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Gene therapy with recombinant viral vectors such as adenovirus and adenovirus-associated
virus holds great promise in treating a wide range of diseases because of the high efficiency
with which the viruses transfer their genomes into host cells in vivo. However, the acti-
vation of the host immune responses remains a major hurdle to successful gene therapy.
Studies in the past two decades have elucidated the important role co-stimulation plays in
the activation of both T and B cells. This review summarizes our current understanding of
T cell co-stimulatory pathways, and strategies targeting these co-stimulatory pathways in
gene therapy applications as well as potential future directions.
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INTRODUCTION
Virus-based vectors such as adenovirus and adenovirus-associated
virus (AAV) have been widely used in gene therapy applications
due to their high efficiency of transduction into a variety of cells
in vivo. Indeed, several impressive results using viral vector-based
gene therapy have been reported in humans (Ashtari et al., 2011;
Fischer et al., 2011). However, one major barrier to successful gene
therapy with these viral vectors is the host immune responses to
both viral vectors and the transgenes (Huang and Yang, 2009).
Our understanding of the mechanisms of immune responses to
viral vectors has greatly improved over the past two decades, and
as a result, strategies have been developed to manipulate various
immune pathways in order to regulate the immune responses to
viral vectors. One promising therapeutic strategy is targeting the
co-stimulatory pathways to modulate the function of T and B cells.

The original two-signal hypothesis (Lafferty et al., 1974, 1980)
proposes that full T cell activation requires two signals: antigen-
specific T cell recognition (signal 1) provided by the engagement
of the TCR–CD3 complex with a processed antigenic peptide
bound to the major histocompatibility complex (MHC) mole-
cule on the surface of an antigen presenting cell (APC), and an
antigen-non-specific co-stimulatory signal (signal 2) provided by
the interactions between cell surface molecules on the APC and
the T cell. Indeed, early work by Jenkins and Schwartz showed
that in the absence of the co-stimulatory signal, T cells are ren-
dered anergic, a state marked by the inability of T cells to respond
to subsequent antigenic stimulation, leading to a model that co-
stimulation plays a critical role in controlling the fate of T cell
responses: activation or anergy (Schwartz et al., 1989; Jenkins
et al., 1990). Since then, these seminal studies have stimulated
tremendous growth of the co-stimulation field. In addition to
signals 1 and 2, we now appreciate that other signals also par-
ticipate in determining the fate of T cell activation: some of these
signals are stimulatory and others are inhibitory (Sharpe, 2009).
Furthermore, some other signals are required to promote the

differentiation into different T helper cell subsets (Pipkin and Rao,
2009; Simpson et al., 2010).

Because of the importance of co-stimulation in determining
the outcome of the immune response, manipulation of various
co-stimulatory pathways to regulate host immune responses is of
therapeutic interest. In this review, we first summarize the current
knowledge of T cell co-stimulatory pathways. We then focus on
strategies targeting co-stimulatory pathways and their potential
implications in viral vector-mediated gene therapy.

T CELL CO-STIMULATORY PATHWAYS
Several co-stimulatory pathways have been characterized includ-
ing both activating and inhibitory pathways (Figure 1). The pos-
itive activating signals are balanced by the negative inhibitory
signals to achieve optimal control of T and B cell activation. The
activating pathways such as B7 and CD28, CD40 ligand (CD40L)
and CD40, inducible co-stimulatory molecule (ICOS) and ICOS-
ligand (ICOS-L), and OX40 (CD134) and its ligand, OX40L, are
critical for the activation of T and B cells, whereas inhibitory path-
ways such as B7 and cytotoxic T lymphocyte antigen-4 (CTLA-4),
and programmed cell death-1 (PD-1) and PD ligand (PD-L)
downregulate T cell activation. Here we mainly focus on the
activating co-stimulatory pathways.

B7-CD28/CTLA-4 PATHWAY
The CD28 glycoprotein, a member of the immunoglobulin super-
family, is expressed on the T cell membrane as disulfide-linked
homodimers. It is expressed on the surface of 90% of human
CD4+ T cells and 50% of human CD8+ T cells, and nearly 100%
of murine T cells. The ligands for CD28 are B7-1 (CD80) and
B7-2 (CD86), also members of the immunoglobulin superfamily,
which are expressed by APCs such as DCs, macrophages, and acti-
vated B cells. Although B7-1 and B7-2 are co-expressed and share
similar overall structure, they differ in their temporal responses
to stimuli, with B7-2 induction occurring earlier and usually at
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FIGURE 1 | Co-stimulatory pathways. Co-stimulations either enhance or
down-regulate T cell activation following the initial TCR and peptide-MHC
ligation. Positive co-stimulatory pathways include B7–CD28, CD40L–CD40,
ICOS–ICOS-L, and OX40–OX40L. Negative co-stimulatory pathways include
B7–CTLA-4 and PD-1–PD-L.

much higher level than B7-1 in activated B cells and DCs (Hath-
cock et al., 1994). The expression of B7-1 and B7-2 is controlled
by cytokines and cell–cell interactions. IL-4 is a potent inducer of
B7-2 on B cells, whereas IFN-γ and IL-10 differentially regulate
B7 expression, depending on cell types (Valle et al., 1991; Stack
et al., 1994). Studies have shown that signals transmitted through
the MHC class II cytoplasmic domain, which is required for effec-
tive antigen presentation, induce B7 expression on B cells (Nabavi
et al., 1992).

Mice deficient in CD28 or treated with antagonists of CD28
exhibit substantially reduced proliferative responses (Green et al.,
1994). Similarly, mice deficient in both B7-1 and B7-2 have
compromised T cell-mediated responses (Borriello et al., 1997;
Mcadam et al., 1998), whereas addition of B7 transfectants could
augment T cell proliferation and IL-2 production induced with
anti-CD3 or PMA in a CD28-dependent manner (Gimmi et al.,
1991; Linsley et al., 1991). B7/CD28-mediated signaling enhances
the production of IL-2 and IL-2 receptor in a nuclear factor (NF)-
κB dependent manner, and upregulates the expression of other
cytokines such as IL-1, IL-4, IL-5, TNF, and IFN-γ (reviewed in
Lenschow et al., 1996; Kane et al., 2002); accelerates resting T cell
entry into and progression through the cell cycle; plays a criti-
cal role in the development and differentiation of Th1 and Th2
T cell subsets (Van Der Pouw-Kraan et al., 1992; Seder et al.,
1994; King et al., 1995); prevents anergy, and promotes T cell
survival by enhancing the expression of the anti-apoptotic pro-
teins such as BCL-xL. Recent studies have reported chromatin
structural changes within minutes following T cell activation, and
induction of DNA demethylation of IL-2 gene as early as 20 min
after TCR/CD28 stimulation, suggesting a role for CD28 signaling
in these early nuclear events, which are critical to the ensuing

processes of cell proliferation and differentiation (Zhao et al., 1998;
Acuto and Michel, 2003; Bruniquel and Schwartz, 2003).

Cytotoxic T lymphocyte antigen-4, also known as CD152, is
expressed on the T cell membrane as disulfide-linked homodimers.
Like CD28 and B7, they are also members of the immunoglobulin
superfamily. The ligands for CTLA-4 are also B7-1 and B7-2, but its
binding affinity for B7 molecules is about 20-fold greater than that
of CD28. Although CTLA-4 and CD28 share sequence homology,
CTLA-4 acts antagonistically of CD28, and delivers an inhibitory
signal that down-regulates T cell activation. CTLA-4 knockout
mice manifest lymphoproliferative disorder which is lethal by 3–
4 weeks after birth, supporting the notion that CTLA-4 acts as a
negative regulator of T cell activation and is vital for the control of
lymphocyte homeostasis (Waterhouse et al., 1995). While CD28
is expressed by both resting and activated T cells, CTLA-4 is only
expressed on activated T cells at much lower levels. CTLA-4 induc-
tion can be detected 24 h after T cell stimulation, with cell surface
expression peaking around 2 days post activation, and returning
to background levels by day 4 (Linsley et al., 1992; Walunas et al.,
1994). Interestingly, CD28/B7-mediated signaling upregulates the
expression of CTLA-4 which effectively competes with CD28 for
B7-1/B7-2 at later stages of the immune response to counter T cell
activation, suggesting a mechanism for achieving balance between
positive and negative stimulation.

CD40L–CD40 PATHWAY
The CD40 glycoprotein is a member of the tumor necrosis factor-
receptor (TNFR) superfamily. It is expressed on APCs such as
B cells, DCs, activated macrophages as well as Langerhan cells,
endothelial cells, and thymic epithelial cells (Buhlmann and
Noelle, 1996). The ligand for CD40 (CD40L), a member of the
TNF family, is preferentially expressed on the surface of activated
CD4+ T cells in both humans and mice. Early studies have estab-
lished an important role for CD40L–CD40 interactions in B cell
activation and proliferation, as well as immunoglobulin (Ig) class
switching (Allen et al., 1993; Disanto et al., 1993). For example, the
underlying cause for a severe form of immunodeficiency, X-linked
hyper IgM syndrome (HIGM) is a mutation in CD40L (Allen et al.,
1993; Disanto et al., 1993). Patients with this disorder have elevated
levels of IgM, but little to none IgG or IgA, and absent germinal
centers.

In addition to the role in the humoral response, two semi-
nal reports also demonstrate a critical role for the CD40L–CD40
pathway in the activation of T cell responses (Grewal et al., 1996;
Yang and Wilson, 1996). In a murine model of experimental aller-
gic encephalomyelitis (EAE), CD4+ T cell priming is defective
in CD40L-deficient mice. These mice failed to develop EAE after
priming with antigen and produced little to no IL-4 and IFN-γ
(Grewal et al., 1996). Similarly, in a murine model of liver-directed
gene transfer with adenoviral vectors, CD40L–CD40 signaling on
APCs is essential for the development of CD8+ T cell response
to adenoviral vector (Yang and Wilson, 1996). This is mediated by
upregulating the expression of B7 molecules on APCs, which in
turn promote the B7–CD28 pathway, leading to T cell activation
(Yang and Wilson, 1996). Indeed, subsequent studies have fur-
ther delineated that CD40–CD40L interactions between DCs and
CD4+ T cells provide DCs with “licensing” in the activation of
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CD8+ T cells (Bennett et al., 1998; Ridge et al., 1998; Schoenberger
et al., 1998).

The broad spectrum of cells that express CD40 indicates that
CD40L–CD40 interactions may exert regulatory effects at multi-
ple levels. CD40L–CD40 interactions also result in the production
of IL-12, which promotes the differentiation of Th1 immunity
(Trinchieri, 1994). Furthermore, the interactions between CD40L
on activated T cells and CD40 on vascular endothelial cells can
stimulate the vasculature at sites of inflammation and may play a
role in inflammatory responses (Hollenbaugh et al., 1995).

ICOS PATHWAY
ICOS, a third member of the CD28/CTLA-4 family, is expressed
on activated T cells, but very little on resting naïve T cells. ICOS
binds specifically to its ligand (ICOS-L), also known as B7-related
protein-1 (B7RP-1), which is expressed constitutively on B cells.
In vivo, the interaction of ICOS with ICOS-L is critical for T cell-
dependent B cell responses (Mcadam et al., 2001; Tafuri et al.,
2001). In the absence of ICOS, germinal center formation is
impaired and immunoglobulin class switching is defective.

In addition to providing help for B cells, ICOS plays an impor-
tant role in the differentiation of unpolarized CD4+ T cells into
Th1, Th2, Th17, and Treg lineages (Simpson et al., 2010). It has
been shown that ICOS can promote both Th1 and Th2 responses.
However, ICOS and ICOS-L interaction during the early stages of
T cell differentiation favors Th2 response (Nurieva et al., 2003).
Although ICOS is not required for Th17 differentiation during pri-
mary responses, it plays a pivotal role in promoting Th17 compart-
ment by upregulating IL-23R during secondary responses (Bau-
quet et al., 2009). Recent studies also demonstrate a critical role
of ICOS in maintaining the homeostasis of CD4 + Foxp3 + Treg
(Burmeister et al., 2008; Ito et al., 2008).

PD-1 PATHWAY
Programmed cell death-1, an inhibitory receptor in the CD28 fam-
ily, is expressed on CD4 and CD8 T cells, B cells, NKT cells, and
some DC subsets upon activation (Keir et al., 2008). PD-1 has
two ligands, PD-L1 and PD-L2. Upon ligation to either PD-L1 or
PD-L2, PD-1 attenuates TCR signaling, leading to suppression of
T cell responses. Indeed, in a model of chronic LCMV infection,
PD-1 is overexpressed on the exhausted T cells and blockade of
PD-1 and PD-L1 interaction led to the functional restoration of
these exhausted T cells (Barber et al., 2006). Furthermore, the PD-
1 pathway plays an important role in regulating immune responses
to acute infections (Brown et al., 2010). In addition to providing
inhibitory signals to T cells, a recent study has also revealed an
essential role for PD-1 signaling in germinal center B cell sur-
vival and the formation and affinity of long-lived plasma cells
(Good-Jacobson et al., 2010).

TARGETING THE B7–CD28/CTLA-4 PATHWAY
Early studies in transplant setting have demonstrated that block-
ade of the CD28/B7 co-stimulation with CTLA-4Ig, a soluble
fusion protein consisting of the extracellular domains of CTLA-4
and the constant region of the IgG1 heavy chain, could cause host T
cells directed against the grafted tissue anergic, therefore leading to
the long-term survival of the graft (Lenschow et al., 1993). CTLA-
4Ig acts through competition with CD28 for its ligands, B7-1 and

B7-2, disrupting the co-stimulation required for complete T cell
activation. In addition, studies using a combination of anti-B7-
1 and anti-B7-2 monoclonal antibodies (mAbs) in an allogeneic
pancreatic islet transplant setting showed this approach selectively
delayed CD4+ T cell infiltration into the graft, leading to inhi-
bition of transplant rejection (Lenschow et al., 1995). Similarly,
CTLA-4Ig has been used successfully to suppress T cell responses in
animal models of autoimmunity (Dall’era and Davis, 2004). These
studies provide evidence that blocking co-stimulatory pathway is
a viable strategy in inducing T cell anergy.

A number of studies have also investigated the effect of block-
ing the B7–CD28 co-stimulatory pathway in viral vector-mediated
gene therapy. Administration of CTLA-4Ig blocked the formation
of anti-β-galactosidase antibodies following retrovirus-mediated
gene transfer to the liver (Puppi et al., 2004). Similarly, treat-
ment with CTLA-4Ig resulted in more stable transgene expres-
sion after retrovirus-mediated gene therapy in mucopolysaccha-
ridosis I mice (Ma et al., 2007). Furthermore, potent immuno-
suppression has been observed with a high-affinity variant of
CTLA-4Ig, LEA29Y (belatacept; Larsen et al., 2005). In a mouse
model of Duchenne muscular dystrophy (DMD), adenovirus vec-
tors carrying murine CTLA-4Ig (AdmCTLA-4Ig) was coadmin-
istered with an adenoviral vector carrying a full-length murine
dystrophin cDNA (AdmDys) into skeletal muscle (Jiang et al.,
2004a). Stable expression of dystrophin in skeletal muscle up to
8 weeks was achieved, in contrast to the control group without
CTLA-4Ig where dystrophin expression was significantly dimin-
ished within 8 weeks. CTL response to adenoviral vector was
markedly suppressed in the group receiving co-administration
of AdmCTLA-4Ig at 2-week time point, and cytokine produc-
tion such as IFN-γ, IL-4, and IL-6 were much lower than the
control group as well. No dystrophin-specific CTL response was
observed in either group during the 2-week period. Neutral-
izing antibody against adenoviral vector was detected in both
groups, with highest levels found in the control group, indicat-
ing that CTLA-4Ig partially blocked the humoral response against
adenoviral vectors.

Similar strategies employing CTLA-4Ig to block the B7–CD28
co-stimulatory pathway have been investigated in a murine model
of type II collagen-induced arthritis (Ijima et al., 2001). How-
ever, in other model systems, the effect of AdmCTLA-4Ig has been
modest (Laumonier et al., 2003), suggesting other strategies in
combination with CTLA-4Ig may be needed to achieve successful
therapeutic effect.

TARGETING THE CD40/CD40 LIGAND PATHWAY
The critical role of the CD40L–CD40 pathway in activation of
both T and B cells suggests interfering with this pathway may
prevent both cellular and humoral immune responses to virus,
which is critical for stable transgene expression and the repeated
administration of the viral vectors. Indeed, initial studies revealed
that a transient blockade of CD40 signaling with an antibody to
CD40L infused at the time of vector administration resulted in
stable transgene expression and diminished production of neu-
tralizing antibodies in a murine model of adenovirus-mediated
gene transfer to the liver and the lungs (Yang et al., 1996). Later,
anti-mouse CD40L mAb in combination with CTLA-4Ig has been
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shown to further prolong adenovirus-mediated transgene expres-
sion after both primary and secondary vector delivery (Kay et al.,
1995). Similarly, the combined CD40L blockade and CTLA-4Ig
approach also proved effective in a murine model of retrovirus-
mediated gene therapy for mucopolysaccharidosis (Ma et al.,
2007). More recently, the dual blockade strategy has been shown to
act synergistically to prevent antigen-specific immune responses
in non-human primates, leading to stable expression of trans-
gene and diminished neutralizing antibody production, and in
some cases allowing for repeated administration of adenovirus
(Haegel-Kronenberger et al., 2004).

The effectiveness of the combined antibody blockade strategy
led to the evaluation for the effect of systemic administration
of AdmCTLA-4Ig and AdmCD40Ig (adenoviral vector carrying
murine CD40Ig) in murine models of gene delivery to the muscle
(Jiang et al., 2004b) and the liver (Schowalter et al., 1997). These
studies showed that systemic delivery of both AdmCTLA-4Ig
and AdmCD40Ig was required to inhibit the production of anti-
adenoviral vector neutralizing antibody, and that AdmCTLA-4Ig
alone was insufficient. This may be due to insufficient circulat-
ing level of mCTLA-4Ig to prevent anti-adenoviral capsid protein
neutralizing antibody production, and that addition of circulat-
ing levels of mCD40Ig decreases B cell activation by T cells hence
leading to diminished neutralizing antibody production.

Taken together, these data lend support to the effectiveness of
the combined CD40 and CD28 blockade strategy in viral vector-
mediated gene therapy in animal models. However, the efficacy of
this approach in human gene therapy requires further exploration
in clinical trials.

TARGETING THE ICOS/ICOS-L PATHWAY
T cell-dependent B cell responses are critically dependent on the
interaction of ICOS with ICOS-L, which promotes germinal center
formation and immunoglobulin class switching in vivo (Mcadam
et al., 2001; Tafuri et al., 2001). It has been shown that anti-ICOS
alone or in combination with CD40Ig or anti-CD40L can induce
tolerance to islet allografts (Nanji et al., 2006) and inhibit allo-
graft rejection in murine models of transplantation (Guillonneau
et al., 2005; Taylor et al., 2005). In a murine model of non-viral
mediated gene therapy for hemophilia A, blockade of the ICOS–
ICOS-L pathway by anti-ICOS antibody alone was effective in
inhibiting the formation of anti-factor VIII antibodies following
plasmid DNA-mediated gene transfer (Peng et al., 2008). In this
study, anti-ICOS treatment also resulted in elevation of Treg num-
bers and their suppressive activity (Peng et al., 2008). However, the
efficacy of ICOS blockade has not been tested in animal models of
viral vector-mediated gene transfer.

NOVEL STRATEGIES FOR TARGETING THE CO-STIMULATORY
PATHWAY
Recent advances in our understanding of the role of the innate
immunity in adaptive immune responses suggest potential novel
strategies for targeting the co-stimulatory pathways. The innate
immune system is the first line of defense against invading
pathogens through recognition of pathogen-associated molecular
patterns (PAMPs) by a set of receptors called pattern recognition

receptors (PRRs; Huang and Yang, 2009). Among the PRRs identi-
fied to date, the best studied is the toll-like receptor (TLR) family.
Thirteen TLRs have been identified in mammals, with each rec-
ognizing a unique set of PAMPs. Most TLRs signal through the
myeloid differentiating factor 88 (MyD88)-dependent pathway,
initiating the downstream signaling cascade leading to the induc-
tion of proinflammatory response characterized by the production
of cytokines and chemokines (Akira et al., 2006). In addition, TLR
pathways are critical for the ensuing adaptive immune responses
by promoting DC maturation and function through upregulation
of co-stimulatory molecules (Iwasaki and Medzhitov, 2004; Huang
and Yang, 2010).

Recent studies have demonstrated that the innate immune
response to AAV is mediated by TLR9 (Zhu et al., 2009; Martino
et al., 2011). AAV mainly activates the TLR9–MyD88 pathway in
pDCs, leading to the production of type I IFNs (Zhu et al., 2009).
In vivo, the TLR9–MyD88 pathway is crucial to the activation of
CD8 T cell response to both the transgene product and the AAV
vector, leading to the loss of transgene expression and the gen-
eration of neutralizing antibodies to transgene product and AAV
(Zhu et al., 2009). Thus, the TLR9–MyD88-type I IFN pathway
plays a crucial role in promoting the adaptive immune responses
to AAV.

Stimulation of TLR9 with its ligand, CpG-DNA leads to upreg-
ulation of surface expression of co-stimulatory molecules, such as
CD40, B7-1/B7-2, and MHC class II on cDCs and macrophages
(Hemmi et al., 2003). Therefore, DC maturation and Th1-like
cytokine induced by TLR9 stimulation result in efficient and
robust activation of Th1 and CD8 cytotoxic T lymphocytes (CTL;
Lipford et al., 2000; Horkheimer et al., 2009). Type I IFNs, in addi-
tion to their direct anti-viral effects (Vaidya and Cheng, 2003),
have also been shown to induce DC maturation by upregulat-
ing the expression of co-stimulatory molecules, which in turn
promotes T cell responses (Hoebe et al., 2003). DCs matured
by type I IFNs promote cross-priming of virus-specific CD8 T
cells (Le Bon et al., 2003). Type I IFN can also promote effec-
tor function of virus-specific T cells (Cousens et al., 1999), and
enhance the survival of activated T cells (Marrack et al., 1999).
Furthermore, type I IFN signaling on DCs is important for the
production of virus-specific IgM, whereas the generation of pro-
tective neutralizing antibodies to adenovirus critically depends on
the type I IFN signaling on both CD4 T cells and B cells (Zhu et al.,
2007).

A critical role for the TLR9 signaling pathway in the upregu-
lation of co-stimulatory molecules and the induction of adaptive
immune response to AAV suggests that strategies targeted to inter-
fere with this signaling pathway may diminish T cell responses to
the AAV vector and the transgene product, leading to prolonged
transgene expression and reduction in inflammation, improving
the safety and efficacy of AAV vectors for gene therapy in humans.
Furthermore, blockade of the TLR9 signaling pathway will also
likely inhibit antibody responses to the transgene product as well
as the AAV vector.

One way to interfere with the TLR9–MyD88-type I IFN sig-
naling pathway is to use antagonists specific to TLR9 such as
inhibitory ODN to block the TLR9–MyD88 pathway (Zhu et al.,
2009; Martino et al., 2011). Alternatively, blockade of type I IFNs
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by administering neutralizing antibodies to IFN-α and IFN-β may
also prove effective as type I IFNs are required for adaptive immune
responses to AAV (Zhu et al., 2009).

FUTURE PERSPECTIVES
In this review, we have summarized the role of various T cell
co-stimulatory pathways in the activation of both T and B cells
and strategies targeting these pathways to improve the outcome of
viral vector-mediated gene therapy. The majority of the studies so
far are focused on targeting the B7–CD28 and the CD40L–CD40
pathways. It may be beneficial to investigate the effect of blocking
other positive co-stimulatory pathways such as ICOS and ICOS-L,

and OX40 and OX40L. In addition, strategies for stimulating the
negative co-stimulatory pathways such as PD-1 and PD-L may
prove effective. Given that the combined blockade of CD40 and
CD28 pathways is more effective than the blockade of a single
pathway alone, future studies should focus on targeting multiple
pathways including both the positive and negative co-stimulatory
pathways. In this regard, since the innate immunity is critical in
regulating multiple co-stimulatory pathways, strategies targeting
innate immune pathways may warrant further investigation. Ulti-
mately, the utility of these strategies in improving the outcome of
gene therapy with viral vectors will need to be tested in human
clinical trials.
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