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Genotype imputation is the term used to describe the process of inferring unobserved
genotypes in a sample of individuals. It is a key step prior to a genome-wide association
study (GWAS) or genomic prediction. The imputation accuracy will directly influence the
results from subsequent analyses. In this simulation-based study, we investigate the
accuracy of genotype imputation in relation to some factors characterizing SNP chip or
low-coverage whole-genome sequencing (LCWGS) data. The factors included the
imputation reference population size, the proportion of target markers /SNP density,
the genetic relationship (distance) between the target population and the reference
population, and the imputation method. Simulations of genotypes were based on
coalescence theory accounting for the demographic history of pigs. A population of
simulated founders diverged to produce four separate but related populations of
descendants. The genomic data of 20,000 individuals were simulated for a 10-Mb
chromosome fragment. Our results showed that the proportion of target markers or
SNP density was the most critical factor affecting imputation accuracy under all imputation
situations. Compared with Minimac4, Beagle5.1 reproduced higher-accuracy imputed
data in most cases, more notably when imputing from the LCWGS data. Compared with
SNP chip data, LCWGS provided more accurate genotype imputation. Our findings
provided a relatively comprehensive insight into the accuracy of genotype imputation in
a realistic population of domestic animals.

Keywords: genotype imputation, SNP density, reference population size, imputation accuracy, SNP chip,
sequencing

INTRODUCTION

The availability of next-generation sequencing technologies has made it possible to take account of
whole-genome sequencing (WGS) data for genome-wide association studies (GWASs) or genomic
prediction (GP) (Koboldt et al., 2013; Ni et al., 2017). However, whole genome resequencing is
typically more expensive than SNP chip genotyping in most species, precluding deep sequencing of
every individual in a population. Accordingly, over the past decade, the application of GWAS and GP
has mainly been based on SNP chip data. The content of SNP arrays have typically been chosen from
a database comprising relatively small numbers of sequenced individuals, which can result in
ascertain bias (Lachance and Tishkoff, 2013). Although SNP chips tend to be cost-effective compared
to sequencing, they cannot capitalize on all the genomic information if the SNPs on the chip array
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have incomplete linkage disequilibrium with the causal
mutations. Furthermore, they do not provide the
understanding of the causal mutation that can be obtained by
annotation of highly significant sequence variants. One option is
to impute SNP array genotypes to sequence resolution based on a
reference population of a small number of deeply sequenced
relatives. Another option is imputation from a large number of
sparsely sequenced individuals, obtained from low-coverage
whole-genome sequencing (LCWGS). Compared to SNP chip
data, LCWGS can expose the segregating sequence variants and
mitigate the ascertainment bias from SNP array.

Regardless of whether SNP arrays or LCWGS are used to
characterize genotypes, imputation is an essential step in a GWAS
or as a precursor to genomic prediction (Li et al., 2009; Al
Kalaldeh et al., 2019). Imputation can infer unobserved
genotypes in a sample of individuals that have higher
genotyping density from an SNP array, LCWGS, or WGS.
Since WGS data should contain all genomic variants including
causal mutations, it can increase the probability that causal
variants can be directly identified. Accordingly, imputation can
boost the power of GWAS analyses, improve the accuracy of
GEBV in genomic prediction, be the basis for fine mapping, and
facilitate meta-analysis that combines multiple studies based on
different types of marker sets (Druet et al., 2014; Al-Tassan et al.,
2015; Song et al., 2019).

Orho-Melander et al. (2008) imputed untyped HapMap SNPs
to carry out fine-mapping and consequently found that GCKR
rs780094 was associated with opposite effects on fasting plasma
triglyceride concentrations. Many novel loci that increased the
risk of type 2 diabetes were identified using high-density imputation
(Mahajan et al., 2018). Association statistics obtained using imputed
data from ultra low-coverage (0.24x) sequencing data attained
similar p-values at known associated variants to those which had
been obtained using an SNP chip (Pasaniuc et al., 2012). Huang et al.
(2015) used imputation to construct a genome map for 1,495 elite
hybrid rice varieties and their inbred parental lines and investigated
38 agronomic traits. They identified 130 associated loci which
proved that the accumulation of numerous rare superior alleles
with positive dominance was an important contributor to the
heterotic phenomena.

The advent of low-cost next-generation sequencing has led
to a rapid increase in the size of publicly available reference
data sets. For example, the 1,000 Bull Genomes Project (http://
www.1000bullgenomes.com/) has now sequenced thousands
of animals and obtained about 155 million genetic variants
representing many of the world’s cattle breeds, providing a
high-quality reference population (Georges, 2014; Hayes and
Daetwyler, 2019). Many studies have used the variants in that
reference population for imputation to new datasets to
improve the accuracy of genomic prediction or to identify
new candidate genes (Ibeagha-Awemu et al., 2016; Aliloo et al.,
2018).

However, using low-quality imputed data may not lead to
reliable GWAS or higher accuracy in genomic predictions (van
Binsbergen et al., 2014). Multiple factors can affect the imputation
accuracy, including size of the imputation reference panel, the
imputation method, the minor allele frequency of the variant

being imputed, the accuracy of phasing that constructs
haplotypes in the reference and the study samples, and the
sequencing coverage of the reference panel (Das et al., 2018).
Although some of the effects of these factors have been analyzed
separately, a comprehensive analysis that jointly considered these
factors would help users design more powerful datasets for
GWAS or genomic prediction.

METHODS AND MATERIALS

Simulation
In this study, we employed simulations based on coalescence
theory usingmsprime software to simulate sequence resolution
data that are compatible with our knowledge of the
demographic history of pigs (Pérez-Enciso, 2014). Pig
populations experienced genetic mutation, migration, and
bottleneck effects (Giuffra et al., 2000; Kim et al., 2002;
Frantz et al., 2015), and the detailed parameters used are
shown in Table 1. Following 58,000 simulated generations,
four separate but related populations were simulated, which we
refer to as P1, P2, P3, or P4 according to their genetic distance
(Figure 1). In these four populations, there were a total of
20,000 diploid samples with 10 Mb of simulated sequence data.
The P1 population included 11,000 individuals, while each of
the other three populations had 3,000 samples. The first 1,000
individuals from P1 represented the target population for
imputation. We randomly selected biallelic variants with
MAF ≥ 0.01 in the target population to generate LCWGS
data, and then selected evenly spaced markers at various
densities to represent SNP chip data.

We used the WGS data to calculate the average kinship
coefficients in a pair-wise fashion between individuals in these
populations, as in Table 2. The kinship coefficients between P1
and P2–P4 decrease successively, reflecting the increases in the
genetic distances separating them.

Factors Influencing Imputation Accuracy
We took four factors affecting imputation accuracy for LCWGS
and SNP chip data into account. These were the proportion of
SNP markers relative to target sequence variants (i.e., SNP chip
density), imputation reference population size, genetic distance
between target and imputation reference population, and the
methods of imputation. Table 3 lists the levels of each factor
considered. A total of 336 scenarios representing all the
factorial combinations of these levels were analyzed. In
terms of SNP density, we set six levels where 1, 5, 10, 30,
50, or 90% of genomic biallelic variants were present on the
SNP chip or LCWGS, the target marker number or density in
reference populations are shown in Table 4. In the P1
population, we selected 100, 1 k, 3 k, 5 k, or 10 k simulated
individuals to represent the imputation reference population
but did not include any of the target individuals. For each of
the other three populations, we set three levels of 100, 1 k, and
3 k of imputation reference samples.

Imputation for every scenario was undertaken using
Beagle5.1 (20Nov19.573) in comparison to Minimac4 v1.0.0,
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both with default parameter settings. Each program was run
using its specific formats for reference panel data (bref3 for
Beagle5.1 and m3vcf for Minimac4). We used Minimac3 to
construct the m3vcf files. All imputation analyses were run on

a dedicated 24-core 2.1-GHz workstation with an Intel Xeon
Silver 4116 CPU and 128 GB of memory, and we evaluated one
program at a time using five computational threads.

Assessment of Imputation Accuracy
Imputation reliability and the error rate were used as the two
criteria to assess imputation accuracy. The imputation reliability
is the squared Pearson correlation coefficient between the
imputed genotypes and the true genotypes at a specific locus.
The genotypes were coded as 0, 1, or 2, corresponding to the
homozygous reference allele, heterozygous alternative allele, or
homozygous alternative allele. The equation can be written as
follows:

r2i �
(Cov(Xi, Yi))2
Var(Xi)Var(Yi)

where r2i is the imputation reliability for locus i; Xi is a vector of
the imputed genotypes at locus i and Yi is a vector of the true
genotypes of imputed individuals at locus i.

The error rate refers to the percentage of loci that have wrongly
imputed alleles:

er(%) � nimputed≠true

nimputed
× 100

where er(%) � the allelic imputation error rate, nimputed≠true is the
number of imputed alleles not equal to the true alleles, and
nimputed is the number of alleles imputed.

We allocated the markers into several bins according to their
MAFs and reported the average values of the imputation
reliability and the error rate for all the markers within each
bin. Furthermore, we calculated the regression of the imputation
reliability or the error rate on the levels of each factor to
determine if the factor had a significant effect (p < 0.05). We
also report the correlation between the levels of each factor with
the imputation reliability or the error rate. We used coefficients of

TABLE 1 | Parameters used of the simulation with msprime.

Population history structural
factors

Parameters

Chromosome length 10,000 000 bp (10 Mb)
Mutation rate 1 × 10−7

Recombination rate 1 × 10−7

Number of generations back to the population history event Tori � 58,000 T0 � 9,000 T1 � 3,000 T2 � 200 T3 � 20
Migration rate m01 � 2.1 × 10−5 m12 � 1.1 × 10−3 m14 � 3.7 × 10−4 m23 � 5.2 × 10−5 m34 � 1.6 × 10−3

Effective population size N0 � 10,873 N1 � 1,600 N2 � 1,200 N3 � 1,000 N4 � 1,400

FIGURE 1 | Illustration of the simulation demographic model. Branch
width corresponding to population size and time flowing from the top to the
bottom. The width of the double arrows is proportional to the migration
intensity. Ti, number of generations back to the population history event;
Nj, effective population size of Pj population; mxy, migration rate between Px

and Py. Model details are provided in Table 1 and Supplementary Text S1.

TABLE 2 | Genetic relationship between pair-wise populations.

Population Average kinship coefficient

P1 P2 P3

P2 0.0070 (−0.065∼0.522)a

P3 0.0027 (−0.077∼0.394) 0.0030 (−0.070∼0.510)
P4 0.0011 (−0.083∼0.217) 0.0013 (−0.080∼0.270) 0.0184 (−0.059∼0.519)

aRange of kinship coefficients, with minimum to maximum in parentheses.
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TABLE 3 | Levels of each factor to define the imputation scenarios.

Factors Levels

Reference population size 100 1,000 3,000 5,000 10,000
Proportion of target markers/SNP density 1% 5% 10% 30% 50% 90%
Reference population P1 P2 P3 P4

Imputation method Beagle5.1 Minimac4
Data type Chip data Sequencing data

TABLE 4 | Number of segregating genetic variants in four simulated populations.

Proportion
of target markersa

Reference population Marker density (SNPs/kb)

P1 P2 P3 P4

Totalb 212,696 214,899 216,366 213,389 21.4
1% 2,126 2,148 2,163 2,133 0.2
5% 10,634 10,744 10,818 10,669 1.1
10% 21,269 21,489 21,636 21,338 2.1
30% 63,808 64,469 64,909 64,016 6.4
50% 106,348 107,449 108,183 106,694 10.7
90% 191,426 193,409 194,729 192,050 19.3

aRepresents the relative density of the pre-imputation marker panel.
bTotal reflects the number of sequence variants targeted for imputation.

FIGURE 2 | Influence of different factors on imputation reliability in LCWGS data. For each fixed level of the factors under each scenarios, the average at different
levels of all other factors is taken as the reliability. Imputed alleles are binned according to their MAF count in each scenarios. Dotted line with a triangle sign represents
Beagle5.1, while the solid line with a round sign represents Minimac4. Different colored signs represent different levels. (A) Influence of reference population size on
imputation reliability. (B) Influence of the proportion of target markers or SNP density on imputation reliability. (C) Influence of genetic distance between reference
population and target population on imputation reliability.
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variation (CVs) of the imputation reliability and the error rate to
characterize imputation accuracy. The imputation computing
time taken is reported for each scenario.

RESULTS

Factors Affecting Imputation Reliability
Significant differences in imputation reliabilities when imputing
the sequence data were observed with regard to reference
population size. Beagle5.1 typically outperformed Minimac4
with regression coefficients for reliability on reference
population size being β � 0.783 and 0.756, respectively
(Figure 2A). As seen in Figure 2A, as the reference
population size increased from 100 to 10,000, the average
imputation reliabilities of Beagle5.1 increased from 0.75 to
0.87, whereas the average reliabilities of Minimac4 increased
from 0.65 to 0.75.

Changes in SNP density in the target population significantly
affect the reliability of Beagle5.1 and Minimac4 (p < 10−4, β �
0.785 and 0.925). When SNP density increased from 1 to 90%, the
average imputation reliabilities increased from 0.25 to 0.99 in
Beagle5.1 and from 0.24 to 0.95 in Minimac4 (Figure 2B).

The genetic distance between the target population and the
reference population had a very significant impact on the
reliability for Beagle5.1 (p < 10−4, β � -0.852), but not for
Minimac4 (p � 0.43). When the reference population changed
from P1 to P4, the average imputation reliabilities with Beagle5.1
decreased from 0.80 to 0.69 (Figure 2C). A similar trend was
shown in SNP chip data (Supplementary Figure S1;
Supplementary Table S1). In addition, imputation reliability
showed a trend of first increasing and then slightly decreasing
with an increase in MAF, which was more obvious when the
reference population was small or genetically distant.

CVs of imputation reliability varied at different levels for the
above factors. For Beagle5.1, the CV of reference population size,
proportion of target markers/SNP density, and genetic distance
were 0.051, 0.320, and 0.021, respectively, while the CV of
reference population size and proportion of target markers/
SNP density in Minimac4 were 0.051 and 0.340. These

indicate that proportion of target markers/SNP density is the
most important factor affecting the imputation reliability in both
methods.

The imputation reliabilities (Table 5) of Beagle5.1 ranged
from 0.21 to 1.00 under different levels of SNP density and
reference population size, while the imputation reliabilities of
Minimac4 ranged from 0.14 to 0.95. In most cases, the reliabilities
of Beagle5.1 were higher than those of Minimac4, except when
SNP density was 1% and the reference population size was greater
than 5,000. To obtain r2 ≥ 0.8 with at least 100 individuals in a
reference population, Beagle5.1 required an SNP density of 10%,
butMinimac4 required an SNP density of around 30%.Minimac4
could not achieve imputation accuracies of 100%. The
performance of Beagle5.1 in reliability was better than that of
Minimac4.

Factors Affecting Imputation Error Rate
The reference population size (Figure 3) had a very significant
effect on the imputation error rate of Beagle5.1 with a negative
correlation (β � -0.431, p < 10−2), but not with Minimac4. As
shown in Figure 3A, when the number of reference samples
increased from 100 to 10,000, the average error rates of Beagle5.1
decreased from 6.42 to 3.31%, while the average imputation error
rate of Minimac4 hardly changed. As shown in Figure 3B, SNP
density has a very significant impact on the imputation error rate
in both Beagle5.1 and Minimac4 (p < 10−4, β � -0.687 and
−0.530), and the error rate declined with the increase in SNP
density. When the SNP density increased from 1 to 90%, the error
rates in Beagle5.1 decreased from 18.43 to 0.07%; the error rates
in Minimac4 decreased from 16.22 to 7.35%, corresponding to
SNP density increasing from 1% to 50%. Although the genetic
distance between the target population and the reference panel
has no significant effects on the average imputation error rates of
Beagle5.1 or Minimac4 (p � 0.36 and p � 0.74), it was observed
that the lowest average error rates were 4.61 and 9.97% only when
the reference population was P1 (Figure 3C), and similar results
are seen when imputing chip data (Supplementary Figure S2;
Supplementary Table S2). In addition, the influence of MAF on
the imputation error rate was significant and positively correlated
in both methods (p ≤ 0.04, 0.268< β < 0.975). But when the

TABLE 5 | Imputation reliability for different levels of imputation reference population size and SNP density.

Software Reference population
size

Proportion of target markers or SNP density/%

1 5 10 30 50 90

Beagle5.1 100 0.21 0.56 0.80 0.97 0.99 1.00
1,000 0.25 0.78 0.94 0.99 1.00 1.00
3,000 0.26 0.90 0.97 0.99 1.00 1.00
5,000 0.26 0.94 0.98 1.00 1.00 1.00
10,000 0.27 0.96 0.99 1.00 1.00 1.00

Minimac4 100 0.14 0.47 0.63 0.82 0.88 0.94
1,000 0.20 0.58 0.72 0.86 0.90 0.95
3,000 0.25 0.63 0.74 0.87 0.91 0.95
5,000 0.28a 0.64 0.75 0.87 0.91 0.95
10,000 0.33a 0.67 0.77 0.87 0.91 0.95

aThe imputation reliability of Minimac4 is higher than Beagle5.1 only for these two scenarios.
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conditions are conducive to imputation (such as a larger reference
population, higher SNP density, or a closer genetic distance
between populations), this effect will be less pronounced.

In Beagle5.1, the CVs of the imputation error rate for reference
population size and SNP density were 0.262 and 1.508,
respectively, while the CV of the imputation error rate affected
by the SNP density in Minimac4 is 0.339. This indicated that SNP

density was the most important factor affecting the error rate in
both imputation methods. In addition, the uncontrollable factor
MAF also has a considerable impact on the error rate.

As seen in Table 6, the imputation error rate ranges of
Beagle5.1 and Minimac4 were 0.02–19.15% and 6.79–17.25%,
respectively. Only when the SNP density was at the extreme low
of 1% did Minimac4 exhibit its advantage. In order to achieve an

FIGURE 3 | Influence of different factors on the imputation error rate in LCWGS data. For each fixed level of the factors under each scenarios, the average at
different levels of all other factors is taken as the error rate. Imputed alleles are binned according to their MAF count in each scenarios. Dotted line with a triangle sign
represents Beagle5.1, while the solid line with a round sign represents Minimac4. Different colored signs represent different levels. (A) Influence of reference population
size on the imputation error rate. (B) Influence of proportion of target markers or SNP density on the imputation error rate. (C) Influence of genetic distance between
reference population and target population on the imputation error rate.

TABLE 6 | Imputation error rate (%) in the different levels of reference population size and SNP density.

Software Reference population
size

Proportion of target markers or SNP density/%

1 5 10 30 50 90

Beagle5.1 100 19.15 11.76 5.77 1.15 0.53 0.16
1,000 18.44 6.55 1.91 0.43 0.23 0.09
3,000 18.27 2.99 0.98 0.22 0.12 0.05
5,000 18.20 2.03 0.68 0.15 0.08 0.04
10,000 18.10 1.17 0.41 0.09 0.05 0.02

Minimac4 100 17.25a 11.41a 9.01 6.83 7.09 21.26
1,000 16.36a 10.80 8.64 6.79 7.24 23.31
3,000 16.00a 10.72 8.65 6.88 7.39 24.33
5,000 15.85a 10.70 8.68 6.93 7.46 24.80
10,000 15.67a 10.70 8.74 7.02 7.58 25.46

aThe imputation error rate of Minimac4 is lower than Beagle5.1 only for these six scenarios.
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imputation error rate <10%, the imputation of Beagle required
SNP density over 5% or to appropriately reduce the SNP density
when increasing reference population size, while Minimac4
required the SNP density above 10% but was less dependent
on the size of the reference panel. When the reference sample size
was 100 and SNP density was slightly higher than 10%, the error
rate was less than 5% for Beagle5.1 but not for Minimac4. The
performance of Beagle5.1 was better than that of Minimac4 in
most cases in terms of the error rate.

Imputation Runtime
The runtimes to impute to the sequence level taken by the two
methods in the 1,000-target sample under all scenarios are
summarized in Table 7. As seen in Table 7, both the
reference population size and SNP density affected the
imputation times. Minimac4 was always faster than Beagle5.1.
Reference population size and SNP density hardly affected the
imputation times taken for Beagle5.1 (Supplementary Table S3).
The imputation time of Beagle5.1 only increased with an increase
in the proportion of target markers. Beagle5.1 was only faster than
Minimac4 when the percentage of target markers was 1% and the
reference population sample was more than 1,000 individuals or
when the proportion of target markers was 5% and the reference
population sample was 10,000. However, considering the trend

that the size of the reference population has little effect on time
consumed in Beagle5.1, it is likely that Beagle5.1 will eventually be
faster than Minimac4 as the reference population size continues
to increase.

Comparison of Imputation Accuracies of
LCWGS and Chip Array Data
We have calculated the CV of the two imputation accuracy
standards in all scenarios. The CV is defined as the ratio of
the standard deviation to the mean, and it can indicate the extent
of the impact of factors considered on the imputation accuracy.
Each row in Table 8 represents a different imputation scenario
with the asterisked ones being the most important factor affecting
imputation in each situation. It can be seen that the SNP density
(the proportion of target markers) was the most important in
most scenarios. Compared to Minimac4, the imputation
accuracies of Beagle5.1 were affected by more factors under
the same condition.

Although the changes of various factors in this study have
almost the same influence on imputation of either LCWGS or
chip data, when the level of each factor is the same, there is a
difference in imputation between chip data and LCWGS data.
Therefore, we directly compared the imputation of the two

TABLE 7 | Runtime (min) to impute 10 Mb low-coverage whole-genome sequencing data with regard to software, reference population size, and proportion of target
markers/SNP density.

Software Reference population
size

Proportion of target markers or SNP density/%

1 5 10 30 50 90

Beagle5.1 100 107.28 114.60 114.52 110.37 106.45 103.09
1,000 108.88 120.42 122.82 121.04 105.25 104.76
3,000 106.18 119.28 116.05 116.43 102.54 100.29
5,000 106.48 122.42 122.37 118.86 112.88 103.36
10,000 110.80 123.02 122.37 120.22 112.03 106.18

Minimac4 100 5.22 7.31 7.00 6.75 5.45 4.59
1,000 8.37 10.06 9.76 9.25 9.36 9.41
3,000 11.39 13.47 13.91 14.29 15.52 16.5
5,000 15.20 17.40 17.11 19.15 21.25 24.95
10,000 21.23 24.63 24.95 29.55 33.40 35.43

TABLE 8 | Coefficient of variation of imputation reliability and imputation error rates.

Software Accuracy criterion Data type Coefficient of variation

Proportion of target
markers / SNP

density

Reference population size Genetic distance

Beagle5.1 Reliability SNP chip 0.164a 0.083 0.051
LCWG sequencing 0.320a 0.051 0.021

Error rate SNP chip 0.393 0.541a ---
LCWG sequencing 1.508a 0.262 ---

Minimac4 Reliability SNP chip 0.313a 0.056 ---
LCWG sequencing 0.340a 0.051 ---

Error rate SNP chip 0.490a --- ---
LCWG sequencing 0.339a --- ---

aThe most important factor affecting the imputation in each scenario.
A dash (---) indicates that the factor has no significant effect on imputation accuracy in this scenario.
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methods based on the two types of data. The imputation
reliability of the two types of data in Beagle5.1 is shown in
Figure 4A. When the proportion of target markers is 1%, the
average imputation reliability using chip data is 0.51, which is
higher than the 0.25 using sequencing data. When the
proportion of target markers is greater than 5% (the
reliability of the two data types is equal to 0.83), the
imputation reliability of LCWGS data completely surpasses
that of chip data, and when the proportion of target
makers is 30%, the average reliability using LCWGS data can
reach the extremely high level of 0.99. Using the Minimac4
method, the reliability with chip data is not less than that
with LCWGS data except when the proportion of target
markers is 1% and both are 0.24. At other levels, higher
imputation reliability can be obtained with LCWGS data
(Figure 4B).

Figure 4C shows the error rate of imputation with two
types of data in Beagle5.1. When the target marker
proportion is ≥5%, the error rate with LCWGS data was
lower than that with chip data and can reach at best
4.9%. In contrast, when imputation was with chip data,
the error rate in all cases was higher. In Minimac4
(Figure 4D), there was no significant difference in the
error rate between imputation with the two types of data,
but neither reached the best achieved by Beagle5.1. These
showed that in most cases, compared to imputation with
chip data, imputation with LCWGS data can achieve higher
accuracy imputation, especially in terms of the imputation
error rate.

DISCUSSION

In previous studies (van Binsbergen et al., 2014; Kreiner-
Møller et al., 2015; Schurz et al., 2019), the imputation
reliability and the imputation error rate were used to assess
imputation accuracy. Imputation reliability appears to be a
more useful measure with respect to genomic prediction
because the nature of imputation reliability coincides with
the definition of reliability used for breeding values, and it does
not depend on minor allele frequency (MAF). The imputation
error rate depends on MAF, which makes it difficult to select
the imputed SNPs used for subsequent predictions (Calus
et al., 2014).

Imputation accuracy is more problematic for rare variants.
Rare variants mean that the locus is almost mono-allelic. The
correlation is not defined when one or other of the vectors of true
and imputed variants are mono-allelic. Many rare variants will be
excluded in subsequent analyses (Pook et al., 2020). Therefore,
both imputation reliability and error rate were used to evaluate
the accuracy of imputation in this study to consider different
applications of the imputed data.

With the development of sequencing technology and the
reduction of sequencing costs, choosing SNP chip or LCWGS
data has become blurred. In this study, the imputation accuracies
of two types of genomic data were different, but under the same
scenario, these two types of genetic data have similar influences
on significance for each factor considered. That is, the imputation
process was not affected by the data type to impute. In the case of
the SNP density or proportion of target markers being ≥5%, the

FIGURE 4 | Comparison of imputation accuracy using two types of data. (A) Comparison of reliability in Beagle5.1. (B) Comparison of reliability in Minimac4. (C)
Comparison of the error rate in Beagle5.1. (D)Comparison of the error rate in Minimac4. LCWGS-r2, imputation reliability use LCWG sequence data; Chip-r2, imputation
reliability use chip data; LCWGS-er, imputation error rate use LCWG sequence data; Chip-er, imputation error rate use chip data.
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imputation performance of Beagle5.1 for the LCWGS data was
better than that for the SNP array data, especially in terms of the
error rate. This was consistent with findings by Rubinacci et al.
(2021), who reported that the reliability of imputation of human
sequencing data was the highest in ultrahigh-density chip data,
sequencing data, and chip data. Moreover, VanRaden et al. (2015)
compared the imputation of low- or medium-density chip data
with low-coverage sequencing data with similar costs and found
that 1× and 2× deep sequencing data performed better than 10
and 60 K chip data in terms of the imputation error rate and
reliability. All these results suggest that low-coverage whole-
genome sequencing data has great potential for imputing to
whole-genome sequencing resolution. It should be noted that in
the case of the proportion of targetmarker/SNP density being ≤1%,
the imputation accuracy of Minimac4 for LCWGS was better than
that of Beagle5.1. This might be because SNP markers evenly
distributed in the genome can capture more genetic information
than LWGS data with a limited number of genetic variants.

Apart from the choice of imputation reference panel, the
software used affects the imputation accuracy. In this study,
we only compared two software products including Beagle5.1
and Minimac4. Both packages are based on a ‘state-space
reduction’ of the hidden Markov models (HMMs) describing
haplotype sharing, but the specific simplification methods are
different. In Beagle5.1, genotype imputation is based on identity
by descent (IBD) and uses the genotypes at the target markers to
identify long IBD segments that a target haplotype shares with the
reference haplotypes before imputation. It integrates the
identified IBD fragments of different lengths into a subset that
contains almost the same information as the complete reference
haplotypes (Browning et al., 2018). While Minimac4’s model first
divides the whole genome into consecutive blocks and iterates
only over the unique haplotypes in each genomic block (for
imputation with a fixed chromosome length, the length of these
blocks is fixed). It uses a reversible mapping function that can
reconstruct exactly the state space used by Minimac4 (Das et al.,
2016). This will also change the length and number of IBDs in the
subset. This is the reason why Beagle5.1 is more sensitive to
reference population size. The flexible and computationally
intensive method makes Beagle5.1 more suitable for imputing
sequencing data in a large reference population size. Under most
scenarios, the imputation accuracies of Beagle5.1 were better than
those of Minimac4. When the reference population was small,
Minimac4 had better performance in the error rate than
Beagle5.1. This was consistent with the results of Korkuć et al.
(2019). It should be mentioned that when the proportion of target
markers was 90%, the imputation error rate of Minimac4
increased abnormally. This was due to the over-correction that
caused the error rate of some alleles to be greater than 100%
during imputation. To further explain this phenomenon, we
rerun our script using Minimac4 when proportions of target
markers were 70 and 80%. We still found that the results were
similar to that of the density of 90%, and the numbers of alleles
with over-correction increased with the increase in density
(Supplementary Table S4). This may be a bug of Minimac4.

In the present study, increasing the reference population size
led to more accurate imputation, which agreed with other studies

(Delaneau et al., 2013; García-Ruiz et al., 2015). A larger reference
population can provide more reference haplotypes and the target
markers can be more easily matched to the haplotypes, making
the reliability higher. Our results are similar to the findings of
Hozé et al. (2013), that is, changes of reference population size in
Beagle5.1 has a significant impact on the error rate. However,
Zhang and Druet (2010) reported that compared with the
number of SNPs and genetic distance between populations,
the size of the reference population had a relatively small
effect on the imputation error rate, which is similar to our
findings for Minimac4. This also reflects the differences in
calculations between the methods.

In order to obtain high reliability and low error rate imputation,
in addition to choosing target markers that more easily match
reference haplotypes, we can increase the proportion of target
markers or SNP density or select individuals closely related to the
target population as the reference population. Another factor that
affected the imputation error rate was the difference in MAF, which
at first sight may be an unexpected indicator for imputation,
especially since haplotypes are used for imputation. However, as
shown in other studies (Huang et al., 2009; Oliveira Júnior et al.,
2017), since the process of imputation first calculated correlation
between reference and target haplotypes and then considered the
consistency between the haplotypes, when imputing markers with a
higher allele frequency can maintain high correlations, if the
frequency between the two genotypes were similar, the marker
may not be imputed correctly.

In general, SNP density/the proportion of target markers
should be considered first. In this study, when the proportion
of target markers was less than 1%, the imputation results in all
cases were very poor except that the reliability of imputing chip
data with Beagle5.1 could be more than 0.5. An alternative
method was a two-step method that has been proven to
improve imputation reliability which first imputed the target
marker with low-density to a medium-density chip or high-
density chip data and then further imputed to sequence
resolution (Kreiner-Møller et al., 2015; Wang et al., 2015). A
large number of high-coverage sequencing individuals as the
reference population data will significantly increase the cost.
When the total sequencing depth is fixed (e.g., constrained by
budget), balancing the number and depth of sequencing
individuals can effectively improve the imputation accuracy,
such as using 1,000 individuals with depths of 8× as a
reference population have higher imputation reliability than a
reference population composed of 500 individuals with 16×
(VanRaden et al., 2015). On the other hand, the development
and progress of the network database and cloud server
technologies also provide opportunities for solving this issue
(Das et al., 2018). For instance, the 1,000 Genomes Project
and Haplotype Reference Consortium (HRC) public dataset in
human research greatly facilitates the application of genotype
imputation (Rubinacci et al., 2021). However, in the animal
domain, except for the 1,000 Bull Genomes Project (Hayes
and Daetwyler, 2019), data sharing channels are still very
limited. The use of multiple populations to form a mixed
reference population can effectively reduce genetic distance
and improve imputation accuracy (Schurz et al., 2019).
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CONCLUSION

In this study, we have comprehensively analyzed the influence of
several factors on the accuracy of genotype imputation. The
proportion of target marker/SNP density has a very significant
impact on the imputation reliability and the error rate under all
imputation situations, which indicate that it is the most important
factor in genotype imputation. The imputation performance of
Beagle5.1 was better than Minimac4 in most cases, but when the
reference population was small, SNP density was low, or genetic
distance was large; the imputation accuracy of Beagle5.1 was more
easily affected than that of Minimac4. Compared with Minimac4,
Beagle5.1 can achieve better imputation performance with relatively
relaxed conditions, which was more obvious when the LCWG
sequencing data was used to impute to sequence data. Except in
the case of extremely low SNP density, the imputation accuracy
based on sequencing data is usually better than that based on chip
data. Our results provided a reference for the application of genotype
imputation in domestic animals.
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