SPMs) do not change in the omega-3 group but a decrease in the placebo
group. SPM changes associate with cognitive changes in AD (Lopez et al., 2011).

Omega-3 PUFAs; 1.8 g daily for 24 weeks The omega-3 supplementation treatment group showed significant improvement in the Alzheimer’s
Disease Assessment Scale compared to the placebo group in participants with mild cognitive impairment.
However, there was no significant improvement in Alzheimer’s disease study participants (Chiu et al.,
2008).

Supplementation with omega-3 fatty acids alone or
omega-3 plus alpha-lipoic acid; 675 mg DHA and 975 mg
EPA or 675 mg DHA and 975 mg EPA plus 600 mg lipoic
acid daily for 12 months

Combining omega-3 fatty acids with lipoic acid slowed both cognitive and functional decline in mild to
moderately impaired AD participants over 12 months compared to placebo (Shinto et al., 2014).

3 DHA exposure variables used in separate analyses;
plasma DHA, dietary DHA, and consumption of cold-water
fish

Plasma and dietary DHA were associated with a decreased risk of dementia and AD (Lopez et al., 2011).

Arachidonic acid and DHA supplementation;240 mg of AA
and DHA daily for 90 days

Participants with mild cognitive impairment showed a significant improvement in the immediate memory
and attention score compared to placebo, but there was no significant improvement in participants with
AD (Kotani et al., 2006).

Docosahexaenoic acid-concentrated fish oil
supplementation; 430 mg of DHA and 150 mg of EPA daily
for 12 months

In participants with mild cognitive impairment, supplementation resulted in a significant improvement in
short-term memory, working memory, immediate verbal memory, and delayed recall capability (Lee et al.,
2013).

Fortasyn Connect supplementation; 125 mL once-a-day
drink containing Fortasyn Connect for 24 months (LipiDiDiet
Trial)

In individuals with prodromal AD, Fortasyn Connect supplementation had no significant effect on
neuropsychological test battery results (Soininen et al., 2017).

FINGER Study − Dietary intervention using a diet with
10−20% of daily energy (E%) from proteins, 25−35% from
fat (less than 10E% from SAFA, 10−20% from MUFA,
5−10% from PUFA (including 2,5−3 g/day n-3 fatty acids);
45−55% from carbohydrates (less than 10% refined sugar);
25−35 g/day dietary fiber; less than 5 g/day salt; and less
than 5 E% from alcohol for 2 years

In adults over 60 years old, there was a significant beneficial intervention effect on overall cognitive
performance, including memory, executive function, and psychomotor speed (Rosenberg et al., 2020).

#DHA, Docosahexaenoic acid (C22:6, n-3); EPA, Eicosapentaenoic acid (C20:5, n-3); MUFA, monounsaturated fatty acids; PUFA, polyunsaturated fatty acids; SAFA,
saturated fatty acids.

POTENTIAL AD THERAPIES TARGETING
LIPID METABOLISM

Dietary Modification Studies
With the realization that lipids are altered in AD pathology,
several studies have identified specific lipids that may be used
as dietary supplements to alleviate AD symptoms (Table 3).
The major lipids include omega-3 fatty acids (DHA, EPA),
choline-containing lipids, cholesterol, and lipids with antioxidant
properties (CoQ10, Vitamin K).

Several dietary intervention studies using DHA have yielded
mixed effects on AD symptoms. A likely reason for these mixed
results is that different disease severity, different formulations,
and variable endpoint and time of interventions were studied
(Fonteh, 2018). Recent studies indicate that the best form
of DHA delivery into the brain is through the Msf2a LPC
receptors (Sugasini et al., 2019). A better understanding of the
right formulation and optimal concentrations of DHA probably
supplemented at the prodromal phase of AD will likely yield
beneficial outcomes.
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Modification of Lipid Metabolism
Metabolism of lipids can be altered to prevent depletion of their
levels in the AD by targeting pathways that transport or catabolize
these lipids in the brain.

Lipid Transport Into the Brain
Several lipoproteins and their receptor complexes are the major
form by which lipids bypass the BBB to be delivered into
the brain. Several of these lipoprotein genes are linked to
AD pathology (Table 1). Some lipoproteins have protective
effects, while others have AD enhancing properties. For
example, HDL has been shown to be protective by improving
Aβ clearance, delaying Aβ fibrillization, suppressing vascular
inflammation, and inducing endothelial nitric oxide production
(Button et al., 2019).

Cholesterol Metabolism
Since cholesterol metabolism altered at several stages of AD,
modulation of its metabolism may have beneficial effects on
disease progression. Modification of cholesterol homeostasis
can be influenced during its consumption, at the level of its
biosynthesis, and during its transport into the brain. The use
of statin to alter cholesterol biosynthesis is proposed to be
insightful in AD pathophysiology and therapy (Wolozin et al.,
2004; Hoglund et al., 2005; Biondi, 2007; Evans et al., 2009).
Gene therapy targeting cholesterol 24-hydroxylase reduces the
amyloid pathology before or after the onset of amyloid plaques in
mouse AD models (Hudry et al., 2010). Studies in mouse models
show that blocking the conversion of cholesterol to cholesterol
esters has beneficial effects on AD (Shibuya et al., 2015). The
relationship between hypercholesterolemia, cholesterol-lowering
therapies, and the role of oxysterols in AD pathology have led to
the proposition that cholesterol metabolites are valuable targets
for alternative AD treatments or prevention (Loera-Valencia
et al., 2019). Neuroinflammatory pathways mediated by toll-
like receptor 4 (TLR4)-mediated signaling can aggravate AD
symptoms. In a rodent AD model, treatment with an anti-
inflammatory steroid (atorvastatin) regulates this inflammatory
process and results in the amelioration of cognitive deficits
(Wang et al., 2018).

Lipolytic Enzymes
The activity or expression of several lipolytic enzymes are altered
in AD. Phospholipase A2 (PLA2) is associated with amyloid
plaques, and reduction of its activity and expression ameliorates
AD. Plasmalogen selective PLA2 is also altered in AD. Our studies
show an increase in PLA2 activity of CSF of AD participants
accompanied by an increase in lysophosphatidylcholine (LPC).
LPC is known to disrupt the BBB, and changes in PLA2 are
associated with inflammation. The association of PLA2 with
AD pathology suggests that inhibitors of PLA2 activity or
expression may be an effective means of preventing AD. Ong
et al. (2015) reviewed the importance of several natural and
synthetic PLA2 inhibitors on the treatment of neurological
disorders. Since PLA2 isoforms may have divergent effects on
membrane remodeling and function, there is a need for isoform-
specific inhibitors in order to avoid toxicity encountered with

non-selective inhibitors. In addition to PLA2, phospholipase D
(PLD) and phospholipase C (PLC) expression and activities are
associated with AD pathology. These lipases that are linked with
neurite growth and signaling, respectively, offer other avenues for
exploring AD treatments.

Lipid Oxidation Inhibitors
There is convincing evidence for the importance of oxidative
stress on AD pathology (Sun et al., 2001; Bassett and Montine,
2003; Bacchetti et al., 2015). The most important brain
fatty acid, DHA, is a polyunsaturated fatty that is easily
susceptible to oxidative damage. While HDL is protective
against oxidative damage, VLDL is easily oxidized. Oxidatively
damaged lipids contribute to AD pathology by their highly
neurotoxic properties (Bassett et al., 1999). Approaches that
reduce oxidation are expected to reduce AD progression.
These include the use of natural antioxidants, carnosine, lipoic
acid, Ginkgo biloba flavonoids, soybean isoflavones, vitamin
K, homocysteine, curcumin (Rutten et al., 2002; Vina et al.,
2004; Frank and Gupta, 2005; Mancuso et al., 2007; Zhao, 2009;
Cankurtaran et al., 2013). A limitation of natural antioxidant
is the lack of demonstration of efficacy. Given that oxidative
stress destroys mitochondrial function, an objective measure of
any antioxidant can be their ability to restore mitochondrial
function (Kumar and Singh, 2015; Kwon et al., 2016; Yu
et al., 2016). The role of endogenous lipids in oxidative stress
can be exploited when there is an uncontrolled formation
of ROS and RNS or when the antioxidants contribute to
disease pathology (Leuti et al., 2019). Also, the source of ROS
determines the effects on cellular physiology and manipulation
of the ubiquinone redox state is proposed to be a viable
approach of delaying aging and therapy (Scialo et al., 2016;
Wojsiat et al., 2018).

CONCLUDING REMARKS

Biochemical, physiological, and genetic analyses show that
lipid metabolism interphases with all the major facets of
AD pathology (Figure 1). In normal aging, lipid metabolic
homeostasis ensures that the basic functions of the brain are
met. In AD, there is dyshomeostasis of lipid metabolism, and
this results in abnormal functions of the brain that characterize
disease progression. This underscores the need for detailed
analyses of brain lipid homeostasis in order to unravel more
comprehensive mechanisms, specific biomarkers, and novel
therapies of AD.
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