
Ultrastructure of Type VI Collagen in Human Skin 
and Cartilage Suggests an Anchoring Function for 
This Filamentous Network 
D o u g l a s  R .  Keene ,*  Eva  Engval l ,§  a n d  R o b e r t  W. Glanvi l le*¢ 

* Shriners Hospital for Crippled Children, Portland, Oregon 97201; ¢ Department of Biochemistry, Oregon Health Sciences 
University, Portland, Oregon 97201; and § Cancer Research Center, La Jolla Cancer Research Foundation, 
La Jolla, California 92037 

Abstract. An mAb was used in conjunction with im- 
munoelectron microscopy to study the ultrastructure 
and distribution of the type VI collagen network. Type 
VI collagen in femoral head and costal cartilage was 
found distributed throughout the matrix but concen- 
trated in areas surrounding chondrocytes. Three- 
dimensional information gained from high voltage 
stereo pair electron microscopy showed that the type 
VI collagen network in skin was organized into a 
highly branched, open, filamentous network that encir- 
cled interstitial collagen fibers, but did not appear to 

interact directly with them. Type VI collagen was also 
found concentrated near basement membranes of 
nerves, blood vessels, and fat cells although in a less 
organized state. Labeling was conspicuously reduced 
close to the epithelial basement membrane in the re- 
gion of the anchoring fibrils. No labeling of basement 
membranes was seen. Based on these observations it 
is suggested that the type VI collagen forms a flexible 
network that anchors large interstitial structures such 
as nerves, blood vessels, and collagen fibers into sur- 
rounding connective tissues. 

T 
YPE VI collagen forms a filamentous network in most 
extracellular matrices. The basic structural subunit of 
the filaments is a tetramer of type VI collagen mole- 

cules (for recent review see Timpl and Engel, 1987). The 
structure of the subunits has been described in some detail 
from electron microscope studies of rotary-shadowed mole- 
cules, initially on pepsin-solubilized and later intact type VI 
collagen tetramers (Furthmayr et al., 1983; vonder Mark et 
al., 1984; Engvall et al., 1986). The type VI collagen mole- 
cule consists of a short triple helix, '~105 nm in length, 
which has a very large globular domain at each end. From 
biosynthetic studies in fibroblasts, it is believed that dimers 
are first formed by two molecules aligning themselves in an 
antiparallel fashion so that their helices are staggered and 
overlap by 75 nm. Tetramers are formed by lateral associa- 
tion of two dimers with their ends in register (Engvall et al., 
1986). These structures are stabilized by disulfide bonds. 
The end-on-end aggregation of tetramers gives rise to illa- 
ments that have been observed in cell culture as beaded fila- 
ments, the beads being a structure formed by the interaction 
of globular domains from two tetramers (Bruns, 1984). 

In tissues, type VI collagen filaments are difficult to visual- 
ize without the aid of an immunolabel and also difficult to 
distinguish from microfibrillar structures such as those con- 
raining fibrillin (Sakai et al., 1986). Several mAbs have been 
used to immunolocalize type VI collagen and have shown 
that it has a very broad distribution in a wide variety of tis- 

sues (Table I). It has also not yet been detected in the 
calcified matrix of bone, and immunofluorescent staining of 
hyaline cartilage has produced conflicting results (Ayad et 
al., 1984; vonder  Mark et al., 1984). 

Ultrastructural studies using ferritin or gold-labeled sec- 
ondary antibodies have been much more restricted. In pla- 
centa, type VI collagen was localized to thin filaments 6-10 
nm in diameter in amorphous stromal regions of placental 
villi (vonder Mark et al., 1984), and surrounding type I/III 
collagen fibers (Amenta et al., 1986). In the aorta, heavy 
staining of filaments between the thick collagen fibers was 
observed with no labeling of thick collagen or elastin fibrils 
(vonder Mark et al., 1984). Both studies gave the impres- 
sion that type VI collagen formed a filamentous network that 
was independent of the type I/III collagen fibrils and fre- 
quently ran perpendicular to them. Similar observations 
were made in studies of a neurofibroma (Fleischmajer et al., 
1985). 

Banded aggregates of collagen with a periodicity of '~100 
nm have been frequently found in cell culture systems and 
many pathological tissues, particularly tumors (reviewed by 
Pillai, 1964; Sun and White, 1975; Buckwalter et al., 1979). 
This is distinctly different from the 64-nm periodicity of the 
interstitial collagens and corresponds well to a model for 
laterally aggregated type VI filaments. These structures, re- 
ferred to as broad-banded material (Yardley and Brown, 
1965), Luse bodies (Luse, 1960), or fibrous long spacing 
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Table L Tissue Distribution of Type VI Collagen Using 
lmmunofluorescence 

Tissue References 

Skin 

Kidney 

Muscle 

Brain, liver 

Blood vessels 

Amnion/chorion 

Cornea, sclera, 
perichondrium 

Alveolar bone, 
dentine 

Spleen 

Thyroid, pancreas, 
heart 

Elastic cartilage 

Nuchal ligament, 
lung, tendon 

Gibson and Cleary, 1983; v o n d e r  Mark et 
al., 1984; Hessle and Engvall, 1984; Sakai 
et al., 1986; McComb et al., 1987 

Jander et al., 1981; Marton and Arnason, 
1982; Gibson and Cleary, 1983; v o n d e r  
Mark et al., 1984; Hessle and Engvall, 
1984; McComb et al., 1987 

Marton and Arnason, 1982; Hessle and 
Engvali, 1984; Linsenmayer et al., 1986 

Marton and Arnason, 1982; McComb et 
al., 1987 

Jander et ai., 1981; Gibson and Cleary, 
1983; v o n d e r  Mark et al., 1984 

Hessle and Engvall, 1984 

Linsenmayer et al., 1986 

Becket et al., 1986 

Gibson and Cieary, 1983; McComb et al., 
1987 

McComb et al., 1987 

Sakai et al., 1986 

Gibson and Cleary, 1983 

(Silberberg et al., 1963; Ramsey, 1965; Cravioto and Lock- 
wood, 1968) have also been found in normal nucleus pulpo- 
sus (Buckwalter et al., 1979; Cornah et al., 1970). 

The results presented here address four issues: the pres- 
ence of type VI collagen in cartilage, the three-dimensional 
structural relationship between the type VI filaments and in- 
terstitial collagen, the relationship of type VI collagen fila- 
ments to broad-banded collagen aggregates, and the function 
of type VI collagen. 

Materials and Methods 

Antibody 
The mouse mAb (5C6) which recognizes the helical domain of human type 
VI collagen used throughout this study has been characterized previously 
(Engvall et al., 1986). 

Immunolabeling of Tissues 
Enbloc immunolabeling of tissues was carried out using a previously de- 
scribed protocol (Sakai et al., 1986) with some modification. Freshly ob- 
tained human neonatal foreskins, skin obtained at autopsy, and adult skin 
biopsies were sliced perpendicular to the epithelium into strips 0.5-1 mm 
in thickness. Unfixed tissues were washed in PBS, pH 7.4, at 4°C for "~2 h 
and then incubated in mouse ascites containing human type VI collagen anti- 
body, diluted 1:5 in PBS overnight at 4°C. Following a 6-h wash in PBS 
at 4°C, the samples were incubated in goat anti-mouse (GAM) 5-nm gold 
conjugate (Janssen Life Science Products, Piscataway, NJ) diluted 1:3 in 
BSA buffer (20 mM Tris-HCl, 0.9% NaCI, 1 mg/ml BSA, 20 mM NAN,), 
pH 8.0, overnight at 4°C, followed by an extensive rinse in PBS as above. 
The samples were then rinsed briefly in 0.1 M sodium cacodylate buffer, 

pH 7.4, fixed in cacodylate-buffered 3 % formaldehyde/3 % gluteraldehyde, 
rinsed again in cacodylate buffer, then postfixed in buffered 1.0% OsO4. 
The samples were then rinsed in buffer, dehydrated in a graded series of eth- 
anol dilutions to 100% EtOH, washed in propylene oxide, infiltrated in 
Spurr's epoxy (hard formula), and embedded so as to obtain cross sections 
of the epithelium. Some skin samples were removed from the above men- 
tioned enbloc-treated samples after 5-nm gold incubation and exposed to 
freshly prepared 3% formaldehyde/3% gluteraldehyde containing 1,500 
ppm ruthenium red, rinsed in 0.1 M cacodylate buffer, pH 7.4, containing 
400 ppm ruthenium red, postfixed in 1% buffered OsO4 containing 400 
ppm ruthenium red, and then dehydrated without a buffer wash (modified 
from Myers et al., 1969). 

Human cartilage was obtained at autopsy within 24 h after death, and was 
incubated in hyaluronidase (Sigma Chemical Co., St. Louis, MO) (8,000 
U/ml 0.1 M NaHPO4-0.15 M NaCI, pH 5.3) for 1 h at room temperature 
followed by a rinse in 0.1 M Tris acetate buffer, pH 7.6, then incubated in 
chondroitinase ABC (Miles Scientific, Naperville, IL; 0.25 U/ml Tris ace- 
tate buffer, pH 7.6) for 90 min at room temperature followed by a rinse in 
PBS before incubation in primary antibody. Subsequent enbloc im- 
munolabeling was as described above. Control samples of all tissues were 
treated in the same manner except antibodies of irrelevant specificity were 
substituted for type VI collagen antibody. 

Conventional and High Voltage Transmission EM 
For conventional transmission EM, 60-90 nm sections were cut using an 
ultramicrotome (Ultracut E; Reichert Scientific Instruments, Buffalo, NY) 
and mounted on 2 × 1 mm formvar-coated slot grids. Grids were stained in 
2% uranyl acetate in 50% EtOH for 15 min followed by Reynolds' lead ci- 
trate (Reynolds, 1963) for 60 s, and examined using a transmission electron 
microscope (model 410LS; Philips Electronic Instruments, Inc., Mahwah, 
NJ) operated at 60 kV with a 30-1xm objective aperture. The sections from 
which stereo micrographs were taken varied from 0.25-1.0 p.m and staining 
times varied according to section thickness. Thick sections were observed 
using either a JEM 1000 (Japan Electronic Optics, Corp., Peabody, MA) 
operated at 1,000 kV at the High Voltage Electron Microscope Laboratory, 
University of Colorado (Boulder, CO) or a transmission electron micro- 
scope (model 410LS; Philips Electronic Instruments, Inc.) equipped with 
a LaB6 emitter operated at 100 kV with a 50- or 30-p.m objective aperture. 
Tilt angles for stereo pairs varied dependent on section thickness and 
magnification. 

Scanning EM 
Skin samples prepared for scanning EM were removed from the pool of 
samples following dehydration through 100% ethanol and critical-point 
dried in liquid CO2 in a critical-point drying apparatus (model 814; Tou- 
simis Scientific Instruments, Rockville, MD), mounted onto stubs, and 
sputter-coated with gold in an evaporator (MED 010; Balzers, Hudson, 
NH). Samples were observed using the upper stage of a scanning EM 
(model DS 130; International Scientific Instruments, Inc., Milpitas, CA) 
equipped with an LaB6 emitter operated at 10 kV with a spot size of 3- 
10 nm. 

Results 

Cartilage 
When hyaluronidase- and chondroitinase-treated femoral 
head cartilage from a 30-mo-old human was incubated in 
type VI collagen primary antibody followed by 5-nm gold- 
conjugated secondary antibody, the gold localized to ran- 
domly arranged 100-nm periodic branching filaments pres- 
ent throughout the cartilage matrix (Fig. 1 a). No direct 
association or alignment to the type II collagen fibrils was 
seen. However, a higher concentration of type VI-containing 
fibrils was found immediately adjacent to chondrocytes (Fig. 
l, b and c). Without pretreatment of the cartilage with 
hyaluronidase and chondroitinase, no gold label was found. 
These filaments were not labeled in cartilage treated with 
mAbs directed against irrelevant antigens, for example type 
III collagen, fibrillin, and elastin. 
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Figure 1. Electron microscopic immunolocalization of type VI collagen in human cartilage. Type VI collagen is distributed as randomly 
arranged periodic fibrils in cartilage matrix (a, 36-mo costal cartilage). It is present in higher concentration immediately adjacent to chon- 
drocytes, for example in a 24-wk fetus femoral head chondrocyte cut in cross section (b), and in a grazing section through the pericellular 
matrix of a 36-mo costal cartilage chondrocyte (c). Bars, 250 nm. 
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Figure 3. Stereo pairs of type 
VI-antibody immunolabeled 
skin. (a) High voltage EM 
stereo pair of a 0.5-~tm-thick 
section of 45-yr-old human 
skin. A branching network of 
type VI collagen, interdigitat- 
ing amongst banded fibrils is 
clearly visible. (b) Scanning 
EM stereo pair of similarly 
treated 9-yr-old skin. The type 
VI micofibrillar network is 
clearly visible, extended across 
many loosened interstitial col- 
lagen fibrils. Bars, 500 nm. 

Figure 2. Electron microscopic immunolocalization of type VI collagen in 20-yr-old human skin. The type VI network in adult skin matrix 
associated with longitudinally section banded collagen fibrils appears to align roughly parallel with interstitial collagen fibrils. The label 
displays ~100-nm periodicity (inset). Bars, 200 nm. 
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Skin 

In the reticular layers of skin, 5-nm gold deposition directed 
by mAbs to type VI collagen revealed a branching network 
of type VI closely associated with banded collagen fibrils 
(Fig. 2). Type VI antibody-directed gold label often dis- 
played a periodicity of ~ 100 nm (Fig. 2, inset) as previously 
reported (Bruns et al., 1986). When this filamentous net- 
work was examined in longitudinal section through the as- 
sociated banded collagen fibrils, the general orientation of 
the type VI network appeared to be parallel to that of the 
banded fibrils. However, the type VI filamentous network 
branches repeatedly, and in so doing traverses many in- 
dividual banded fibrils. This is most readily seen by viewing 
stereo pictures (Fig. 3), or in the scanning EM (Fig. 4). In 
areas where banded collagen fibers were cut in cross section, 
type VI collagen filaments were seen to traverse between in- 
dividual banded fibrils but were often not uniformly dis- 
tributed (Fig. 5 a). Local concentrations of type VI some- 
times appeared to subdivide banded fibrils into groups (Fig. 
5 b, arrows). Generally, the type VI network formed a web- 
like network of branching filaments which intertwined with 
banded collagen fibrils. 

In the papillary dermis closely apposed to the epithelial 
basement membrane, type VI collagen associated with 
banded collagen fibrils was seen to lack the weblike arrange- 
ment seen in the deeper reticular layers of skin and appeared 
to be more uniformly distributed. In this region, the banded 
fibrils were similar to type II collagen in cartilage as they ex- 
ist as individual fibrils (Fig. 6 a). Type VI-directed gold par- 
ticles were not detected within the basement membranes of 
skin nor within anchoring plaques, which are connected to 
the epithelial basement membrane by way of the anchoring 
fibril network (Keene et al., 1987b). 

Adjacent to basement membranes associated with fat cells 
(Fig. 6 b), nerve fibers (Fig. 6 c), and capillaries (not 
shown), the concentration of type VI-containing filaments 
was markedly increased relative to the concentration noted 
in the matrix contained within the reticular and papillary 
layers. As seen by viewing stereo pairs (Fig. 7), type VI was 
associated with disorganized interstitial collagen fibrils sur- 
rounding the nerve and accumulated along the basement 
membrane. Fibrillin, a noncollagenous microfibrillar struc- 
ture often associated with collagens and easily mistaken for 
type VI collagen, is also visible (also see Fig. 4 a). 

When inununolabeled tissues were stained enbloc with 
ruthenium red, the type VI-containing filaments stained in- 
tensely and were easily visualized between sites labeled with 
gold particles (Fig. 8, arrowheads), whereas in untreated 
preparations filaments were only faintly visible (Fig. 2, 
inset). 

When the amount of type VI-directed colloidal gold dis- 
tributed in 24-wk-old fetal skin was compared to that amount 
distributed in neonatal or older skin, it was our impression 
that there is significantly more type VI collagen present in 
the fetal skin. Additionally, in fetal skin which had under- 
gone enbloc treatment with type VI antibody, discreet broad- 
banded aggregates displaying ,x,100-nm periodicity were 
commonly distributed in areas beyond the limits of antibody 
penetration (Fig. 9). This is in contrast to similarly treated 
older skin in which their occurrence was much rarer and al- 
most entirely limited to areas immediately adjacent to 
nonepithelial basement membranes. 

Discussion 

Immunofluorescent studies previously undertaken to localize 
type VI collagen in cartilage have produced contradictory 
results, none of which agree completely with the results 
reported here. In one study (vonder Mark et al., 1984) no 
type VI was detected in cartilage, while in another (Ayad et 
al., 1984) only pexicellular staining was observed. These 
discrepancies mayibe caused by differences in tissue age or 
pretreatment conditions before antibody labeling proce- 
dures. The results reported here show it to be distributed 
throughout the matrix of the cartilage, and somewhat more 
concentrated directly around chondrocytes. It is not yet pos- 
sible to say whether the increased labeling around chondro- 
cytes corresponds to the pericellular matrix described by 
Poole et al. (1984) and als0 by Weiss et al. (1968), or to the 
pericellular capsule which has been described as a basket- 
weave network of fine fibrillar material which surrounds the 
pericellular network (Poole et al., 1984). Farther away from 
the chondrocyte, the labeled VI filaments are found in 
decreasing numbers, forming an interlacing network be- 
tween type II collagen fibrils. Type VI collagen has been de- 
scribed as a beaded filament (Bruns et al., 1984), and the dis- 
tribution described for the beaded filaments in cartilage 
based purely on ultras~ctural appearance (Weiss et al., 
1968) agrees well with the distribution of type VI described 
here. 

The pericellular matrix of chondrocytes also stains with 
ruthenium red (Luft, 1971; Poole et al., 1984) as do filaments 
observed in several other tissue structures including syno- 
vium (Myers et al., 1969), skin, capillaries (Kajikawa et al., 
1970), nerve (Luft, 1971), and aorta (Myers et al., 1973). 
It was shown ~at  mucopolysaccharides are a component of 
these filaments (Myers et al., 1969) and it was suggested that 
the mechanical properties of tissues would be influenced by 
their composition (Myers et al., 1973). As shown here, type 
VI collagen is a component of a ruthenium red-stainable 
network. 

Local accumulation of type VI filaments is not only ob- 
served around chondrocytes in cartilage but also around 
basement membranes associated with fat cells, nerves, and 
capillaries of the skin. In contrast, no accumulation of type 
VI is found at the epithelial basement membrane. The epithe- 
lial basement membrane is a sheetlike structure that is at- 
tached to the underlying connective tissue by a system of an- 
choring plaques and fibrils which contain type VII collagen 
(Keene et al., 1987b),: Other basement membranes lack an 
anchoring fibril network, so the accumulation of a type VI 
filamentous network encircling these structures and its con- 
tinuation into the surrounding matrix may serve to anchor 
them in the surrounding connective tissue. Type VI collagen 
around endothelial basement membranes may in fact be syn- 
thesized by endothelial cells (Sawada et al., 1987). Thus type 
VI could contribute significantly to the mechanical proper- . . . ~ . . 

ties of connectwe tissues, binding various components such 
as collagen fibers, nerves, blood vessels, cells, and ground 
substance together into a functional tissue while still allow- 
ing flexibility. Although there are no covalent bonds between 
the tetrameric subunits of type VI collagen (Wu et al., 1987), 
the strength of the network may be provided by the numbers 
of filaments involved. The absence of covalent linkages may 
in fact facilitate growth and remodeling of tissues and per- 
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Figure 4. Scanning EM of human neonatal:foreskin. (a) Scanning EM reveals the type VI network, decorated with antibody-directed 40-nm 
gold clusters (solid arrow), which can be easily distinguished from thick fiber bundles containing fibriUin (open arrow). (b) The branching 
type VI network labeled with 5-nm gold forms an open basketweave-like network which girds bundles of interstitial collagen fibrils. Type 
III collagen is also immunolabeled in this micrograph by the "naked" IgM technique in which no gold conjugates were used (Keene et 
al., 1987a). Bars, 500 nm. 
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Figure 5. A cross section of interstitial collagen fibrils showing the 
distribution of immunolabeled type VI collagen in 18-yr-old human 
skin. Type VI collagen is not uniformly distributed (a). Occasion- 
ally, local concentrations of type VI collagen seem to divide banded 
collagen fibers into groups of fibrils (arrowheads, b). Bars, 250 nm. 
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Figure 6. Electron microscopic immunolocalization of type VI collagen adjacent to basement membranes in human skin. The distribution 
of type VI collagen along basement membranes in skin differs from its distribution within the matrix. Adjacent to the epithelial basement 
membranes (a), type VI collagen is closely associated with banded collagen fibrils but lacks the orderly arrangement seen in deeper layers. 
It is not localized to the basement membrane (BM) or to anchoring plaques (AP). Areas immediately surrounding basement membranes 
of fat cells (b), nerves (c), and capillaries (not shown) show a marked increase in the concentration of type VI relative to the surrounding 
matrix. Bars, 500 nm. 



Figure 7. Stereo pair produced 
using high voltage EM of a 
0.5-1xm-thick section of nerve 
basement membrane in the 
skin of a 45 yr old reveals a 
high concentration of disor- 
ganized type VI fibrils closely 
associated with the basement 
membrane. The type VI anti- 
body does not direct gold depo- 
sition to elastin-associated mi- 
crofibrils containing fibrillin 
(open arrow). Bar, 500 nm. 

haps the assembly and disassembly of aggregates. Skin 
fibroblasts from a patient with Cutis-Laxa, a disease which 
is characterized by loss of skin elasticity, were shown to de- 
posit less type VI collagen into an insoluble extracellular ma- 
trix in vitro than control fibroblasts (Crawford et al., 1985), 
suggesting that abnormal synthesis and deposition of type VI 
collagen may result in changed mechanical properties of 
affected tissues. 

Immunolocalization studies using mAbs directed against 
either fibrillin (Sakai et al., 1986) or type VI collagen 
(reported here), show fibrillin and type VI collagen to be 
components of separate filamentous systems. Fibrillin is a 
noncollagenous microfibrillar component often associated 
with elastin, whereas type VI collagen is predominantly as- 
sociated with interstitial collagen fibers of types I and III col- 
lagen. Using a combination of scanning EM micrographs 
and thick-section microscopy, a more detailed description of 
the three-dimensional structure of the type IV collagen net- 
work was developed. The network appears to consist of an 
open irregular network of branching filaments that inter- 
twine, in an apparently random manner, between collagen 
fibers and individual fibrils. They appear to entrap fibers and 
fibrils so that extreme lateral movement would be restricted, 
while longitudinal movement may be possible, when stress 
is applied. 

Structures similar to those described previously as broad- 
banded collagen or fibrous long spacing collagen, seen fre- 
quently in pathological tissues or cell culture (see Intro- 
duction), are readily observed in normal fetal skin after 
incubation in buffer. In this study, the formation of aggregates 
was inhibited in areas of skin perfused by an antibody recog- 

nizing type VI collagen, presumably because bound anti- 
body sterically hinders the formation of aggregates. This 
supports the conclusion of Bruns (Bruns et al., 1986), who 
showed that broad-banded aggregates formed in cultures of 
skin fibroblasts could be immunolabeled with a mAb di- 
rected against the helical domain of type VI. As broad- 
banded aggregates are never seen in fresh, immediately fixed 
normal skin, they are probably an artifact produced by pro- 
longed incubation of tissues in buffers. There is evidence that 
neutral proteases are involved in the formation of these ag- 
gregates. In tissue-cultured rat skin, the formation of ag- 
gregates was inhibited by EDTA and this effect was reversible 
by the addition of exogenous bacterial collagenase (Kajikawa 
et al., 1980). Pathological conditions displaying broad- 
banded collagen aggregates may therefore involve alterations 
in the molecular structure of type VI collagen or in the sur- 
rounding matrix, allowing type VI filaments to aggregate. 
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Figure 8. En bloc t rea tment  with ru t hen i um red stains immuno la -  
beled type VI col lagen fibrils in neonatal  foreskin.  In contrast  to 
staining only in uranyl  acetate and lead citrate (Fig. 2, inset),  type 
VI fibers are clearly vis ible  be tween areas  labeled with antibody-di-  
rected gold (arrowheads) .  Bar, 200 nm.  
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