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Abstract: Pathogenic enveloped viruses are covered with a glycan shield that provides a dual
function: the glycan structures contribute to virus protection as well as host cell recognition. The
three classical types of N-glycans, in particular complex glycans, high-mannose glycans, and hybrid
glycans, together with some O-glycans, participate in the glycan shield of the Ebola virus, influenza
virus, human cytomegalovirus, herpes virus, human immunodeficiency virus, Lassa virus, and MERS-
CoV, SARS-CoV, and SARS-CoV-2, which are responsible for respiratory syndromes. The glycans are
linked to glycoproteins that occur as metastable prefusion glycoproteins on the surface of infectious
virions such as gp120 of HIV, hemagglutinin of influenza, or spike proteins of beta-coronaviruses.
Plant lectins with different carbohydrate-binding specificities and, especially, mannose-specific lectins
from the Vicieae tribe, such as pea lectin and lentil lectin, can be used as glycan probes for targeting the
glycan shield because of their specific interaction with the α1,6-fucosylated core Man3GlcNAc2, which
predominantly occurs in complex and hybrid glycans. Other plant lectins with Neu5Ac specificity or
GalNAc/T/Tn specificity can also serve as potential glycan probes for the often sialylated complex
glycans and truncated O-glycans, respectively, which are abundantly distributed in the glycan shield
of enveloped viruses. The biomedical and therapeutical potential of plant lectins as antiviral drugs
is discussed.

Keywords: enveloped virus; Ebola virus; HIV; herpes simplex virus; human cytomegalovirus;
influenza virus; MERS-CoV; SARS-CoV-2; N-glycosite; O-glycosite; high-mannose glycan; complex
N-glycans; Vicieae man-specific lectin; T/Tn-specific lectin; specific interaction

1. Introduction

Many pathogenic viruses for humans are so-called enveloped viruses with a lipid
bilayer that allows the infectious virions to fuse with the cell membrane, followed by
the entry and replication of the viral genetic material into the host cells. Ebola virus
(EBOV), influenza virus (IV), herpes simplex virus (HSV), human immunodeficiency virus
(HIV), human cytomegalovirus (HCMV), Lassa virus (LASV), and the beta-coronaviruses
responsible for the Middle East respiratory syndrome (MERS-CoV) and the severe acute
respiratory syndrome (i.e., SARS-CoV and SARS-CoV-2) belong to this group of pathogenic
enveloped viruses [1]. Among the surface glycoproteins that are embedded in the lipid
bilayer of enveloped viruses, so-called fusion glycoproteins play a key role in mediating the
recognition of infectious virions by the host cell membrane receptors and their subsequent
anchorage to the host cells [2]. Energetically driven conformational changes occurring in
the metastable fusion proteins, which usually occur in a prefusion state, are responsible for
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an enhanced exposure of the receptor-binding domain (RBD) of the fusion proteins that
favors their recognition by the host cell receptors [1]. Fusion proteins of enveloped viruses
usually consist of the non-covalent association of three monomers to build a homotrimeric
structure exposed on the surface of the virions. However, depending on the enveloped
viruses, the structure, shape, and size of the monomers building the homotrimers are
highly variable from one virus to another (Table 1). Other surface glycoproteins, such as
the so-called B glycoprotein from HSV [3], and E proteins from flaviviruses responsible for
some severe diseases, including chikungunya virus (CHIV), dengue virus (DENV), and
Zika virus (ZIV), also contribute to the glycan shield covering the infectious virions [4–6].

Table 1. Structural properties of fusion protein and E glycoprotein associations of enveloped viruses
as parts of the glycan shield covering infectious virions.

Enveloped Virus Homotrimer Monomer PDB Entry * Reference

Ebola virus (EBOV) Homotrimer 7JPH [7]

Influenza virus (IV) Hemagglutinin A
Homotrimer hemagglutinin A 6Y5G [8]

Human cytomegalovirus (HCMV) Homotrimer B glycoprotein 5CXF [9]

Herpes simplex virus (HSV) Homotrimer B glycoprotein 2GUM [3]

Human immunodeficiency virus (HIV) Homotrimer gp140 4TVP [10]

Lassa virus (LASV) Homotrimer GPC glycoprotein 5VK2 [11]

Middle east respiratory syndrome
coronavirus (MERS-CoV) Spike S protein 5W9H [12]

Severe acute respiratory syndrome
coronavirus-1 (SAR-CoV) Spike S protein 6ACD [13]

Severe acute respiratory syndrome
coronavirus-2 (SARS-CoV-2) Spike S protein 6VXX [14]

Chikungunya virus (CHIV) Homodimer E protein 3N40 [4]

Dengue virus (DENV) Homodimer E protein 1UZG [5]

Zika virus (ZIV) Homodimer E protein 57BUB [6]

* A single PDB code is indicated but several PDB entries are available at the PDB.

Although N- and O-glycans decorate the fusion glycoproteins, the three classical
types of N-glycans, including complex-type glycans, high-mannose-type glycans, and
hybrid-type glycans, are predominantly distributed along the fusion proteins of pathogenic
enveloped viruses. In addition, a high proportion of complex glycans are α1,6-fucosylated
on the first GlcNAc linked to the Asn residue and often sialylated on their terminal Gal
residues [15]. Moreover, the extreme diversity of complex glycans appears as a characteris-
tic of enveloped viruses. In addition to the N-glycans, O-glycans have been identified on the
envelope glycoproteins of infectious virions, especially in pathogenic coronaviruses such
as SARS-CoV-2 [16]. In fact, most of the Ser and Thr residues of unoccupied NXT/S glyco-
sylation sites of SARS-CoV-2 are O-glycosylated by short Gal/GalNAc/T/Tn-containing
O-glycan chains [17]. However, the O-glycan content of SARS-CoV-2 is much lower than
the level of N-glycans.

Lectins are known as a group of carbohydrate-binding proteins of non-immune origin
that are widely distributed in plants. Many lectins have been studied for their role in the
protection of plants against pathogens, aiming to resolve the function of the lectins inside
different plant tissues. In addition, these carbohydrate-binding proteins have been proven
to be important tools for glycobiology, allowing for the investigation of the importance
of protein–carbohydrate interactions. Several plant lectins have been reported as potent
molecules with anti-infectivity properties for RNA viruses including pathogenic enveloped
viruses. Depending on their carbohydrate-binding specificity, lectins can recognize and
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bind particular types of glycan structures present in the glycan shield of viruses. Over
the past decades, lectins from different legume species, referred to as legume lectins,
have been studied in great detail. Despite the fact that legume lectins represent a large
family of proteins with important similarity in their amino acid sequences, these lectins
show remarkable variability in their carbohydrate-binding properties. Many legume
lectins have been reported to recognize glycoconjugates on cells and viruses and can
discriminate between diverse glycan structures, making them interesting research tools for
glycomic research [18].

The primary purpose of this review was to give an overview of the types of glycans
present in the glycan shield of different pathogenic enveloped viruses and how legume
lectins with different specificities can act as carbohydrate-binding agents (CBAs) for these
viruses. Finally, biomedical perspectives for plant lectins with antiviral properties are
also discussed.

2. The Glycan Shield of Pathogenic Enveloped Viruses

Glycoproteins that are part of the glycan shield that covers the enveloped viruses are
modified with three types of N-glycans including complex glycans, high-mannose glycans,
and hybrid glycans (Figure 1):

• Complex-type N-glycans are most abundant on all the envelope proteins except for the
gp120 and hemagglutinin from HIV and IV, respectively, which predominantly contain
high-mannose-type N-glycans. Complex glycans exhibit a high diversity in their gly-
can structure, including bi-, tri-, and tetra-antennary glycans which are often sialylated
on their terminal Gal residues and fucosylated on sub-terminal GlcNAc residues. Most
of these complex N-glycans possess an α1,6-fucosylated Man3GlcNAc2 core;

• High-mannose N-glycans are less abundant and offer less diversity than complex
N-glycans because they consist exclusively of Man residues. High-mannose N-glycans
from enveloped viruses include oligomannosides containing 4–9 (Man4–9) Man residues,
and all of them possess a non-fucosylated Man3GlcNAc2 core;

• Hybrid N-glycans are least abundant on enveloped viruses.

A detailed study of the N-glycan structures occurring on the beta-coronaviruses, MERS-
CoV, SARS-CoV, and SARS-CoV-2, confirmed the high heterogeneity of the complex glycans
of the S glycoprotein forming the spikes and revealed important differences depending
on the type of beta-coronavirus [15]. In addition, although some of the N-glycosylation
sites, NXT/S, are often occupied with variable proportions of complex and high-mannose
N-glycans, the complex N-glycans are largely predominant [16,27–29].

Furthermore, a few O-glycans also occur, especially on the S protein from beta-
coronaviruses [16]. Interestingly, the Thr and Ser residues of N-glycosylation sites unoccu-
pied by N-glycans are modified with short O-glycan chains [17]. Usually, these O-glycans
are less exposed on the surface of S proteins, mainly due to the fact of their smaller size
compared to the large and highly exposed N-glycans [27].

Both the homotrimeric organization of the fusion proteins and the homodimeric
organization of E glycoproteins on the surface of pathogenic enveloped viruses favor the
exposure of their glycan shield (Figures 2 and 3). However, the distribution of N-glycans,
especially at the top of the fusion protein homotrimer, provides areas devoid of glycans
allowing for the recognition of pathogenic viruses by the corresponding DPP4 and ACE2
receptors located on the host cells. These glycan-free areas, which correspond to the so-
called RBDs of S proteins from MERS-CoV, SARS-CoV, and SARS-CoV-2, contribute to the
infectious potential developed by the pathogenic beta-coronaviruses [28–30].
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Figure 1. Diversity of the different types of N-glycans forming the glycan shield covering the
pathogenic enveloped viruses: Ebola virus (EBOV) [19], herpes simplex virus (HSV) [20], human
cytomegalovirus (HCMV) [21], human immunodeficiency virus (HIV) [22], influenza virus (IV) [23],
chikungunya virus (CHIV) [24], Lassa virus (LASV) [25], MERS-CoV (MERS-CoV) [15], SARS-CoV
(SARS-CoV) [15], SARS-CoV-2 (SARS-CoV-2) [15], and Zika virus (ZIV) [26]. Symbols representing
the glycan structures are as follows: GlcNAc (blue square), Gal (yellow circle), Man (green circle),
Fuc (red triangle), and Neu5Ac (purple diamond).
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Figure 2. Figure illustrating the extent of the glycan shield covering the envelope glycoproteins
of pathogenic enveloped viruses. The illustrations show the lateral face of the molecular surface
of the homotrimeric organization of the envelope glycoprotein of Ebola virus (EBOV) (PDB code
7JPH), influenza virus (IV) (PDB code 6Y5G), human cytomegalovirus (HCMV) (PDB code 5CXF),
herpes simplex virus (HSV) (PDB code 2GUM), human immunodeficiency virus HIV (PDB code
4TVP), Lassa virus (LASV) (PDB code 5VK2), Middle East respiratory syndrome virus (MERS-CoV)
(PDB code 5W9H), severe acute respiratory syndrome (SARS-CoV) (PDB code 6ACD), and severe
acute respiratory syndrome-2 (SARS-CoV-2) (PDB code 6VXX). Lateral face of the molecular surface
of the dimeric organization of the E glycoprotein of chikungunya virus CHIV (PDB code 3N40),
dengue virus DENV (PDB code 1UZG), and Zika virus ZIV (PDB code 7BUB). Monomers forming
the homotrimeric and homodimeric associations of envelope glycoproteins are colored differently,
and N-glycan chains forming the glycan shield are represented by cyan colored balls.
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influenza virus (IV) (PDB code 6Y5G), human cytomegalovirus (HCMV) (PDB code 5CXF), herpes 
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code 5W9H), severe acute respiratory syndrome (SARS-CoV) (PDB code 6ACD), and severe acute 
respiratory syndrome-2 (SARS-CoV-2) (PDB code 6VXX). Lateral face of the molecular surface of 
the dimeric organization of the E glycoprotein of chikungunya virus CHIV (PDB code 3N40), den-
gue virus DENV (PDB code 1UZG), and Zika virus ZIV (PDB code 7BUB). Monomers forming the 
homotrimeric and homodimeric associations of envelope glycoproteins are colored differently, and 
N-glycan chains forming the glycan shield are represented by cyan colored balls. 

 
Figure 3. Figure illustrating the extent of the glycan shield covering the envelope glycoproteins
of pathogenic enveloped viruses. Illustrations show the top face of the molecular surface of the
homotrimeric organization of the envelope glycoprotein of Ebola virus (EBOV) (PDB code), influenza
virus (IV) (PDB code), human cytomegalovirus (HCMV) (PDB code 5CXF), herpes simplex virus
(HSV) (PDB code 2GUM), human immunodeficiency virus (HIV) (PDB code 4TVP), Lassa virus
(LASV) (PDB code 5VK2), Middle East respiratory syndrome virus (MERS-CoV) (PDB code 5W9H),
severe acute respiratory syndrome (SARS-CoV) (PDB code 6ACD), and severe acute respiratory
syndrome-2 (SARS-CoV-2) (PDB code 6VXX). Monomers forming the homotrimeric associations of
envelope glycoproteins are colored differently, and N-glycan chains forming the glycan shield are
represented by cyan colored balls.

In spite of the glycan-free character of the RBDs, it should be noted that these areas
are surrounded by glycan chains that should be accessible to CBAs, such as lectins, which
could hamper the proper recognition of RBDs by their corresponding host cell receptors
(Figure 3) [14].

3. Plant Lectins with Different Specificities Are Potential CBAs for Pathogenic
Enveloped Viruses

Lectins from higher plants offer extreme diversity in terms of structural organization
and recognition of simple and complex glycans [31]. Owing to the high diversity that
characterizes the glycan shield of pathogenic enveloped viruses, the heterogeneous group
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of Man-specific lectins and, especially, the group of two-chain legume lectins, emerges as
a potential tool for specific targeting of the N-glycan shield of enveloped viruses. Two-
chain legume lectins form a particular group of Man-specific lectins that display an en-
hanced affinity for complex N-glycans possessing an α1,6-fucosylated trimannoside core
Man3GlcNAc2 [32,33]. Seed lectins from pea (Pisum sativum) (PsA), lentil (Lens culinaris)
(LcA), Cyprus-vetch (Lathyrus ochrus) (LoL-I/II), and faba bean (Vicia faba) (VfA) belong to
this group of two-chain lectins [34–37]. They are built from the non-covalent association
of two identical monomers built up from a heavy (β-chain) and a light (α-chain) subunit
and possess an overall jelly roll structure similar to that of Con A, the single-chain Man-
binding lectin from Jackbean (Canavalia ensiformis) [38]. A detailed crystallographic study
of the Lathyrus ochrus isolectin-II (LoL-II) in complex with an octasaccharide derived from
the human lactotransferrin (PDB code 1LGC) [39] revealed that the enhanced affinity of
Vicieae lectins towards the α1,6-fucosylated Man3GlcNAc2 core depends on the direct
interaction of the α1,6-linked Fuc residue with some of the amino acid residues forming
the carbohydrate-binding site (CBS) of the lectin via a few hydrogen bonds (Figure 4).

In addition, complexes of pea lectin and Lathyrus ochrus lectin with non-fucosylated
trisaccharides, indicated that Vicieae lectins also interact with one of the terminal Man
of the trimannosyl core from the non-fucosylated N-glycans [40]. In this respect, LoL-I
from L. ochrus seeds interacted with the trisaccharide Manα1,3Manβ1,4GlcNAc in such a
way that the terminal Man residue occupies the monosaccharide-binding site of the lectin
(Figure 5).

This binding pattern allows Vicieae lectins to readily interact with the trimannosyl
core from the three types of complex, high-mannose, and hybrid N-glycans, irrespective of
the possible α1,6-fucosylation on the first GlcNAc residue of the N-glycan chain.

A survey of the glycan array analyses performed by the Consortium for Functional
Glycomics (CFG) (http://www.functionalglycomics.org (accessed on 15 December 2021))
for PsA, LcA, and VfA, all members of the two-chain lectins from the Vicieae tribe, yielded
the best results with glycans possessing the a1,6-fucosylated Man3GlcNAc2 core. As an
example, most of the top five glycans displaying the best affinity for PsA, LcA, and VfA
occur in the glycan shield covering the pathogenic enveloped viruses (Figure 6).

Other Man-specific lectins, such as the GNA-related lectins from different families of
monocot plants, including Liliaceae, Amaryllidaceae, Polygonaceae, and Orchidaceae, pref-
erentially interact with high-mannose glycans that contain a non-fucosylated Man3GlcNAc2
core. As an example, the top five glycans interacting with GNA in glycan array experiments
mainly consist of high-mannose glycans (Figure 7). These high-mannose glycans were
present in all the investigated enveloped viruses.

In addition, the N-glycans of pathogenic enveloped viruses are often sialylated on
their terminal Gal antennae residues, which offers another potential recognition target
for lectins that specifically recognize terminal sialylated Gal residues. The black elder-
berry (Sambucus nigra) bark lectin I (SNA-I) specifically interacts with these sialylated
termini. In this respect, the top five glycans interacting with SNA-I in glycan array ex-
periments contained sialylated Gal residues that occur in the glycan shield of enveloped
viruses (Figure 8).

Finally, GalNAc/T/Tn lectins that recognize O-glycans, such as jacalin from Artocarpus
integer, PNA from peanut (Arachis hypogaea), and Morniga-G from Morus nigra, should
especially interact with the few O-glycans exposed at the surface of beta-coronaviruses [41].
The top five O-glycans interacting with Morniga-G in glycan array experiments are present
in the glycan shield of the SARS-CoV-2 particles (Figure 9).

http://www.functionalglycomics.org
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Figure 4. Figure illustrating the interaction of the Man-specific lectin LoL-II from Lathyrus ochrus with
an oligosaccharide chain. (A) Network of hydrogen bonds (black lines) anchoring N2 oligosaccharide
(colored purple) to LoL-II isolectin from Lathyrus ochrus (PDB code 1LGC). Hydrophilic residues R38,
N78, D81, G99, and N125 of the α-chain and E31 of the β-chain, which participate in hydrogen bonds,
are colored orange and green, respectively. Aromatic residues Y77, Y100, F123, Y124, and W128 of
the α-chain and F32 of the β-chain, involved in stacking interactions with the pyranose rings of the
oligosaccharide, are colored yellow. The α1,6-linked fucose (Fuc), which participates in the H-bond
network, is colored cyan. (B) Depiction of the N2 oligosaccharide using the symbol nomenclature
for glycans: Fuc (red triangle), Gal (yellow circle), GalNAc (yellow square), GlcNAc (blue square),
Man (green circle), and sialic acid/Neu5Ac (purple diamond). (C) Molecular surface of the N2
oligosaccharide–Lo-LII complex, showing how the isolectin accommodates the oligosaccharide via a
network of hydrogen bonds and stacking interactions. The groove harboring the N2 oligosaccharide
and the central monosaccharide-binding site of the lectin are delineated with yellow, dashed lines.
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Figure 5. Figure illustrating the interaction of the Man-specific lectin LoL-I from Lathyrus ochrus
with a trimannoside. (A) Network of hydrogen bonds (black lines) anchoring the trisaccharide
Manα1,3Manβ1,4GlcNAc (colored purple) to LoL-I isolectin from Lathyrus ochrus (PDB code 1LOG).
Hydrophilic residues D81, G99, and N125 of the α-chain and G29, A30, and E31 of the β-chain, which
participate in hydrogen bonds, are colored orange and green, respectively. Aromatic residues Y100,
Y124, and W128 of the α-chain, involved in stacking interactions with the pyranose rings of the
oligosaccharide, are colored yellow. (B) Illustration of the Man3GlcNAc2 oligosaccharide using the
symbol nomenclature for glycans: Fuc (red triangle), Gal (yellow circle), GalNAc (yellow square),
GlcNAc (blue square), Man (green circle), and sialic acid/Neu5Ac (purple diamond), showing the
sugar units that participate in the trisaccharide–LoL-I complex.
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4. Man-Specific and Neu5Ac-Specific Lectins as Potential CBAs for Pathogenic
Enveloped Viruses

Plant lectins with different carbohydrate-binding specificities have been identified as
CBAs for pathogenic enveloped virus including HIV, HCMV, the hepatitis C virus HCV,
HSV, IV, and the coronaviruses MERS-CoV, SARS-CoV, and SARS-CoV-2. Targets for these
CBAs are the glycan structures present on the envelope proteins of pathogenic enveloped
viruses (Table 2).

In addition to CBAs from higher plants, it should be noted that other lectins iso-
lated from algae and Cyanobacteria (formerly classified as blue algae), which essentially
recognize high-mannose glycans, have been identified as potential CBAs for pathogenic
enveloped viruses (Table 3). In this respect, griffithsin, the Man-specific lectin purified from
the red alga Griffithsia sp. [67], was investigated in detail as a relevant CBA for targeting
the envelope protein from pathogenic enveloped viruses [68] because of its high affinity for
oligomannosides [69] (Figure 10).



Cells 2022, 11, 339 11 of 24

Cells 2022, 11, x FOR PEER REVIEW 14 of 26 
 

 

   gp120 HIV [53] 
Nictaba Nicotiana tabacum (GlcNAc)n S-protein SARS-CoV [41,61] 
Orysata Oryza sativa Man gp120 HIV [62] 

   S-protein SARS-CoV [62] 
PHA Phaseolus vulgaris Complex glycans S-protein MERS-CoV [50] 

   S-protein SARS-CoV [50] 
   S-protein SARS-CoV-2 [50] 

PCA Polygonatum cyrtonema Man gp120 HIV [63] 
SSL Sambucus sieboldiana Neu5Ac-Gal/GalNAc S-protein SARS-CoV [50] 

   S-protein SARS-CoV-2 [50] 
TLC II Tulipa hybrid Man S-protein SARS-CoV [41] 
TDL Typhonium divaricatum Man E-glycoprotein HSV [64] 
UDA Urtica dioica (GlcNAc)n β-glycoprotein HCMV [52] 

   E-glycoprotein HCV [51] 
   gp120 HIV [52] 
   S-protein SARS-CoV [41] 
   hemagglutinin IV [57] 

ML II Vicum album Gal/GalNAc S-protein SARS-CoV [41] 
ML III Viscum album Gal/GalNAc S-protein SARS-CoV [41] 
WGA Triticum aestivum GlcNAc/Neu5Ac S-protein MERS-CoV [50] 

   S-protein SARS-CoV [41,50] 
   S-protein SARS-CoV-2 [50,65] 

GNAmaize Zea mays Man S-protein SARS-CoV [66] 

In addition to CBAs from higher plants, it should be noted that other lectins isolated 
from algae and Cyanobacteria (formerly classified as blue algae), which essentially recog-
nize high-mannose glycans, have been identified as potential CBAs for pathogenic envel-
oped viruses (Table 3). In this respect, griffithsin, the Man-specific lectin purified from the 
red alga Griffithsia sp. [67], was investigated in detail as a relevant CBA for targeting the 
envelope protein from pathogenic enveloped viruses [68] because of its high affinity for 
oligomannosides [69] (Figure 10). 

 
Figure 10. Figure illustrating how the Man-specific lectin griffithsin interacts with an oligomannoside.
Network of hydrogen bonds (black, dashed lines) connecting the griffithsin monomer (colored violet)
to a linear Man8 chain (colored purple) (PDB code 3LL2). Amino acid D residues participating in
hydrogen bonds are labeled (i.e., D67, D109, and D112). Aromatic Y residues involved in stacking
interactions with the sugar rings are labeled and colored orange (i.e., Y28, Y68, and Y110).

Table 2. List of plant lectins identified as carbohydrate-binding agents (CBAs) for envelope proteins
from pathogenic enveloped viruses.

Lectin Plant Species
Carbohydrate-

Binding
Specificity

Targeted
Envelope
Protein

Virus Ref.

APA Allium porum Man S-protein SARS-CoV [41]
AUA Allium ursinum Man S-protein SARS-CoV [41]

BanLec Musa acuminata Man gp120 HIV [42–44]
hemagglutinin IV [45]
E-glycoprotein HCMV [46]
E-glycoprotein EBOV [46,47]
E-glycoprotein LASV [46]

Con A Canavalia ensiformis Man gp120 HIV [48]
S-protein SARS-CoV-2 [49]

Succinyl-Con A Canavalia ensiformis Man S-protein Mers-CoV [50]
S-protein SARS-CoV [50]
S-protein SARS-CoV-2 [50]

ConBr Canavalia
brasiliensis Man S-protein SARS-CoV-2 [51]

ConM Canavalia maritima Man S-protein SARS-CoV-2 [51]
CLA Cladastris lutea Man S-protein SARS-CoV [41]
CHA Cymbidium hybrid Man β-glycoprotein HCMV [52]

E-glycoprotein HCV [52]
gp120 HIV [52]

S-protein SARS-CoV [53]

DSL Datura stramonium Neu5Ac-
Gal/GalNAc S-protein MERS-CoV [50]

S-protein SARS-CoV [50]
S-protein SARS-CoV-2 [50]

DLasL Dioclea lasiocarpa Man S-protein SARS-CoV-2 [51]
DSclerL Dioclea sclerocarpa Man S-protein SARS-CoV-2 [51]

EHA Epipactis helleborine Man β-glycoprotein HCMV [52]
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Table 2. Cont.

Lectin Plant Species
Carbohydrate-

Binding
Specificity

Targeted
Envelope
Protein

Virus Ref.

gp120 HIV [52]
hemagglutinin IV [52]

GNA Galanthus nivalis Man β-glycoprotein HCMV [53]
E-glycoprotein HCV [54,55]

gp120 HIV [53]
S-protein SARS-CoV [41]
S-protein SARS-CoV-2 [56]

hemagglutinin IV [57]

HHA Hyppeastrum
hybrid Man β-glycoprotein HCMV [53]

E-glycoprotein HCV [52]
gp120 HIV [52]

S-protein SARS-CoV [41]
hemagglutinin IV [57]

Horcolin Hordeum vulgare Man gp120 HIV [58]
IRA Iris hybrid GalNAc/Gal S-protein SARS-CoV [41]
FRIL Lablab purpureus Man S-protein SARS-CoV [59]

hemagglutinin IV [59]
LcA Lens culinaris Man S-protein MERS-CoV [50]

S-protein SARS-CoV [50]
S-protein SARS-CoV-2 [50]

LOA Listera ovata Man β-glycoprotein HCMV [53]
gp120 HIV [53]

MAL Maackia amurensis Neu5Ac S-protein SARS-CoV-2 [60]
Morniga-G Morus nigra Gal S-protein SARS-CoV [41]
Morniga-M Morus nigra Man S-protein SARS-CoV [41]

NPA Narcissus
pseudonarcissus Man β-glycoprotein HCMV [53]

gp120 HIV [53]
Nictaba Nicotiana tabacum (GlcNAc)n S-protein SARS-CoV [41,61]
Orysata Oryza sativa Man gp120 HIV [62]

S-protein SARS-CoV [62]
PHA Phaseolus vulgaris Complex glycans S-protein MERS-CoV [50]

S-protein SARS-CoV [50]
S-protein SARS-CoV-2 [50]

PCA Polygonatum
cyrtonema Man gp120 HIV [63]

SSL Sambucus
sieboldiana

Neu5Ac-
Gal/GalNAc S-protein SARS-CoV [50]

S-protein SARS-CoV-2 [50]
TLC II Tulipa hybrid Man S-protein SARS-CoV [41]

TDL Typhonium
divaricatum Man E-glycoprotein HSV [64]

UDA Urtica dioica (GlcNAc)n β-glycoprotein HCMV [52]
E-glycoprotein HCV [51]

gp120 HIV [52]
S-protein SARS-CoV [41]

hemagglutinin IV [57]
ML II Vicum album Gal/GalNAc S-protein SARS-CoV [41]
ML III Viscum album Gal/GalNAc S-protein SARS-CoV [41]
WGA Triticum aestivum GlcNAc/Neu5Ac S-protein MERS-CoV [50]

S-protein SARS-CoV [41,50]
S-protein SARS-CoV-2 [50,65]

GNAmaize Zea mays Man S-protein SARS-CoV [66]
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Table 3. List of algal and cyanobacterial lectins identified as carbohydrate-binding agents (CBAs) for
envelope proteins from pathogenic enveloped viruses.

Lectin Algal Species
Carbohydrate-

Binding
Specificity

Targeted
Envelope
Protein

Virus Ref.

AML Amantia multifida Fetuin, mannan hemagglutinin IV [52]
E-glycoprotein HSV [52]

gp120 HIV [52]

BSL Bryothamnion
seaforthii Fetuin, mucin gp120 HIV [52]

E-glycoprotein HSV [52]
hemagglutinin IV [52]

ESA-2 Eucheuma serra Man hemagglutinin IV [70]
GCL Grateloupia chiangii Man hemagglutinin IV [71]

E-glycoprotein HSV [71]
Griffithsin Griffithsia sp. Man gp120 HIV [72]

E-glycoprotein HCV [73]
S-protein MERS-CoV [74]
S-protein SARS-CoV [68]
S-protein SARS-CoV-2 [75]

HML Hypnea musciformis Thyroglobulin,
mucin gp120 HIV [52]

hemagglutinin IV [52]
E-glycoprotein HSV [51]

HTL-40 Halimeda renschii Man hemagglutinin IV [76]

KAA-2 Kappaphycus
alvarezii Man hemagglutinin IV [77]

gp120 HIV [78]

MEL Meristiella
echinocarpa Mannan hemagglutinin IV [52]

hemagglutinin IV [52]
SfL Solieria filiformis Mannan E-glycoprotein HSV [52]

gp120 HIV [52]
hemagglutinin IV [52]

BCA Boodlea coacta Man E-glycoprotein HSV [79]
hemagglutinin IV [79]

Lectin Cyanobacterial
Species

Carbohydrate-
Binding

Specificity

Targeted
Envelope
Protein

Virus Ref.

MVN Microcystis
aeruginosa Man gp120 HIV [80,81]

E-glycoprotein HSV [81]
MVL Microcystis viridis Man gp120 HIV [82]

E-glycoprotein HCV [83]

Cyanovirin-N Nostoc
ellipsosporum Man gp120 HIV [49,84]

(CV-N) E-glycoprotein 1,2 EBOV [85,86]
hemagglutinin IV [86]
E-glycoprotein HCV [87]
E-glycoprotein HSV [88]

S-protein SARS-CoV-2 [89]
Oscillatoria agardhii Man gp120 HIV [90]

OAA Scytonema varium Man gp120 HIV [91]
SVN Scytonema varium E-glycoprotein DENV [92]

E-glycoprotein EBOV [93]

Although cyanobacterial lectins exhibit similar antiviral activities against pathogenic
enveloped viruses, compared to other lectins from higher plants, they readily differ by
the different fold and the smaller size of their structural scaffolds [93,94]. Moreover,
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cyanobacteria contain other small metabolites that could be used as valuable tools for
combating enveloped viruses and, especially SARS-CoV-2 responsible for the COVID-19
pandemic [95].

5. How Can the Infectivity of Pathogenic Enveloped Viruses Be Affected by Lectins?

The glycan-mediated interaction of lectins with pathogenic enveloped viruses has
a direct effect on virus infectivity, essentially by interfering with the recognition of their
corresponding host cell receptors via different mechanisms. However, a dichotomy must
be introduced between experiments performed in vitro on cultured cells and experiments
achieved in vivo on animals.

Experimental studies performed in vitro, especially on HIV-infected cultured cells,
have focused on higher plant lectins and cyanobacterial lectins [96]. Mannose-specific
lectins have been recognized as the most efficient inhibitors of the HIV entry into the target
cells by interacting with the glycan shield of gp120 and gp41, preventing their recognition
by the CD4 receptors present on CD4+ T cells. Mannose-specific lectins of monocot plant
species, such as Cymbidium hybrid (CHA), Epipactis helleborine (EHA), Hippeastrum hybrid
(HHA), Galanthus nivalis (GNA), Listera ovata (LOA), and Narcissus pseudonarcissus (NPA),
have been widely investigated in this respect by Balzarini and co-workers [53,54]. Other
lectins with similar Man-binding specificity like BanLec from Musa acuminata [43] and Con
A from Canavalia ensiformis [97] or different carbohydrate-binding specificities, such as the
(GlcNAc)n-specific lectins Nictaba from Nicotiana tabacum [62], UDA from Urtica dioica [53],
and WGA from Triticum aestivum [98], were also identified as potential inhibitors of the
HIV entry into target cells in vitro and the syncytium formation resulting from the fusion
of HIV-infected and HIV-uninfected CD4+ T lymphocytes [99,100].

A rather different situation can occur under in vivo conditions due to the multiplicity
of cells susceptible to interacting with the virus. In addition, to block the entry of HIV
particles into the cells and syncytium formation, plant lectins interfere with other mecha-
nisms of virus infection and transmission, for example, by preventing the recognition of
high-mannose glycans of gp120 by the DC-SIGN receptor of dendritic cells [101–103] or by
blocking the transmission of DC-SIGN-captured virions to the CD4+ T lymphocytes [102].
In addition, as reported in [96], interaction with lectins of different carbohydrate-binding
specificities can result in cytotoxic side effects on host cells, e.g., caspase-dependent apop-
totic responses, due to the activation of different signaling pathways leading to apoptotic
and necrotic responses that result from the recognition of surface-exposed N- and O-glycans
by lectins.

The effects of plant lectins on other pathogenic enveloped viruses have been more
scarcely investigated. Plant lectins were identified as blocking agents for the entry of
IV [45,52,57], HSV [57], HCMV [47,53,54], EBOV [47,48], LASV [47], and the coronaviruses
MERS-CoV [51], SARS-CoV [42,51,54,62,63,104], and SARS-CoV-2 [50–52,58,60,61,66] in
their corresponding host cells. However, depending on the viruses, the envelope gly-
coprotein(s) targeted by plant lectins are extremely diverse as mentioned in Table 2. In
this respect, an engineered banana lectin, BanLec, which has lost its mitogenic potential
but retained its mannose-binding property, interacted with the envelope E-glycoprotein
and inhibited both the entry and replication of Ebola virus in cell cultures [47,48]. The
cyanobacterial lectin, cyanovirin-N (CV-N), also displayed similar inhibition towards Ebola
virus [85]. Similarly, lentil lectin, LcA, inhibited the early steps of the host cell infection
by SARS-CoV-2 and variants B.1.1.7 (α variant), B.1.351 (β variant), and P1 (γ variant), by
blocking the recognition of their spike S protein by the ACE2 receptor [51].

The effects resulting from the binding of plant lectins on the different enveloped
viruses also depend on the mechanisms of infection and transmission of these viruses,
which may differ from those developed by HIV. In addition to preventing the entry and
replication of Ebola viruses into the host cells in cell cultures, the engineered BanLec
lectin, pre-administered to virus-infected mice, were highly protective against a lethal
EBOV infection in vivo (~80% of mice protected) [48]. The engineered BanLec lectin was
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similarly efficient for protecting influenza virus-infected mice, by inhibiting the virus-
endosome fusion occurring after the exogenous lectin has been internalized in the late
endosomal/lysosomal compartment of the host cells [46]. Both plant lectins and griffithsin,
the Man-specific lectin from the red alga Griffithsia sp., also inhibited the entry of SARS-CoV
and MERS-CoV, respectively, in virus-infected cultured cells [42,74]. The Neu5Ac-specific
Maackia amurensis lectin, MAL, inhibited the interaction of the SARS-CoV-2 S protein with
the ACE2 receptor in cell cultures and decreased the expression of inflammatory mediators
associated with COVID-19 disease progression [61].

The effects of plant lectins on coronaviruses were also investigated in virus-infected
mice models. The (GlcNAc)n-specific lectin from the stinging nettle (Urtica dioica) (UDA),
was shown to prevent virus entry and replication in a dose-dependent manner and reduced
the virus infectivity significantly in a lethal SARS-CoV BALB/c mouse model [105]. Under
in vivo conditions, the lectin from the hyacinth bean (Lallab purpureus), FRIL, neutralized
H1N1 influenza by aggregating and trapping virions in the late endosomes of the host
cells, thus preventing their nuclear internalization [60]. The lectin similarly neutralized
SARS-CoV-2 by preventing viral protein production and cytotoxic effects on the host cells.

Algal and cyanobacterial Man-specific lectins, such as griffithsin and cyanovirin-N,
also inhibited the entry of HIV and other enveloped viruses in the host cells in vitro and
exerted in vivo cytotoxic effects very similar to those of plant lectins [74–103,105–107].

6. Biomedical Perspectives for Antiviral Lectins

Depending on their affinity towards surface-exposed glycans of enveloped viruses, plant
lectins are considered as potential CBAs useful for combating viral infections, even though lit-
tle evidence exists to date for their efficacy as relevant therapeutic tools [97,108–112]. Beyond
their possible use as well-adapted tools for the diagnosis of viral infection, the therapeu-
tic use of plant lectins as virus blockers faces practical and functional challenges which
mainly concern (1) their large-scale production and (2) their unwanted immunomodulatory
properties.

In most higher plants, lectins of different specificities that could be used as virus
blockers occur as storage proteins in seeds and other vegetative organs such as tubers and
rhizomes [113]. Man-specific two-chain (LcA, PsA, VfA, and LoL-I/II) and single-chain
lectins (Con A, PHA, and SBA) from the Fabaceae are sequestered in the protein bodies
of the cotyledonary cells in rather low amounts [114]. Accordingly, the extraction yield
of legume seed lectins is rather low, in the range 50–80 mg/100 g (dry weight) seed [115].
However, the degree of purity of the extracted lectins is excellent since the introduction of
affinity chromatography techniques using carbohydrate-immobilized columns. Different
strategies have been developed recently to improve the extraction yield of griffithsin, the
Man-specific lectin from the red alga Griffithsia sp., for the purpose of obtaining a large-
scale production of the lectin able to supply the quantities of lectins needed for therapeutic
applications [116–121]. These strategies are based on the continuous improvement of yields
obtained from the high-level expression and extraction of griffithsin from transformed to-
bacco (Nicotiana benthamiana) leaves. In addition, griffithsin is easily purified and recovered
from ensiled dried tobacco leaves, which allows for a low-cost production of lectin quickly
adaptable to demand.

Most plant lectins consist of oligomeric structures built up from the non-covalent
association of 15–20 kDa monomers in dimers and tetramers, more rarely in hexamers or
octamers [31]. Depending on their structural organization, plant lectins usually exhibit
a high degree of resistance to the degradation by trypsin-like proteases together with a
pronounced capacity to trigger the synthesis of specific anti-lectin IgG. In this respect,
IgG-binding epitopes have been identified on the molecular surface of Man-specific two-
chain lectins from the Vicieae tribe [122,123], and monoclonal antibodies that specifically
recognize lentil and Lathyrus ochrus lectins, were easily prepared [124,125]. Even Man-
specific dietary lectins, such as BanLec from banana and ASA from garlic, have been
reported to induce an immune response since specific anti-lectin IgG have been identified
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in the serum of banana and garlic consumers [126,127]. Through a specific interaction with
the plant lectins associated to the enveloped viruses, these IgG could eventually neutralize
the effects of lectins in the host cells. The Man-specific algal griffithsin and cyanobacterial
lectins, such as cyanovirin-N and scytovirin, could overcome this challenge because of the
small size of their composing monomers [128,129]. In addition to griffithsin, grifonin-1
(GRFN-1), an even smaller peptide of eighteen amino acids derived from griffithsin, has
proven its efficacy as a blocking agent against HIV [130].

Initially recognized as potent mitogenic proteins [131–133], plant lectins have been
known for a long time as non-specific immune-modulatory proteins that are susceptible to
interaction with various cell surface glycoproteins/glycolipids and for interfering with var-
ious signaling pathways triggering cytotopathologic effects on the targeted cells. Although
most plant lectins with antiviral activity activate different sets of T lymphocytes and, more
scarcely, B lymphocytes, they also activate both the apoptotic and necrotic pathways in
many other types of healthy and cancer cells [134–143]. The cellular activation mediated
by plant lectins on healthy and transformed cells elicits the release of various chemokines
and/or cytokines that are, in turn, susceptible to interfere with the cytokine stimulation
associated with the viral infection, e.g., HIV infection [59]. However, plant lectins readily
differ from each other by their capacity to elicit a cytokine production, some of them, such
as PHA, Con A, and cyanovirin-N, being more active to induce the synthesis and release of
activation markers [144,145], while Man-specific GNA-like lectins, such as GNA and HHA,
were virtually incapable of triggering a relevant cytokine production [145,146]. Recently,
a single-point mutation performed on an engineered banana lectin, BanLec, and an engi-
neered Malaysian banana lectin, Malay BanLec, allowed to produce an active Man-binding
lectin significantly devoid of mitogenic/cytotoxic activity [46,47]. If applicable for other
Man-specific lectins, this point mutation approach would be an elegant way to attenuate or
suppress the unwanted mitogenic/cytotoxic effects of lectins on target cells.

In spite of these limitations hampering the use of plant lectins as CBAs for combat-
ing pathogenic enveloped viruses, some ex vivo applications of plant lectins have been
successfully developed. An important decrease in the plasma load with Ebola virus was
achieved by extracorporeal affinity plasmapheresis of the contaminated blood through
a GNA-immobilized matrix [147]. Recently, ex-vivo plasmapheresis on a Man-specific
lectin-immobilized column of blood spoiled by the MERS-CoV and the Marburg viruses
has proven its efficacity to purge the blood samples from virus particles [148]. Although
essentially theoretical, the risk of a possible transfusion transmission of SARS-CoV-2 with
spoiled blood samples should be avoided by a simple lectin plasmapheresis step of the
suspected blood samples [149,150]. Another ex vivo application of plant lectins has been
proposed on the web (Pittsburgh University, 2020) in the form of a nasal spray of griffithsin
that could be used to prevent the infection by SARS-CoV-2 and other pathogenic enveloped
viruses, e.g., in immune-compromised people. A lectin spray could also be used to detect
the enveloped viruses on various domestic surfaces, such as doorknobs, handrails, com-
puters, and cooking tools, under UV illumination after labeling with specific anti-lectin
antibodies coupled to a fluorochrome.

7. Bioinformatics

Atomic coordinates of fusion proteins, B glycoproteins, and E glycoproteins were
taken from the Protein Data Bank (PDB): 7JPH (EBOV) [5], 6Y5G (IV) [6], 5CXF (HCMV) [7],
2GUM (HSV) [8], 4TVP (HIV) [9], 5VK2 (LASV) [10], 5W9H (MERS-CoV) [11], 6ACD
(SARS-CoV) [12], 6VXX (SARS-CoV-2) [13], 3N40 (CHIV) [14], 1UZG (DENV) [15], and
7BUB (ZIV) [16].

The molecular surface of the lectins and envelope glycoproteins from pathogenic
enveloped viruses were calculated and displayed with Chimera [151] and Chimera-X [152].
Assuming that putative N-glycosylation sites, NXT/S, of envelope glycoproteins are ac-
tually glycosylated, a classic N-glycan chain corresponding to the trimannoside core
Man3GlcNAc2, was modeled using the GlyProt server (http://www.glycosciences.de/
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modeling/glyprot/php/main.php) (accessed on 22 December 2021) [153] and represented
in CPK on the molecular surface of the envelope glycoproteins.

The illustrations of the high-mannose N-glycans, complex N-glycans, hybrid N-
glycans, and O-glycans were built and represented with the DrawGlycan SNFG package for
Mac [154]. Colored symbols were used to represent Fuc (red triangle), Gal (yellow circle),
Glc (blue circle), GalNAc (yellow square), GlcNAc (blue square), Man (green circle), and
sialic acid/Neu5Ac (purple diamond).

8. Discussion

The glycan shield covering pathogenic enveloped viruses plays a role not only in the
protection of viruses but also in various important mechanisms insuring the entry and repli-
cation of viruses in the host cells [30]. Thus, the recognition of the glycan shield by plant
lectins provides a way to fight viral infection and, especially, the SARS-CoV-2 infection, by
competing with the spike-mediated attachment of viral particles to the host cell virus recep-
tors. However, due to the extreme diversity of N-glycan types covering enveloped viruses,
especially beta-coronaviruses [15], plant lectins with different carbohydrate-binding speci-
ficities should be tested for this purpose. From experiments performed under in vitro and
in vivo conditions, it follows that plant, algal, and cyanobacterial lectins with different
carbohydrate-binding specificities represent well-adapted CBAs for blocking the entry of
pathogenic enveloped viruses into the host cells. In this respect, Man-specific lectins of
the Vicieae tribe, which specifically recognize the α1,6-fucosylated Man3GlcNAc2 core
of N-glycans of the complex- and hybrid-type, are particularly relevant as glycan probes
for the beta-coronaviruses MERS-CoV, SARS-CoV, and SARS-CoV-2 [51,106]. However,
Man-specific lectins are not considered as replication blockers for coronaviruses, since they
do not interfere with the coronavirus replication within the cell.

Despite the accumulating evidences that plant lectins and, especially, Man-specific
plant lectins, could be used as tools for preventing infection by pathogenic enveloped virus,
in particular SARS-CoV-2 responsible for the COVID-19 pandemic, some unwanted charac-
teristics of plant lectins make these molecules difficult to use for a therapeutic purpose. Due
to the fact of their high molecular size, which favors the synthesis of anti-lectin antibodies,
and their mitogenic/cytotoxic properties, which interfere with the cytokine response of
infected individuals, their use is limited to external treatments. However, the promising
results obtained with a single-mutated engineered banana lectin, BanLec, which retains
its carbohydrate-binding ability but loses its mitogenic property [46,47], could pave the
way for the forthcoming production of innocuous mutated plant lectins available for a
therapeutic use.

In addition to lectins, other small molecules could be used as blockers for the SARS-
CoV-2/ACE2 interaction. Recently, some small molecular drugs, including dyes, glycosides,
tannins, and immunosuppressors, were characterized as either spike or ACE2 binders
susceptible to blocking the attachment of the SARS-CoV-2 spikes to ACE2 by interfering
with the ligand and/or the receptor surface [155]. Depending on the N-glycan types that
are linked to the receptor DPP4 for MERS-CoV and SARS-CoV viruses [156] and ACE2 for
SARS-CoV-2 virus [157], plant lectins with Man-binding activity could interfere with the
capture of the beta-coronavirus spikes by their corresponding host cell receptors. This dual
activity of plant lectins towards the glycans of spikes and their receptors is of paramount
importance for reinforcing the antiviral properties of plant lectins against pathogenic
beta-coronaviruses.
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