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Insights into enterotoxigenic 
Escherichia coli diversity in 
Bangladesh utilizing genomic 
epidemiology
Jason W. Sahl1,2, Jeticia R. Sistrunk   1, Nabilah Ibnat Baby3, Yasmin Begum3, Qingwei Luo4, 
Alaullah Sheikh   3,5, Firdausi Qadri3, James M. Fleckenstein4,5,6 & David A. Rasko1

Enterotoxigenic Escherichia coli (ETEC) cause more than 500,000 deaths each year in the developing 
world and are characterized on a molecular level by the presence of genes that encode the heat-stable 
(ST) and/or heat-labile (LT) enterotoxins, as well as surface structures, known as colonization factors 
(CFs). Genome sequencing and comparative genomic analyses of 94 previously uncharacterized ETEC 
isolates demonstrated remarkable genomic diversity, with 28 distinct sequence types identified in 
three phylogenomic groups. Interestingly, there is a correlation between the genomic sequence type 
and virulence factor profiles based on prevalence of the isolate, suggesting that there is an optimal 
combination of genetic factors required for survival, virulence and transmission in the most successful 
clones. A large-scale BLAST score ratio (LS-BSR) analysis was further applied to identify ETEC-specific 
genomic regions when compared to non-ETEC genomes, as well as genes that are more associated 
with clinical presentations or other genotypic markers. Of the strains examined, 21 of 94 ETEC isolates 
lacked any previously identified CF. Homology searches with the structural subunits of known CFs 
identified 6 new putative CF variants. These studies provide a roadmap to exploit genomic analyses by 
directing investigations of pathogenesis, virulence regulation and vaccine development.

The enterotoxigenic Escherichia coli (ETEC) pathogenic variant (pathovar) has been implicated in 1 billion cases 
of diarrhea annually1–3. These pathogens are especially problematic in ETEC endemic areas, such as Bangladesh4, 5.  
ETEC are characterized on a molecular basis by the presence of genes that encode the heat-stable (ST) and/or 
heat-labile (LT) enterotoxin6, 7. Both toxins activate the cystic fibrosis trans-membrane regulator (CFTR) that 
results in ion secretion followed by water and diarrhea in infected individuals8. In addition to the enterotoxins, 
ETEC possess fimbrial appendages that attach to intestinal epithelium known as colonization factors (CFs). Most 
ETEC-specific virulence factors including the CFs are plasmid-encoded, with greater than 30 CFs described in 
the literature9, 10.

In addition to known ETEC virulence factors, other putative virulence factors have been identified, primar-
ily in the prototypical ETEC isolate, H1040711. These factors include the adhesin autotransporter TibA12, the 
invasion locus tia13, and leoA14, which has been associated with maximum LT secretion. Additionally, the serine 
protease autotransporter EatA15, which has only been identified in ETEC isolates16, accelerates delivery of LT by 
degrading MUC2, the major mucin secreted by gastrointestinal goblet cells17, and by modulating adhesion medi-
ated by EtpA18. EtpA is a glycoprotein that appears to act as a bridge between FliC and host surface structures19, 20. 
In addition to these previously identified ETEC-associated factors, a study by Vidal et al.21 suggested that an iron 
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acquisition system (irp2, fyuA) most similar to a system in Yersinia species22, 23 may play a role in ETEC virulence 
based on its variable presence in clinical ETEC isolates24.

The majority of the functional work in ETEC has focused on the prototype isolate H1040725, 26. However, 
detailed transcriptional studies using RNA-seq have demonstrated that the response to environmental and host 
signals, such as bile and carbohydrates, can vary widely between ETEC isolates27. Additionally, it had been sug-
gested that some putative virulence factors identified in H10407 are not widely distributed among diverse ETEC 
isolates28. This suggests that the genomic diversity within ETEC isolates is significant and a reference-independent 
global approach is required to comprehensively characterize the genomic diversity.

The advent of large-scale sequencing has increased our understanding of the evolution of the members of 
the ETEC pathovar. Until 2014, there were relatively few sequenced and assembled human-associated ETEC 
isolates, all from symptomatic patients, available in Genbank11, 16, 29, as well as, four porcine ETEC isolates that 
had also been sequenced30. A recent study by von Mentzer et al. in 2014 utilized a genomic mapping approach of 
unassembled genomes for the examination of genome similarity in a collection of 362 global E. coli isolates31. The 
isolates sequenced in the von Mentzer et al. study were selected for the greatest variability of colonization factor 
and enterotoxin profiles from a historical collection ranging from 1980 and 2011 of ETEC isolates maintained at 
the University of Gothenburg. The current study examines a collection of 94 ETEC isolates, 89 of which repre-
sent circulating isolates within Bangladesh between 2002 and 2011. Additionally, 84 isolates were obtained from 
individuals with diarrhea (symptomatic ETEC) and 10 isolates obtained from asymptomatic ETEC colonization. 
Comparative genomics of this wealth of information is providing novel insights into the evolution and distribu-
tion of ETEC virulence factors.

Although large-scale sequencing projects can now rapidly generate a data from large numbers of isolates, 
informatics pipelines and comparative analyses to take advantage of these large-scale genomic data have lan-
guished. These types of genomic epidemiology studies have been recently completed with other E. coli patho-
vars32–34, but this study provides a further example of the application of this comparative analysis paradigm to 
isolates from the ETEC pathovar.

Results
Core genome single nucleotide polymorphism (SNP) phylogeny of ETEC.  To examine the phy-
logenetic relationship of the sequenced ETEC isolates in the broader context of diverse E. coli and Shigella spp., a 
SNP-based phylogeny was inferred from ~220,000 SNPs from 136 E. coli/Shigella genomes (Supplementary Data 
File 1). The genomes from this study include the 94 ETEC genomes sequenced in this study, eight previously 
sequenced ETEC reference genomes, 34 reference E. coli and Shigella genomes representing prototype members 
of each of the diarrheagenic pathogenic variants (Metadata and GenBank Accession numbers are included in 
Table S1). The results demonstrate that the majority of ETEC genomes fall into the E. coli phylogroups A or B1 
(Fig. 1), with one genome, isolate 2845650, falling into phylogroup E; ETEC isolates from this phylogroup have 
been previously described31. The retention index (RI) value of 0.82 for this tree was determined using Phangorn, 
suggesting significant homoplasy, likely resulting from homologous recombination.

The phylogenetic diversity of sequenced ETEC isolates was remarkable (Fig. 1). The majority of the diarrhea-
genic ETEC (symptomatic ETEC) sequenced in this study were isolated from Dhaka, Bangladesh between 2002 
and 2011, yet based on the relatedness displayed in the phylogeny, the isolates are broadly distributed across 
the known diversity in E. coli. This highlights that the genetic background of E. coli is generally amenable to 
the uptake and maintenance of ETEC plasmids and virulence factors. However, no currently sequenced ETEC 
genomes, of the ~450 ETEC isolates, are present within Phylogroup B2, which suggests that this particular genetic 
background is not amenable for the uptake or retention of ETEC plasmids. The study by von Mentzer et al.31 
suggested that three B2 ETEC genomes were identified however, one of the reported B2 genomes (E1642) was 
not B2 by our phylogenomic analysis (Figure S1), and the other two (E523, E2439) were negative for all queried 
ETEC enterotoxins (0% toxin coverage at a minimum depth of 2x), indicating that they were not ETEC based on 
the sequence data that is publically available.

Despite this overall phylogenetic diversity, strains isolated from geographically and temporally dispersed 
cases of cholera-like illness were phylogenetically similar. These results taken as a whole indicate that particular 
combinations of pathovar-specific genes and genomic backgrounds may be optimal for survival, virulence and 
transmission as determined by the prevalence of the combinations in these and other studies31; however, detailed 
transcriptional studies are required for this to be elucidated.

Bioinformatic analysis of symptomatic ETEC and asymptomatic ETEC for known and putative 
virulence factors.  The ETEC isolates sequenced in this study were identified as members of this pathotype, 
as they contained one or more of the enterotoxin genes (LT, STh and/or STp) (Fig. 2, Table S3). The presence of 
additional known and predicted virulence factor genes was determined using LS-BSR35. The results demonstrate 
that the previously identified virulence factors of ETEC do not cluster among either the asymptomatic ETEC or 
symptomatic ETEC isolates (Fig. 2). Many of the virulence factors (e.g. leoA) identified in the prototype isolate 
H1040711 were sparsely distributed among the 94 isolates sequenced in this study (Fig. 2). The etpA gene was 
included in the initial analyses, but the five repeat regions in the 3′ end of the gene, each ~600 nucleotides, con-
founded proper assembly of this genomic region and precluded an accurate estimation of etpA conservation. 
Proteomic analysis36 of the strains corresponding to the genomes analyzed here found that EtpA was produced by 
more than 60% of the isolates, and that the sizes of the secreted peptides were similar to that reported for H10407 
(~170 kD). Thus, etpA was removed from downstream in silico analyses.

In examining correlations between individual known and predicted virulence factors and the corresponding 
clinical presentation associated with the respective isolate, no single virulence factor or gene region segregated 
exclusively with symptomatology or phylogenomic group (Fig. 2). Thus, there is not a single proposed virulence 
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factor that can conclusively and consistently distinguish ETEC isolates that are diarrhea-associated or only from 
an asymptomatic colonization.

The data analysis did reveal correlations between certain combinations of virulence factors, CF types, and phy-
logenomic location suggesting that some strains may possess a suite of features that are more optimal for human 
infection. The boxes highlighted in Fig. 2 demonstrate phylogenetic groups of isolates that have similar genomic 
content as defined by the phylogeny, and similar virulence factor profiles. As highlighted in Fig. 2, there are three 
monophyletic groups with a significant number of isolates that have similar virulence and colonization factor 
profiles, but are variable for the clinical presentations. These groups are labeled groups 1–3 in this study and can 
be correlated, but not perfectly matched to the previously identified dominant lineages 5, 1/2 and 3, respectively 
from von Mentzer et al.31. The isolates in Group 1 are dominated by symptomatic ETEC isolates, the majority of 
which contain CS5 and CS6 (Figure S2). In contrast, the asymptomatic isolates from this study in this phylog-
enomic group are only positive for a novel CF identified in the current study (see below). The distinction in this 
phylogenomic group based on clinical presentation is extended to the virulence factors, as all the symptomatic 
isolates are generally LT and ST positive (22/29 isolates), whereas the asymptomatic isolates are only LT positive 
(Figure S2). Interestingly, the symptomatic isolates in this phylogenomic cluster are also positive for the regulator 
known as peaR27, which has homology to the rns regulator which is involved in colonization factor regulation37. 
Group 2 isolates possess genes for CS1, CS3 and CS21 (Figure S2). Group 2 isolates contain both symptomatic 
ETEC and asymptomatic ETEC isolates (13 versus 7, respectively). One of the largest phylogenetic groups, Group 
3 in Figs 1 and 2, consisted primarily of isolates from symptomatic infections, with only one isolate obtained from 
asymptomatic colonization. This group contains primarily colonization factors CFA/I or CS7, and encoded LT 

Figure 1.  A core genome single nucleotide polymorphism (SNP) phylogeny of ETEC genomes sequenced in 
this study as well as reference E. coli genomes. SNPs were identified by NUCmer59 alignments of query genomes 
against the reference genome, K-12 W3110; these methods were wrapped by the NASP pipeline62. A phylogeny 
was inferred on the concatenated SNP alignment using RAxML v860 including 100 bootstrap replicates. ETEC 
genomes sequenced in this study were assigned to disease groups based on clinical observations at site of 
isolation or presented in literature.
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and ST genes. Overall, these examples demonstrate that there is significant genomic and virulence factor diversity 
among these isolates, but there are also common combinations of virulence factors and genomic backgrounds 
that may create a more optimal pathogen or allow the isolate to survive in the environment. These more common 
clones will need to be examined functionally, via detailed mutagenesis, transcriptional and virulence assays to 
test these hypotheses.

Figure 2.  A core genome single nucleotide polymorphism (SNP) phylogeny of ETEC genomes sequenced 
in this study as well as reference E. coli genomes associated with a heatmap of BSR values of previously-
characterized virulence and colonization factors (Table S3). Disease categories were assigned based on clinical 
observations. Orange brackets around genomes indicate lineages (Groups 1–3) compared to identify coding 
regions associated with the observed clinical presentations. The heatmap was associated with the phylogeny 
using the interactive tree of life (47).
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Genomic epidemiology comparison of symptomatic ETEC and asymptomatic ETEC genome 
content.  To identify any genomic regions unique to symptomatic ETEC isolates when compared to asymp-
tomatic ETEC isolates, a whole-genome large-scale blast score ratio (LS-BSR)35 comparison was conducted on 
the ETEC genomes sequenced in this study as well as a set of previously sequenced ETEC genomes (Table S1). 
The results demonstrate that no coding regions (CDSs) were exclusive to either asymptomatic ETEC (n = 23) or 
symptomatic ETEC (n = 262).

While no features could be identified that were exclusive in each of the clinical presentations, a statistical 
approach identified genomic regions that were associated with either the asymptomatic ETEC or symptomatic 
ETEC. The LS-BSR data set generated here (Supplementary Data File 2) was examined for the prevalence of gene 
features with either the clinical symptomology or phylogenetic distribution. When the genomes were examined 
for features that were associated with symptomatic ETEC or asymptomatic ETEC, we identified 28 features that 
were statistically (FDR p value < 0.05) associated with symptomatic ETEC (Table S4) and 28 features statistically 
associated with the asymptomatic ETEC (Table S4). These features highlight the use of genomic epidemiology 
for the identification of features associated with virulence. The genes associated with symptomatic ETEC isolates 
included a number of hypothetical proteins, phage related genes, as well as transcriptional regulators (Table S4). 
Coding regions that were associated with the asymptomatic isolates primarily included hypothetical proteins 
(Table S4). While none of these features stand out as obvious virulence factors, and do not demonstrate a differ-
ence in prevalence between ETEC and other pathovar isolates, they do provide additional evidence of features 
that may play a role in the interactions of the host and pathogen. These in silico studies provide a starting point for 
the functional analysis of these genes and the potential role they play in virulence.

Our group has previously identified that there is a component of the ETEC genomes is phylogenomically 
linked16, 27. While these earlier calculations were based on far fewer genomes, the general trends of those studies 
are confirmed in this study, as the majority of ETEC isolates were identified in phylogroups A or B1 (Fig. 1), with 
only one ETEC genome in this study identified in phylogroup E. As with the clinical presentation comparisons, 
we do not observe canonical virulence factors in these groups, but rather a number of genes that could serve as 
accessory functions to virulence.

In addition to a global comparison of all symptomatic ETEC and asymptomatic ETEC, we also attempted to 
identify specific regions unique to symptomatic ETEC in two lineages (group 1 and 2) of the inferred phylogeny 
(Figures 1 and 2), chosen due to the substantial ETEC representation on these lineages (Figure S2). This analysis 
was performed to identify genomic regions that could explain differences in clinical presentation among patients 
colonized with phylogenetically-related isolates. Genomic regions were identified in these two clades that could 
largely differentiate the asymptomatic ETEC and symptomatic ETEC isolates (Table 1). The asymptomatic ETEC 
and symptomatic ETEC in group 2 contained 16 and 9 coding regions, respectively, that could be used to distin-
guish isolates based on clinical presentation on this branch (Supplementary Data File 3). Many of these features 
are associated with plasmids (Table S4), suggesting that divergent plasmids, or parts of plasmids, may have been 
acquired by the isolates in these two different groups. However, because the isolates were not collected contem-
poraneously, (Table S1), we cannot exclude temporal effects on genome content and it remains unclear whether 
these regions are explicitly associated with pathogenesis.

No single gene feature distinguished ETEC associated with symptomatic illness or asymptomatic colonization. 
However comparative analyses within phylogenetic groups did identify genes that statistically segregate with the 
clinical presentation, thus providing stable genomic encoded targets for virulence studies, functional characteri-
zation and/or additional phylogenomic features for use as diagnostic markers, as we have previously done in other 
E. coli pathovars38, 39.

Comparison of ETEC and non-ETEC genomes.  A previous study of E. coli comparative genomics using 
far fewer genomes, demonstrated pathovar-specific genome conservation among ETEC isolates16. The earlier 
study utilized a reference-based method that included only seven symptomatic ETEC genomes, a relatively 
small number of genomes compared to those analyzed in this study and the von Mentzer study31. Using a global 
approach, the genomic content of ETEC and non-ETEC isolates was examined in E. coli phylogroups A and B1, 
where the majority of ETEC isolates are located. A total of 506 genomes from phylogroups A and B1 (253 ETEC 
and 253 non-ETEC; Table S2) were compared in a LS-BSR analysis. While most coding regions were distributed 
between groups, outliers (n = 118) were identified (Table 2, Table S4; Fig. 3). Several of the ETEC-specific regions 
were associated with the ETEC toxins and putative plasmid components, as expected (Table S4). However, the 
non-ETEC genomes contained coding regions with various functional annotations, including features of central 
metabolism and type III secretion genes, suggesting that a specific genomic background and selective pressures 

Condition FDR p value < 0.05

Symptomatic 11

Asymptomatic 26

Group 1 symptomatic 7

Group 1 asymptomatic 7

Group 2 symptomatic 0

Group 2 asymptomatic 0

Table 1.  Features associated with clinical presentation or phylogenomic groupings.

http://S1
http://2
http://S4
http://S4
http://S4
http://S4
http://S2
http://3
http://S4
http://S1
http://S2
http://S4
http://S4


www.nature.com/scientificreports/

6Scientific Reports | 7: 3402  | DOI:10.1038/s41598-017-03631-x

are involved in the acquisition and retention of ETEC plasmids that harbor enterotoxins, as well as the non-ETEC 
virulence factors.

In silico colonization factor identification.  Functional screening for common CF types (Table S3, Fig. 2) 
identified a significant proportion of the isolates (n = 21 of 94) sequenced in this study did not encode a recogniz-
able CF (peptide BSR value < 0.90). However, several sequences from these isolates did share homology (peptide 
BSR > 0.50) with the structural subunits from known CFs (Table S3)9. Further analysis of contigs from genomes 
encoding potential CF structural subunits identified extended homology to previously characterized CF gene 
clusters. Phylogenetic (Fig. 4A) and direct amino acid comparisons to previously annotated CFs identified six 
new putative colonization factors (Table 3, Fig. 4B). Based on divergence in the peptide sequences of structural 
subunits these putative colonization factors were named pcf (putative colonization factor), b (Bangladesh), and 
a number [1–6]. When the complete CF gene cluster structure of each new CF was examined, a similar gene 
order and cluster structure was observed (Fig. 4B). The contigs in the draft assembly that contained these gene 

Centroid ID annotationa
Average BSR 
(ETEC)

Average BSR (non-
ETEC)

centroid_109500 methyltransferase small domain protein 0.831225296 0.325454545

centroid_185863 putative plasmid maintenance protein 0.769881423 0.166758893

centroid_491002 type IV secretion protein Rhs 0.767035573 0.287193676

centroid_286834 heat-stable enterotoxin 0.69458498 0

centroid_401212 plasmid segregation protein ParM 0.673162055 0.174703557

centroid_352933 hypothetical protein pEntH10407_p04 0.666679842 0.097905138

centroid_2111416 diguanylate cyclase domain protein 0.654031621 0.086007905

centroid_1195229 heat-labile enterotoxin subunit A 0.641581028 0

centroid_1149275 heat-labile enterotoxin subunit A 0.637114625 0

centroid_976050 heat-labile enterotoxin B chain 0.636600791 0

centroid_584031 protein StbB 0.636086957 0.163754941

centroid_146011 serine protease EatA 0.6343083 0.025059289

centroid_957787 insA N-terminal domain protein 0.590434783 0.091857708

centroid_174198 CFA/I fimbrial subunit D 0.579762846 0.002648221

centroid_1146026 plasmid stability family protein 0.574664032 0.027549407

centroid_31447 plasmid segregation protein ParM 0.566086957 0.030671937

centroid_208934 putative transposase domain protein 0.541857708 0.072687747

centroid_33993 POTRA domain, ShlB-type family protein 0.535652174 0

centroid_372954 heat-stable enterotoxin 0.530948617 0

centroid_740634 putative transporter protein AatB 0.494387352 0.002173913

centroid_1853128 bacterial type II/III secretion system short domain protein 0.003280632 0.29083004

centroid_1844289 LEE encoded regulator 0.003596838 0.298695652

centroid_1836929 type III secretion apparatus protein, YscR/HrcR family 0.003952569 0.293399209

centroid_1405762 type III secretion apparatus protein SpaR/YscT/HrcT 0.003952569 0.28972332

centroid_1742164 type III secretion, HrpO family protein 0.003952569 0.292648221

centroid_1726625 tir chaperone 0.003952569 0.29826087

centroid_1827912 type III secretion effector delivery regulator, TyeA family 0.003952569 0.289328063

centroid_1613860 type III secretion system regulator family protein 0.003952569 0.304505929

centroid_1754850 type III secretion apparatus needle protein 0.003952569 0.304347826

centroid_1761547 type III secretion low calcium response chaperone LcrH/SycD 0.003952569 0.290395257

centroid_1737915 secretion system apparatus protein SsaV 0.004466403 0.291304348

centroid_1228577 N(2)-citryl-N(6)-acetyl-N(6)-hydroxylysine synthase 0.005098814 0.294071146

centroid_1614162 aerobactin synthase 0.00541502 0.296363636

centroid_1222308 N(6)-hydroxylysine O-acetyltransferase 0.007351779 0.295731225

centroid_1399399 serine/threonine-protein phosphatase 0.067549407 0.365573123

centroid_818055 calcineurin-like phosphoesterase superfamily domain protein 0.229644269 0.524229249

centroid_676376 gnsA/GnsB family protein 0.261304348 0.559407115

centroid_1832824 cold shock protein CspA 0.350632411 0.702490119

centroid_269217 cold shock-like protein CspG 0.354743083 0.671185771

centroid_408267 L-fucose-proton symporter domain protein 0.617747036 0.91229249

Table 2.  Top 20 genes Identified as ETEC or non-ETEC specific. aGenes with annotation of hypothetical or 
conserved hypothetical have been removed from the table. The complete gene list is present in Supplemental 
Table S4. The bold values included in the table highlights which genes have an average LS-BSR suggesting ETEC 
(top of table) or non-ETEC (bottom of table) prevalence.
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Figure 3.  A comparison of BSR values69 between ETEC (n = 253) and non-ETEC (n = 253) in phylogroups A 
and B1. A total of 118 genes that are outliers are identified and shown in black as defined by the MASS package 
in R. A functional breakdown of these genes is listed in Table S4.

Figure 4.  Analysis of novel putative colonization factors (CFs) identified in isolates sequenced in the current 
study. (A) A phylogenetic tree inferred from an alignment of peptide sequences from previously described CF 
major structural subunits, shown in black, and sequences from new putative CFs, shown in red. Sequences 
were aligned with MUSCLE72 and a phylogeny was inferred with RAxML60 with 100 bootstrap replicates. 
(B) Structural organization of novel putative CFs. Reference CFs were used to organize novel putative CFs. 
Numbers indicate the percent BLAST identity of protein sequences. The structure of novel putative CFs were 
identified from Prokka71 annotation.
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clusters often only contained the CF cluster structure; in the case of pcf_b03, pcf_b04, and pcf_b05, homologs 
were seen for aalR and aalA (part of the CS23 CF operon), but were present on different contigs. This suggests 
that these CF-containing regions are flanked by regions that were not resolved during the genome assembly, and 
are possibly repetitive elements or insertion sequences, as has been highlighted as a common genomic feature in 
previous studies11, 29. Of the six novel CF clusters, three putative CF clusters showed limited homology ( < 50% 
AA identity) to the CS23 CF40.

A LS-BSR screen of novel putative CFs against a collection (n = 223) of confirmed ETEC genomes (this study 
and31, demonstrated that pcf_b02 was conserved (peptide BSR value > 0.95) in only four genomes and pcf_b06 
was conserved in only two genomes (Supplementary Data File 4); all other novel CFs were absent from this 
genomic dataset. This demonstrates that some of the putative CFs are broadly distributed temporally and geo-
graphically, while the other CFs may be unique or specific to Bangladesh.

When the novel putative CFs (Table 3) were combined with known CFs (Table S3), 91 of the 94 isolates 
sequenced in this study were assigned a CF type based on a peptide BSR value >= 0.98 (Fig. 2, Table S1); how-
ever, three isolates were still classified as CF negative, based on an absence of homology to known ETEC CFs. 
Collectively, these findings reaffirm the critical role of CFs in mediating intestinal colonization by ETEC, while 
highlighting the potential complexity in targeting CF antigens in vaccines.

Discussion
Outcomes of ETEC infection in humans range from asymptomatic colonization and mild self-limiting diarrhea 
to severe cholera-like disease41, 42. Despite the prevalence of this pathovar in the developing world, current knowl-
edge of genomic diversity of ETEC derives from screening culture collections for a limited number of virulence 
markers. The majority of these markers and virulence genes were identified or characterized in a single prototype 
ETEC isolate, H10407. However, this isolate appears to contain a gene repertoire that is not entirely represent-
ative of the majority of ETEC isolates surveyed16, 28, 31. In the current study, a diverse set of ETEC isolates were 
obtained and sequenced from individuals primarily from Bangladesh. These genomes were then compared in a 
reference-independent approach to understand the distribution of virulence and colonization factors. With the 
development of massively parallel genome sequencing, genomic comparisons are no longer reliant on compari-
sons to limited numbers of prototype reference isolates.

ETEC genomic analyses to date have almost exclusively focused on pathogenic isolates11, 16, although asymp-
tomatic isolates have been described extensively in the literature31, 43–45. In the current study, the sequenced iso-
lates include 84 ETEC isolates from individuals with diarrhea (symptomatic ETEC) and 10 ETEC isolates from 
asymptomatic individuals (asymptomatic ETEC); by including public genomes31, the numbers increased to 262 
symptomatic and 23 asymptomatic genomes. Although the relatively low number of asymptomatic ETEC isolates 
precludes large-scale investigations into genes associated with disease, this study presents a framework of how to 
analyze large multidimensional datasets to identify genomic features positively associated with a given pheno-
type, such as disease presentation. These studies highlight the utility of moving beyond the single gene approach 
and taking a more systems biology approach to the study of pathogenesis.

The majority of the genomes generated in this study were isolated from Bangladesh and are associated with 
the clinical presentation at the time of isolation. Whole genome analyses attempted to identify genomic features 
that are conserved in isolates from individuals with diarrhea and absent in isolates from asymptomatic individ-
uals. However, it is possible that an isolate currently identified as asymptomatic is actually a virulent isolate, to 
which the host has immunity, rather than a truly avirulent isolate. Multiple host factors, including nutrition and 
gastrointestinal microbiota composition, as well as multiple immune mediators, and blood group antigen pres-
entation on mucosal surfaces may be as important as pathogen virulence factor content in determining clinical 
presentation. Collectively, host factors that impact the outcome of ETEC infections could confound identification 
of genomic region(s) exclusive to symptomatic ETEC isolates.

ETEC CFs have previously been associated with ETEC pathogenesis26 and have been the focus of intensive 
research and multiple vaccine trials46. In this study of 94 ETEC isolates, 23 CFs were identified, including six 
novel putative CFs. The identification of these six new CFs increases the known CF repertoire by ~25% and 
highlights the utility of whole genome sequencing in the identification of novel variants of important virulence 
factors. Additional work is needed to functionally characterize these new CFs and their potential contribution to 
virulence in those isolates. The sequence diversity observed, even this relatively small collection of isolates, high-
lights the challenges to the development of a broadly protective ETEC CF-based vaccine47. Interestingly, three 
symptomatic ETEC isolates were identified that can be characterized as truly CF negative, suggesting that these 
may possess previously uncharacterized adhesin molecules.

name accession positive genomes

pcf_b01 WP_001493678 P0302293_3, P0302308_2

pcf_b02 WP_001701908 BCE001_MS16, BCE002_MS12

pcf_b03 WP_001377911 178850, C_34666, P0299917_2, 
2864350, P0299917_1, P02997067_6

pcf_b04 WP_004026086 2780750, 174900, MP020980_1, 
MP020980_2, MP021561_2

pcf_b05 EMW44189 2785200, 2788150

pcf_b06 WP_001741098 180050

Table 3.  Six Novel Colonization Factor Gene Clusters Identified and Prevalence in Isolates.
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The whole genome phylogeny demonstrated the breadth of phylogenetic diversity of the ETEC pathovar in 
Bangladesh (Fig. 1, Figure S1). ETEC is one of the most diverse pathotypes5, 31 and have now been identified in all 
E. coli phylogroups, with the exception of B2 (Fig. 1). Phylogroup B2 is populated mainly with extra-intestinal E. 
coli and more specifically, urinary tract E. coli, and as such they do contain unique genes compared to the diar-
rheagenic E. coli phylogroups35, but it is unclear if these unique genes confer greater incompatibility with ETEC 
plasmids harboring enterotoxins.

This observed phylogenetic diversity is mostly likely driven by the significant number of mobile elements 
including phage and plasmids within the ETEC genomes, as well as the fact that all of the pathovar specific viru-
lence factors are encoded on plasmids11, 29. While a detailed analysis of the complete plasmids is not possible with 
this dataset due to the sequencing method and the previous studies that indicated that there the ETEC genome 
contains ~5% repetitive elements and insertion sequences29, 31. However, it must be noted that a number of refer-
ence ETEC isolates31 included in this study are from outbreaks that occurred many decades apart and on different 
continents (Table S1 and S2), and yet the phylogenetic (Fig. 1 and Figure S1) and virulence factor patterns (Fig. 2) 
are very similar suggesting that there may be an optimal strategy of pathogenesis in these organisms that leads to 
a successful pathogen that can cause significant outbreaks. One hypothesis could be that there is constant sharing 
of genetic material among the non-pathogenic or evolving-pathogenic isolates within a host or the environment 
that only expands significantly when there is the optimal assemblage of the mobile genetic factors, bacterial chro-
mosomal factors, and the opportunity to infect a susceptible population or host.

The results of this study have identified several new putative CFs, as well as a number of genomic regions 
differentially present in isolates from different clinical presentations among the ETEC in Bangladesh, as well as 
between ETEC and non-ETEC E. coli isolates. Importantly, this study highlights the difficulty of directly correlat-
ing pathogen genomics with clinical outcomes. However, these studies demonstrate the feasibility of large-scale 
genomic epidemiology as an essential tool for molecular characterization of these globally important pathogens.

Materials and Methods
Strain selection.  A total of 94 isolates, 84 associated with moderate to severe diarrheal illness and 10 from 
asymptomatic colonization were analyzed in this study. The majority of isolates (n = 89) were collected at the 
International Centre for Diarrhoeal Disease Research (http://www.icddrb.org) in Dhaka, Bangladesh in between 
2002 and 2011. Effort was taken to minimize the number of passages of these cultures to prevent plasmid loss 
or the loss of any other unstable genomic feature. These isolates provide insight into the circulating isolates in 
Bangladesh between 2002 and 2011. Four additional isolates, Envira 8/11, Envira 10/1, Juruá 18/2, and Juruá 
20/10, obtained from outbreaks of severe, cholera-like ETEC diarrhea in the Amazon, were kindly provided by 
Ana C.P. Vicente48, and a single strain (ThroopD) from the USA, isolated from a patient with severe diarrhea49 
was obtained courtesy of Richard Finkelstein. These five isolates represent reference ETEC isolates that have 
been characterized previously in the literature. Disease severity associated with individual isolates was assigned 
based on the clinical presentation at the time of isolation. ETEC isolates were confirmed from lactose-fermenting 
colonies based on assays for heat labile and heat-stable toxin genes, as described previously50. For some of these 
specimens, multiple isolates were sequenced per patient51; however, for this analysis, only a single non-redundant 
representative is examined to remove redundancy in the current dataset.

Genomes from a study on ETEC diversity by von Mentzer et al.31 were downloaded from the Sequence Read 
Archive (Accession: ERP000733). Reads were mapped to the three ETEC enterotoxins (Supplemental Table 3) 
with BWA-MEM52 and the per base depth of coverage was calculated with the GenomeCoverageBed method in 
BEDTOOLS53. The breadth of coverage, or percentage of each target that was covered by a minimum number of 
reads, was then calculated. Isolates having appropriate coverage on one of the toxin genes were considered con-
firmed ETEC genomes. The breadth of coverage analysis demonstrated that only 309 of these genomes contained 
one of the three ETEC enterotoxins at a minimum breadth of 80% (2x minimum depth of coverage). The genomes 
were subsequently assembled with SPAdes v3.6.054. Genomes with an anomalous assembly size (<4.5 mb) or a 
large number of contigs (>500) were removed from the analysis. Finally, a core genome phylogeny was inferred 
with all remaining genomes, including genomes sequenced in this study and external references (Figure S1). 
Genomes with a clade designation that differed from our results were removed (Figure S1). Following this filter-
ing pipeline, only 223 of the original 362 (61.6%) genomes from the study by von Mentzer et al.31 were used in 
downstream comparative genomic analyses (Table S1), including genomes associated with symptomatic (n = 178) 
and asymptomatic (n = 34) disease presentations.

DNA extraction, sequencing, assembly.  Genomic DNA was extracted with standard methods55 and 
sequenced on the Illumina HiSeq 2000 platform at the University of Maryland School of Medicine, Institute for 
Genome Sciences, Genome Resource Center using established SOPs. The resulting 100 bp reads were assem-
bled with the Celera Assembler56; the resulting assemblies and corresponding accession numbers are shown 
in Table S1. In silico multi-locus sequence type (MLST) profiles were assigned with a public script (https://
github.com/Victorian-Bioinformatics-Consortium/mlst) against the pubMLST E. coli database57. As the Celera 
Assembler will remove contigs with an anomalous coverage, all genomes were also assembled with SPAdes v3.6.

Core genome single nucleotide polymorphism (SNP) phylogeny.  SNPs were identified from all 
genome assemblies compared to K-12 W311058. Each query genome assembly was aligned to the reference with 
NUCmer59 and a direct mapping of query to reference was constructed. A self-alignment was conducted for the 
reference with NUCmer and any SNPs falling within duplicated regions were filtered from subsequent analy-
ses. All identified SNPs (n = 220,679) in all genomes (Supplementary Data File 1) compared to the reference 
were concatenated. A phylogeny was inferred on this concatenated SNP alignment with RAxML v860 using the 
ASC_GTRGAMMA substitution model (Lewis correction61). The NASP pipeline that wraps all SNP identification 
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methods is publically available (http://github.com/TGenNorth/NASP)62. The Retention Index63, which calculates 
the consistency of SNPs to a tree topology, was calculated with Phangorn64.

Identification of an ETEC genomic core.  Previously we reported the presence of an ETEC 
pathovar-specific genomic core16 using a reference-based approach. The current study utilizes a greater number 
of genomes with a reference-independent approach to identify genes differentially present in ETEC genomes. 
As outlined above, the 94 isolates from this study, as well as additional ETEC genomes from von Mentzer et al.31 
were downloaded from public databases, assembled with SPAdes v3.6.054, checked for the presence of one or 
more ETEC enterotoxins, and the resulting phylogenetic tree was inferred with FastTree265. ETEC genomes were 
identified as belonging to phylogroups A or B1 based on location in the phylogenetic tree and previously typed 
historical isolates; corresponding non-ETEC genomes from these same phylogenetic groups were identified from 
PATRIC66. For phylogenetic clades A and B1, 253 ETEC genomes and 253 reference genomes (Table S2) were 
tested for common genes using a LS-BSR approach35. Genomic regions with a differential distribution in these 
phylogroups were identified using an R67 script (https://gist.github.com/jasonsahl/569e502a66dcab5c643f).

Identification of ETEC genes associated with clinical presentation.  ETEC genomes and ref-
erence genomes (Table S1) were tested for gene presence and absence using the LS-BSR approach35. Genomic 
regions with a differential distribution based on the observed clinical presentation were identified from the 
outlier R script, with p-values using a Kruskal-Wallis test (https://gist.github.com/jasonsahl/6dd3939d3bb-
8c83f74f5ec5eac665280#file-kruskal_wallis_v1-py). A False Detection Rate (FDR) adjusted p-value < 0.05 was 
considered significant.

Identification of phylogenomic specific regions.  In addition to a global comparison of all asympto-
matic ETEC and symptomatic ETEC, a comparison was also made on selected individual lineages from the whole 
genome phylogeny that contain a combination of isolates from each clinical presentation (Table S1). Genomes in 
specific lineages were interrogated with the LS-BSR approach. Genomic regions with a differential distribution 
based on the observed clinical presentation were identified and the statistical test used was the Kruskal-Wallis 
test. Any FDR corrected p-value < 0.05 was considered significant.

Colonization factor identification.  A set of 21 common/previously identified ETEC colonization factors 
(Table S3) was collated and compared against the 136 genomes in the phylogeny (Fig. 1) with TBLASTN68 in 
order to identify the global CF profile. The BSR value69 was identified for each CF in each genome then visualized 
with the integrated tree of life (iTOL)70; regions with a BSR value of >0.9 were considered to be present. Contigs 
from draft assemblies that showed more remote homology (<90% peptide ID) to known CFs were annotated with 
Prokka71 to identify the operon structure of the homologous region.

Structural subunits from novel putative CFs were identified from the predicted coding sequences and anno-
tation of each genome. Peptide sequences associated with previously identified CF structural subunits (Table S3) 
were aligned with new putative subunits identified in this study using MUSCLE72, and a phylogenetic tree was 
inferred with RAxML using the BLOSUM62 substitution matrix and 100 bootstrap replicates.

in silico virulence factor screen of ETEC genomes.  All verified and predicted ETEC virulence factors 
were compiled for interrogation of the genomes generated in this study (Table S3). The peptide sequence for each 
factor was aligned against all sequenced genomes with TBLASTN in conjunction with LS-BSR. The BSR value 
was calculated, and genes with a BSR ≥ 0.90 were considered to be highly conserved. The proportion of genes that 
were determined to be highly conserved in each group (clinical presentation, or phylogenomic group etc) was 
compared with a two-tailed significance test and the p-value was calculated from the resulting z-score.

Accession numbers.  The genome sequences generated in this study are deposited in GenBank under the 
accession numbers listed in Table S1.
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