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Aim: This study aimed to evaluate the efficacy of hypoxia-persistent insulin-producing cells (IPCs) against
diabetes in vivo. Materials & methods: Mesenchymal stem cells (MSCs) differentiation into IPCs in the
presence of Se/Ti (III) or CeO2 nanomaterials. IPCs were subjected to hypoxia and hypoxia genes were
analyzed. PKH-26-labeled IPCs were infused in diabetic rats to evaluate their anti-diabetic potential.
Results: MSCs were differentiated into functional IPCs. IPCs exhibited overexpression of anti-apoptotic
genes and down-expression of hypoxia and apoptotic genes. IPCs implantation elicited glucose depletion
and elevated insulin, HK and G6PD levels. They provoked VEGF and PDX-1 upregulation and HIF-1α

and Caspase-3 down-regulation. IPCs transplantation ameliorated the destabilization of pancreatic tissue
architecture. Conclusion: The chosen nanomaterials were impressive in generating hypoxia-resistant IPCs
that could be an inspirational strategy for curing diabetes.

Plain language summary: Transplantation of cells that can release insulin have been reported as an
alternate method to islet transfer for curing diabetes; however, the main difficulty facing the quality of
the pancreatic cells is the deficiency of oxygen. Thus, this study was done to discover a new curing method
for diabetes by producing cells that can release insulin and could survive under low oxygen circumstances,
and assessing their healing ability against diabetes in rats.
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Diabetes mellitus (DM) is characterized by chronic hyperglycemia originating from the disturbance in either
insulin release or action or both. Type I DM arises from immune-mediated damage of β-cells in the pancreatic
islets, whereas Type II DM, the most frequent form, arises from insulin resistance associated with failure of
pancreatic β-cell function [1].

It is estimated that about 463 million individuals, especially those in developing countries, are afflicted with
diabetes globally and this number is anticipated to increase to 700 million in 2045. Moreover, diabetes contributes
to 1.6 million death cases annually [2]. Diabetes is regarded as an emerging health burden in Egypt since more than
eight million people were diagnosed with DM in 2017 [3].

Hyperglycemia is the hallmark symptom of diabetes and long-term hyperglycemia leads to detrimental conse-
quences such as diabetic nephropathy, retinopathy, neuropathy and cardiovascular disease [4]. Moreover, diabetic
patients with uncontrolled blood glucose levels are more vulnerable to COVID-19 infection, which increases the
rate of mortality, especially during the pandemic [5].

Most of the currently used anti-diabetic medications can modulate the elevated blood glucose level, however,
such medications failed to prevent or reverse the disease progression. So, uncover new therapeutic modalities to
avoid this caveat is warranted [6].

Many studies shed light on the promising role of stem cells derived from different sources in tissue healing and
regeneration [7]. Prior studies by Voltarelli et al. [8] and Estrada et al. [9] have reported the safety and effectiveness
of stem cell-dependent treatment for curing both Type I and Type II diabetes. Mesenchymal stem cells (MSCs)
possess many excellent characteristics, including a self-replication capacity, immunomodulatory ability, and multi-
lineage differentiation capacity to overwhelm the challenges of ethical concerns, organ availability and allogeneic
rejection [10]. This multipotent capacity of MSCs makes them excellent therapeutic agents for curing many ailments,
including diabetes mellitus. However, many limitations restrict the utility of MSCs as a therapy for diabetes, such
as poor homing and limited differentiation in vivo [11].

MSCs originating from various sources were manipulated to differentiate into insulin-producing cells (IPCs) [12].
Insulin-releasing pancreatic beta cells have been reported to be greatly susceptible to hypoxia stress, which is
responsible for increased β-cell apoptosis following transplantation [13,14]. It was reported that rat insulinoma cells
have survived in the hypoxic environment during xenotransplantation. This could be attributed to their enhanced
hypoxia-resistant ability [13].

Selenium (Se) is a coenzyme of many enzymes such as glutathione peroxidase and glutathione reductase. It acts
as a free radical scavenger, so it protects against oxidative stress’s detrimental impact [15]. In addition, it has been
reported to motivate the cell cycle progress and prevent cell apoptosis [16]. In particular, Se nanoparticles exhibit a
great biological activity and possess many advantages compared with other nanomaterials owing to their excellent
capability to boost immunity and activate the defense response. So, they have been broadly utilized in various
medical applications as antioxidant, anticancer, antidiabetic and antimicrobial agents [17].

Titanium dioxide (TiO2) belongs to transition metal oxides that possess unique optical, thermal, electric and
magnetic characteristics. This oxide performs as a substrate attracting the protein molecules and improving cell
attachment. Titanium nanoparticles have been extensively employed in biomedical applications [18] since they were
utilized in many dental and orthopedic applications owing to their excellent cell affinity [19].

Cerium oxide (Ce O2) is a metal oxide member of the lanthanide group that can exist in both Ce3+ and Ce4+

ionic states. CeO2 nanoparticles have been reported to exhibit a redox activity, free radical scavenging ability,
anti-cancer, anti-inflammatory and antibacterial activity [20], which render them to be promising in a range of
biomedical applications, including the treatment of diabetes and many neurodegenerative diseases [21].

The principal aim of the present investigation was to explore a novel therapeutic option for ameliorating diabetes
mellitus. This goal was attained through: (1) the production of functional insulin-producing cells with enhanced
protective ability against hypoxic stress in vitro; and (2) evaluation of the therapeutic impact of these cells against
diabetes mellitus in vivo.
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Materials & methods
In vitro study
Nanomaterials

Selenium dioxide/titanium dioxide nanocomposites; Se/Ti (III) (1SeO2 8TiO2) were prepared as previously
described in our published paper [22]. Whereas, cerium (IV) oxide (CeO2) nanomaterials were obtained from Sigma
Company (MO, USA). These nanomaterials were characterized as described in our previous works [22,23].

Culture of adipose tissue & bone marrow-derived mesenchymal stem cells

Adipose tissue was isolated from the abdominal and the inguinal fat pad of Wistar rats (8-week old, 120–130 g),
supplied from the Animal care facility unit of the National Research Centre, Egypt, after general anesthesia following
the method of Tomiyama et al. [24]. The adipose tissue was dissected and mixed with phosphate-buffered saline
(PBS, Biowest, France). The obtained fat tissue was digested by collagenase Type II (0.075%, Serva Electrophoresis
GmbH, Germany) with continuous shaking at 37◦C for 1 h. After that, the digested tissue was filtered and
centrifuged at 400 × g for 10 min at 25◦C. Erythrocytes were eliminated by erythrocyte-specific lysis buffer. The
isolated cells were then suspended in high glucose Dulbecco’s modified Eagle’s medium (HG-DMEM, Lonza,
Belgium) supplied with fetal bovine serum (30% FBS; Biowest, France) and penicillin-streptomycin (1%, Biowest,
France) and incubated at 37◦C in a 5% humidified CO2 incubator (Sartorius, Germany). After 24 h, any non-
attached cells were discarded by replacing the growth medium with a new one. The cells were expanded till obtaining
a 90% confluent cell sheet.

Bone marrow content was obtained by flushing the tibiae and femoral bones of 6-week-old Wistar rats (100–
120 g) with HG-DMEM supplied with 10% FBS. Cell pellet, obtained after centrifugation, was suspended in a
culture medium supplemented with 30% FBS and 1% penicillin-streptomycin. Cells were kept at 37◦C in a CO2

incubator for 10 days or till achieving large cell clusters [25].
Once bone marrow mesenchymal stem cell (BMSC) and adipose-derived stem cell (ADSC) cultures developed

90% confluence, the cells were subcultured using 1X trypsin/EDTA (Biowest, France) for 5 min at 37◦C. Cell
passaging was performed till obtaining third passage cultures. MSCs characteristics were identified by flow cytometry
screening of MSCs-related markers (CD90 and CD105) and a hematopoietic stem cells marker (CD34) in our
previously published paper [22].

Conversion of MSCs into insulin-producing cells

ADSCs and BMSCs of third passage were motivated to differentiate into insulin-releasing cells by seeding in HG-
DMEM supplied with 5% FBS for 14 days, then cells were suspended in culture media supplied with 10 nmol/l
nicotinamide (Bio Basic, Canada) for 7 days, and after that cells were suspended in culture media supplemented
with 10 nmol/l nicotinamide and 10 nmol/l exendin-4 (Bio Basic Inc., Canada) [26] along with one of the selected
nanoformulations (Se/Ti [III] or CeO2) for another 7 days. The concentrations of the tested nanomaterials used
for pancreatic differentiation were chosen based on the results of the MTT assay. Concentrations of 5 μg/ml of
CeO2 and 2 μg/ml of Se/Ti (III) were utilized for ADSCs differentiation. While concentrations of 10 μg/ml of
Se/Ti (III) and 20 μg/ml of CeO2 were picked out in case of BMSCs differentiation as mentioned in our previous
study [22].

Characterization of the generated IPCs

Quantitative analysis of pancreatic β cells-related gene expression levels
The differentiation of MSCs into pancreatic β-cells was affirmed by estimating the expression patterns of pancreatic
β-cell-related genes using real-time PCR. Briefly, total RNA was isolated from both undifferentiated (ADSCs and
BMSCs) and differentiated cells (IPCs) using the RNeasy mini kit (cat. #74104, Qiagen, Germany) following the
kit’s protocol. The isolated RNA (1 μg) was reverse transcribed, following measuring its purity and concentration
using NanoDrop 2000 (Thermo Fisher Scientific, USA), using RevertAid cDNA synthesis kit (cat# K1621, Thermo
Fisher Scientific, Lithuania) according to the provided manual. The transcriptional patterns of Nkx2.2, Ngn-3 as
well as PDX-1 were assessed by Maxima SYBR Green Master Mix (2X) (cat# K0251, Thermo Fisher Scientific,
Lithuania) using QuantStudio 12K Flex real-time PCR system (Applied Biosystems, USA). PCR mixture (25 μl)
included Master Mix (12.5 μl), forward primer and reverse primer (1 μl of each), cDNA template (100 ng) and
nuclease-free water. The sequences of each primer set are delineated in Table 1. The primer pairs were attained from
Invitrogen, USA. A relative comparative method (2-��Ct) was utilized to quantify the relative mRNA expression
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Table 1. List of primer sequences of pancreatic �-cell and hypoxia-related genes used in qRT-PCR.
Gene Primer sequence Study Ref.

Nkx2.2 F: 5′-CACGCAGGTCAAGATCTG-3′ Wu et al. [26]

R: 5′-TGCCCGCCTGGAAGGTGGCG-3′

Ngn-3 F:5′-CTTCACAAGAAGTCTGAGAACACCAG-3′

R: 5′-CTGCGCATAGCGGACCACAGCTTC-3′

PDX-1 F: 5′-GGTGCCAGAGTTCAGTGCTAA-3′

R: 5′-CCAGTCTCGGTTCCATTCG-3′

GAPDH F: 5′-CACCCTGTTGCTGTAGCCATATTC-3′

R: 5′-GACATCAAGAAGGTGGTGAAGCAG-3′

HIF-1α F: 5′-CACTGCACAGGCCACATTCAT-3′ Yu et al. [28]

R: 5′-AAGCAGGTCATAGGCGGTTTC-3′

Caspase-3 F: 5′-TGGTACCGATGTCGATGCAGC-3′ Saini et al. [29]

R: 5′-GGTCCACAGGTCCGTTCGTT-3′

BNIP-3 F: 5′-TCGCTCCCAGACACCACA-3′ Diao et al. [30]

R: 5′-GCCGACTTGACCAATCCC-3′

Bcl-2 F: 5′-TGACTTCTCTCGTCGCTACC-3′ Thangarajan et al. [31]

R: 5′-CATCTCCCTGTTGACGCTCT-3′

VEGF F: 5′-CAGCTATTGCCGTCCAATTGA-3′ Liu et al. [36]

R: 5′- CCAGGGCTTCATCATTGCA-3′

level in differentiated MSCs (IPCs) versus control (undifferentiated MSCs) after being normalized against the
GAPDH gene [27].

Establishment of hypoxia stress condition for the generated IPCs

Hypoxia induction
The resultant IPCs were exposed to hypoxia by incubating with cobalt (II) chloride (200 μmol/l; Alpha Chemika,
India) for 24 h [28].

Quantification of hypoxia-specific gene expression
The transcriptional levels of HIF-1α, Caspase-3 and BNIP-3 along with Bcl-2 and PDX-1 were quantified by
real-time PCR as previously described in this study. The primer sequences of the hypoxia-related genes are listed
in Table 1. A relative comparative method (2-��Ct) was utilized to estimate the differential mRNA transcriptional
levels of IPCs treated with nanoparticles versus control (IPCs without nanomaterials) after being normalized with
the GAPDH gene.

Cell labeling

The generated IPCs, derived from culturing MSCs in inductive media (IM) supplemented with either Se/Ti (III)
or CeO2 nanocomposites, were harvested and marked with a PKH26 fluorescent cell linker kit (Sigma, USA)
following the associated protocol before their transplantation into the diabetic rats.

The pancreatic tissues of the treated rats were investigated under the fluorescence microscope (Olympus, CKX41,
Japan) to confirm the presence of the PKH26-labeled cells.

In vivo study
Animals

Male Wistar rats (150–170 g) were placed in a ventilated room with alternative day and night cycles at 25–30◦C
and provided with water and rat–specific food (Meladco, Egypt). Rats were familiarized with such conditions for
14 days before initiating the experiment.

Animal classification

A total number of 48 rats were included in the experiment and separated as follows; negative control group containing
8 rats, which were injected via an intravenous route with sterile saline. While, other rats were subcutaneously injected
with only one dose of streptozotocin (45 mg/kg) (STZ, Sigma, USA), after being allowed to fast overnight, for the
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induction of diabetes mellitus. Streptozotocin was dispersed in sodium citrate buffer (50 mM, pH 4.5) comprising
NaCl (150 mM). After 72 h, fasting blood glucose was measured to ensure the induction of diabetes mellitus [32]

using the kit purchased from MG Science and Technology Center (Egypt). Rats exhibiting glucose levels greater
than 250 mg/dl were considered diabetic and enrolled in the study. After that, the diabetes-induced rats were
haphazardly assigned into five groups (8 rats /group). The diabetic group was left without treatment, ADSCs
+ Se/Ti (III) group which was infused in the tail vein with IPCs (3 × 106/rat) [33], derived from culturing rat
ADSCs in inductive media (IM) supplied with 2 μg/ml of Se/Ti (III) nanoformulation, ADSCs + CeO2 group
which was infused via tail vein with IPCs, generated from culturing rat ADSCs in IM containing 5 μg/ml of
CeO2 nanoparticles, BMSCs + Se/Ti (III) group which was transfused in the tail vein with IPCs, generated
from culturing rat BMSCs in IM supplemented with 10 μg/ml of Se/Ti (III) nanoformulation, and BMSCs +
CeO2 group which was infused in the tail vein with IPCs, generated from culturing rat BMSCs in IM containing
20 μg/ml of CeO2 nanoparticles.

One month later, the food was cut off from the animals for 12 h. After that, blood withdrawal was done,
following general anesthesia, from the retro-orbital venous plexus to separate the sera at 1800 × g for 15 min at
4◦C using a cooling centrifuge for biochemical analyses. Following blood withdrawal, the rats were euthanized and
the pancreas and liver of the rats were rapidly isolated and rinsed with ice-cold saline. Liver tissue was homogenized
in cold phosphate buffer (50 mM, pH 7.4) to obtain 20% homogenate (W/V) [34]. One portion of each pancreas
was immediately preserved at -80◦C for the gene expression analysis. Whereas the other part of the pancreas was
immersed in 10% formalin for the histological procedure.

Assessment of the anti-diabetic efficacy of the transplanted IPCs

Biochemical analyses
Serum level of insulin (INS), along with liver hexokinase (HK) and glucose 6-phosphate dehydrogenase (G6PD)
activities, were estimated by ELISA kits (Wuhan Fine Biotech Co. LTD, China), following the associated kit’s
procedure.

Molecular genetics study
RNA was extracted from the pancreases of the rats with the aid of Trizol (Invitrogen, USA) and RNeasy mini kit
following the method of Carter et al. [35]. After confirming the integrity of RNA, cDNA was produced using a
cDNA synthesis kit. Gene expression patterns of VEGF, HIF-α, PDX-1, as well as Caspase-3, were assessed using a
PCR device of DNA-Technology Real-Time (DTlite 4, Russia). The PCR mixture (25 μl) contained QuantiTect
SYBR Green master mix (12.5 μl, Qiagen, Germany), 0.8 μl of each sense, and antisense primers of the studied
genes (Invitrogen, USA), 100 ng of cDNA and nuclease-free water. Comparative mRNA expression level versus the
value of corresponding control was estimated using the 2-��Ct equation following normalization with GAPDH [27].
The amplification program included one step of initial denaturation at 94◦C for 15 min, succeeded by 40 thermal
cycles (94◦C for 15s, 60◦C for 30 s, 72◦C for 30 s). The primer sequences of the studied genes are tabulated in
Table 1.

Results were expressed as the fold change in the gene expression pattern of the untreated diabetic group versus
the negative control group. While data of all IPCs-treated groups were represented as the fold change in gene
expression as compared with the untreated diabetic group.

Histological procedure
In brief, after the fixation of pancreas tissues in neutral-buffered formalin (10%) for 24 h, rinsing with water,
and dehydration using serially-diluted ethanol were carried out. After that, the tissue samples were embedded
in paraffin wax in an oven of 56◦C temperature for 6 h. Paraffin-embedded tissue blocks were cut using the
microtome. Sections of 5 μm thickness were then placed on glass slides and deparaffinized. Subsequently, they were
subjected to staining with hematoxylin and eosin stain to be investigated under the light microscope (Olympus
BX51 microscope, Tokyo, Japan) [37].

Statistical analyses
The current data were displayed as means along with their standard deviation (SD). Data were estimated by the test
of one-way analysis of variance (ANOVA) using SPSS 14, succeeded by estimation of the least significant difference
(LSD) to compare the significance among different groups. A p-value less than 0.05 was considered significant.

future science group 10.2144/fsoa-2022-0005
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Results
Verification of IPCs generation
Gene expression analysis of IPCs-related genes

Rat ADSCs incubated in either inductive medium (IM) alone or along with Se/Ti III or CeO2 nanomaterials
revealed a significant overexpression (p < 0.05) of the Nkx2.2 gene relative to the undifferentiated ADSCs. Whereas,
ADSCs incubated in IM supplied with either Se/Ti III or CeO2 nanomaterials displayed a significant upregulation
(p < 0.05) of the Ngn-3 gene as compared with undifferentiated ADSCs and ADSCs incubated in IM alone.
Interestingly, ADSCs incubated in IM supplied with Se/Ti III nanomaterials exhibited a significant elevation
(p < 0.05) in the PDX-1 transcriptional level relative to the undifferentiated ADSCs and ADSCs+IM group as
well as ADSCs+ CeO2 group.

On the other side, rat BMSCs cultured in IM supplied with either Se/Ti III or CeO2 nanomaterials showed
significant overexpression (p < 0.05) of Nkx2.2 and Ngn-3 genes versus undifferentiated BMSCs and BMSCs+IM
group. Whereas, BMSCs cultured in either IM alone or supplied with Se/Ti III or CeO2 nanomaterials showed
a significant overexpression (p < 0.05) of the PDX-1 gene versus undifferentiated BMSCs. Surprisingly, BMSCs
incubated in IM supplied with Se/Ti III nanomaterials displayed a significant overexpression (p < 0.05) of the
PDX-1 gene versus the ADSCs+ CeO2 group.

The abovementioned findings confirmed the successful differentiation of both ADSCs and BMSCs into func-
tional IPCs as indicated in Figure 1.

Hypoxia-related gene expression profile of the in vitro cultured IPCs
The hypoxia exposed-IPCs (HE-IPCs) derived from ADSCs cultured in IM supplied with the chosen nanomaterials
(Se/Ti [III] or CeO2) revealed significant down-regulation (p < 0.05) of HIF-1α, Caspase-3 and BNIP3 genes
accompanied with a significant overexpression (p < 0.05) of Bcl-2 and PDX-1 genes relative to those derived from
ADSCs cultured in IM without nanomaterials.

On the other side, HE-IPCs derived from BMSCs incubated in IM supplied with the selected nanomaterials
(Se/Ti [III] or CeO2) showed significant down-regulation (p < 0.05) of HIF-1α and Caspase-3 genes relative to those
derived from BMSCS cultured in IM without nanomaterials. Interestingly, the hypoxia-exposed IPCs generated
from BMSCs incubated in IM supplied with Se/Ti (III) nanomaterials displayed significant down-expression
(p < 0.05) in the BNIP3 gene transcriptional level associated with a significant overexpression (p < 0.05) of Bcl-2
and PDX-1 genes relative to those derived from BMSCs cultured in IM without nanomaterials Figure 2.

These findings affirm the protective role exerted by the tested nanomaterials on the generated IPCs against the
hypoxic stress.

Homing of the transplanted IPCs
The homing of the implanted IPCs was confirmed by detecting the presence of PKH26-labeled IPCs in the
pancreatic tissue of the treated rats. PKH26-labeled cells were detected in the pancreatic tissue specimens of
all IPCs-infused groups (ADSCs + Se/Ti [III], ADSCs + CeO2, BMSCs + Se/Ti [III] and BMSCs+CeO2

groups) upon examination through the inverted fluorescent microscope which proves the successful homing of the
transplanted IPCs to pancreases of the diabetic rats Figure 3.

Impact of the transplanted hypoxia-resistant IPCs on glycemia
Figure 4 represents the impact of the transplantation of the hypoxia-resistant IPCs on glycemia indicators (plasma
glucose and insulin serum levels) of diabetes-induced rats. The untreated diabetic rats revealed a significant elevation
(p < 0.05) in the blood glucose level along with a significant decrease (p < 0.05) in the serum level of insulin relative
to the negative control group. Whereas, implantation of the IPCs evolved from culturing of ADSCs or BMSCs
in inductive media containing either Se/Ti (III) or CeO2 nanoparticles, in the diabetes-afflicted rats significantly
decreased the glucose level and enhanced the insulin serum level (p < 0.05) in comparison with the untreated
diabetic rats. Noteworthy, implantation with ADSCs + Se/Ti (III)-derived IPCs displayed a significant decline
(p < 0.05) in the serum–glucose level along with a significant increase (p < 0.05) in the serum–insulin level in
comparison with ADSCs + CeO2 and BMSCs + CeO2- derived IPCs. Furthermore, the diabetic rats infused with
BMSCs+ Se/Ti (III)-derived IPCs exhibited a significant rise (p < 0.05) in the insulin serum level versus those
treated with BMSCs + CeO2 -derived IPCs.
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Figure 1. Relative mRNA expression analysis of insulin-producing cells-related genes (Nkx2.2, Ngn-3 and PDX-1) in
adipose-derived stem cells and bone marrow mesenchymal stem cells-derived insulin-producing cells. Data are
displayed as (mean ± SD) procured from four independent experiments (n = 4). (A) Significant variation at p < 0.05
relative to undifferentiated ADSCs. (B) Significant variation at p < 0.05 relative to (ADSCs + IM). (C) Significant
variation at p < 0.05 relative to undifferentiated BMSCs. (D) Significant variation at p < 0.05 versus (BMSCs +IM). (E)
Significant change at p < 0.05 relative to (ADSCs + Se/Ti III). (F) Significant variation at p < 0.05 relative to (BMSCs
+ Se/Ti III).
ADSC: Adipose-derived stem cell; BMSC: Bone marrow mesenchymal stem cell; IM: Inductive media.

The impact of transplanted hypoxia-resistant IPCs on the activities of hepatic carbohydrate
metabolizing enzymes
Figure 5 displays the influence of transplantation of hypoxia-resistant IPCs on the activity of the hepatic carbohydrate
metabolizing enzymes (hexokinase [HK] and glucose 6-phosphate dehydrogenase [G6PD]) of the diabetes-induced
rats. The untreated diabetic rats revealed a significant diminution (p < 0.05) in the hepatic HK and G6PD
activities as compared with the negative control rats. On the opposite side, all hypoxia-resistant IPCs-infused rats
demonstrated a significant rise (p < 0.05) in liver HK and G6PD activities compared with the untreated diabetic
group. Moreover, the diabetic rats infused with ADSCs+ Se/Ti (III)-derived IPCs revealed a significant increase
(p < 0.05) in HK activity relative to those infused with ADSCs+CeO2-derived IPCs or BMSCs+ CeO2-derived
IPCs. Likewise, BMSCs+ Se/Ti (III) group experienced a significant rise (p < 0.05) in the liver HK activity as
compared with ADSCs+CeO2 group and BMSCs+ CeO2 groups.
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Figure 2. Relative gene expression analysis of hypoxia-related genes; proapoptotic genes (HIF-1α, Caspase-3,
BNIP3) and anti-apoptotic genes (Bcl-2 and PDX-1) in adipose-derived stem cells and bone marrow mesenchymal
stem cells-derived hypoxia exposed-insulin-producing cells. Data are displayed as (mean ± SD) acquired from four
independent experiments (n = 4). (A) Significant change at p < 0.05 relative to (ADSCs-derived HE-IPCs + IM). (B)
Significant change at p < 0.05 relative to (BMSCs-derived HE-IPCs + IM). (C) Significant change at p < 0.05 relative to
(ADSCs-derived HE-IPCs + Se/Ti III). (D) Significant change at p < 0.05 relative to (ADSCs-derived HE-IPCs + CeO2).
ADSC: Adipose-derived stem cell; BMSC: Bone marrow mesenchymal stem cell; HE-IPC: Hypoxia
exposed-insulin-producing cell; IM: Inductive media.
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100 µm

100 µm

100 µm

100 µm

Figure 3. Homing of the implanted insulin-producing cells to the pancreatic tissues of different treated groups
indicating the presence of red-labeled cells. (A) Adipose-derived stem cells + Se/Ti (III). (B) Adipose-derived stem cells
+ CeO2. (C) Bone marrow mesenchymal stem cells + Se/Ti (III). (D) Bone marrow mesenchymal stem cells + CeO2

group.

Of note, the diabetes-afflicted rats injected with BMSCs + CeO2-derived IPCs revealed a significant decline
(p < 0.05) in liver G6PD activity relative to those injected with ADSCs + Se/Ti (III)-derived IPCs or BMSCs +
Se/Ti (III)-derived IPCs.

Molecular genetic outcomes
Figure 6 demonstrated the effect of infused hypoxia-resistant IPCs on the expression patterns of pancreatic VEGF,
HIF-1α, PDX-1 and Caspase-3 genes of diabetes-induced rats. The untreated diabetic rats displayed insignificant
overexpression (p > 0.05) of the pancreatic VEGF gene along with insignificant down-expression (p > 0.05) of
the PDX-1 gene. They also experienced a significant upregulation (p < 0.05) of pancreatic HIF-1α and Caspase-3
gene expression patterns compared with the negative control counterparts.

Infusion of the IPCs derived from either ADSCs or BMSCs in the presence of Se/Ti (III) or CeO2 nanomaterials
in the diabetes-afflicted rats elicited a significant upregulation (p < 0.05) in the pancreatic VEGF and PDX-1 genes
in concomitant with a significant down-expression (p < 0.05) of the pancreatic HIF-1α and Caspase -3 genes when
compared with the untreated diabetic rats.

Histological findings
The histological pancreatic section of the negative control rat displayed normal pancreatic architecture with active
pancreatic acini (Figure 7A). While the histological pancreatic section obtained from the untreated diabetic rat
revealed shrinkage of Langerhans islets and pancreatic acini, associated with degeneration pyknosis and necrosis
of components cells (star) as well as a proliferation of inflammatory cells (Figure 7B). The histological pancreatic
section of a diabetes-induced rat injected with ADSCs+ Se/Ti (III)-derived IPCs indicates that Langerhans islets
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Figure 4. Effect of hypoxia-resistant insulin-producing cells transplantation on plasma glucose and serum level. (A)
Plasma glucose level of diabetic rats. (B) Serum level of insulin of diabetic rats. Values are expressed as (means ± SD)
of eight rats per group. (a) Significant difference at p < 0.05 when compared with the negative control group. (b)
Significant difference at p < 0.05 when compared with the diabetic group. (c) Significant difference at p < 0.05 when
compared with the ADSCs + Se/Ti (III) group. (d) Significant difference at p < 0.05 when compared with the BMSCs +
Se/Ti (III) group.
ADSC: Adipose-derived stem cell; BMSC: Bone marrow mesenchymal stem cell.
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Figure 5. Effect of hypoxia-resistant
insulin-producing cells transplantation
on the hepatic carbohydrate
metabolizing enzyme activities (HK
and G6PD) of the diabetes-induced
rats. Values are displayed as
(means ± SD) of eight rats per group.
(A) Significant variation at p < 0.05 in
comparison with the negative control
group. (B) Significant variation at
p < 0.05 in comparison with the
diabetic group. (C) Significant variation
at p < 0.05 in comparison with the
ADSCs + Se/Ti (III) group. (D)
Significant variation at p < 0.05 in
comparison with the BMSCs + Se/Ti (III)
group.
ADSC: Adipose-derived stem cell;
BMSC: Bone marrow mesenchymal
stem cell.

and pancreatic acini are within the normal limit (Figure 7C). Histological pancreatic section of a diabetes-induced
rat injected with ADSCs + CeO2-derived IPCs demonstrated shrinkage of Langerhans islets and pancreatic acini,
along with degeneration pyknosis and necrosis of components cells, karyolysis is evident (arrow) (Figure 7D). The
histological pancreatic section of a diabetes-afflicted rat injected with BMSCs+ Se/Ti (III)-derived IPCs showed
normal Langerhans islets (arrow) with some dilatation of the blood capillaries and pancreatic ducts (Figure 7E). A
histological pancreatic section attained from a diabetes-induced rat injected with BMSCs + CeO2-derived IPCs
revealed shrinkage degeneration pyknosis and necrosis of Langerhans islets (star) and pancreatic acini (Figure 7F).
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Figure 6. Effect of implanted hypoxia-resistant insulin-producing cells on the pancreatic VEGF, PDX-1, HIF-1α and
Caspase-3 gene expression patterns of the diabetic rats. Values are represented as (means ± SD) of four rats per
group. (A) Significant variation at p < 0.05 versus the negative control group. (B) Significant variation at p < 0.05
versus the diabetic group.
ADSC: Adipose-derived stem cell; BMSC: Bone marrow mesenchymal stem cell.

Discussion
In this study, MSCs originating from rat fat tissue and bone marrow were induced to differentiate into IPCs by
an inductive medium containing high glucose concentration, exendin-4 and nicotinamide, which are known as
effective inducers for the pancreatic cell differentiation.

Glucose acts as a growth inducer for pancreatic β-cells since it can enhance β-cell proliferation in vitro and in
vivo, enhance the differentiation of adult hepatic stem cells into pancreatic IPCs, and trigger the insulin release from
the cells originating from embryonic stem cells. Nicotinamide is a poly (ADP-ribose) synthetase inhibitor that can
trigger the differentiation of pancreatic progenitors into IPCs. Whereas exendin-4 can reinforce the proliferation
and neogenesis of pancreatic β-cell from ductal progenitor cells, and prevent their death [38].

Many transcriptional factors have been identified to mediate the pancreatic cells’ development, differentiation and
maturation, including Nkx2.2, Ngn-3, PAX4, Isl1, PDX1 and Nkx2.2 is a transcriptional regulator responsible for
the differentiation of β-cell lineage and the development of α-cells. Whereas Ngn-3 is a transcriptional regulator
crucial for determining the fate of the pancreatic endocrine progenitor cells. It is known to instigate the transcription
of many transcription factors, including PAX4, NeuroD1, PAX6, Nkx2.2 and Isl1 which are implicated in the later
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Figure 7. Histological investigations of pancreatic tissue of different groups. (A) Negative control rat displaying normal pancreatic
architecture with active pancreatic acini. (B) Untreated diabetic rat revealing shrinkage of Langerhans islets and pancreatic acini
associated with necrosis of components cells (star). (C) Diabetic rat infused with ADSCs + Se/Ti (III)-derived insulin-producing cells (IPCs)
showing normal Langerhans islets and active pancreatic acini. (D) Diabetic rat implanted with adipose-derived stem cells +CeO2-derived
IPCs showing shrinkage of Langerhans islets and pancreatic acini, with degeneration pyknosis and karyolysis is evident (arrow). (E)
Diabetic rat infused with BMSCs + Se/Ti (III)-derived IPCs showing normal Langerhans islets (arrow) with some dilatation of blood
capillaries and pancreatic ducts. (F) Diabetic rat injected with BMSCs + CeO2-derived IPCs showing shrinkage and necrosis of Langerhans
islets (star) (H&E, ×400, scale bar: 3 μm).

differentiation of pancreatic endocrine cells [39]. PDX-1 is a transcriptional factor critical for the development of all
types of pancreatic cells and the functionality of mature islet β-cells [40].

The current study revealed the successful generation of IPCs upon culturing ADSCs or BMSCs in inductive
media either alone or supplemented with the selected nanomaterials (Se/Ti III or CeO2). This was proved by
their ability to up-regulate the expression patterns of pancreatic genes; NKx2.2, Ngn-3 and PDX-1. Hashemi Tabar
et al. [41] reported that IPCs originating from ADSCs exhibited a significant over-expression of Nkx2.2, Ngn-3 and
PDX-1. Similarly, the study of Wu et al. [26] confirmed the expression of the pancreatic genes, including PDX-1,
Ngn-3 and NKx2.2 in IPCs differentiated from BMSCs. Moreover, Jafarian et al. [42] demonstrated a significant
upregulation of PDX1 and Ngn-3 and Nkx2.2 following the pancreatic differentiation of BMSCs.

Some studies demonstrated the difficulty of achieving consistent engraftment of pancreatic progenitor cells [43].
Currently, there are two approaches to avoid hypoxia-induced apoptosis of isolated islet β-cells, either through
preconditioning the cells before the transplantation or by oxygen perfusion following engraftment [44]. Thus, the
challenge is to determine the best conditions enabling the implanted cells to adapt to hypoxia without alteration in
their metabolism.

Exposure to high hypoxia stress activates the expression of NF-κB, which in turn induces the apoptotic pathway
responses [45]. In addition, hypoxia stimulates the AMP-activated protein kinase pathway, which induces the
expression of Caspase-3, resulting in β-cell apoptosis [14,46].

In our study, we use cobalt chloride to induce hypoxia in vitro to mimic the same conditions facing the transplanted
insulin-producing cells and responsible for their poor survival rate upon injection into the circulation which is
considered the main obstacles hindering diabetes treatment using IPCs and evaluate whether incubating IPCs with
the selected nanomaterials could protect them against the hypoxic injury in vivo or not. Cobalt chloride (CoCl2)
has been reported to induce hypoxia by preventing HIF-1α degradation by replacing Fe2+ in the O2-binding heme
protein; the essential substrate for prolyl hydroxylase by Co2+, the enzyme responsible for HIF-1α degradation and
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consequently stabilizes HIF-α [47]. Hypoxic conditions have been reported to trigger the expression of hypoxia and
apoptotic genes, including HIF-1α, Caspase-3 and BNIP-3 [48]. Also, hypoxia stress potentiates the down-regulation
of anti-apoptotic genes, such as PDX-1 and Bcl-2 [49]. Greijer and van der Wall [50] reported that HIF-1α, induced
in response to low oxygen tension, stimulates apoptosis by interacting with the hypoxia-responsive element in the
pro-apoptotic protein, BNIP3, resulting in its activation which in turn triggers the liberation of cytochrome C from
mitochondria, resulting in apoptosis [51]. Furthermore, BNIP3 can form a complex with anti-apoptotic protein
Bcl-2, yielding its inhibition. This complex activates pro-apoptotic Bax or Bak, resulting in apoptosis [52].

In the current study, we supposed that the addition of nanomaterials to the inductive media of IPCs could
enhance the survival rate of these cells against hypoxia. Se is known to stimulate the selenoenzymes and antioxidant
enzyme activities, such as glutathione peroxidase (GPx), hence protecting cells from the free radical-induced damage
in vivo [53]. It also motivates cell cycle progression and inhibits apoptosis [16]. Similarly, CeO2 nanoparticles are
known as free radical scavengers and thus can protect the cells from the detrimental effect of oxidative injury [54].

The obtained data revealed that the addition of nanomaterials (Se/Ti III or CeO2) to the inductive media used
for MSCs differentiation into IPCs that were later exposed to hypoxic conditions, increased the expression level of
anti-apoptotic genes (Bcl-2 and PDX-1) and decreased the hypoxic and apoptotic genes (HIF-1α, Caspase-3 and
BNIP-3) expression patterns of in comparison with those in the absence of Se/Ti III or CeO2 nanocomposites. Rao
et al. [55] mentioned that the functionalized Se nanoparticles prevent oxidative stress by attenuating ROS generation,
G2/M phase arrest and intrinsic apoptotic pathway through down-regulating Caspase-3 protein expression in tert-
butyl hydroperoxide (t-BOOH)-induced cytotoxicity in PC12 cells. Arya et al. [56] cited that CeO2 nanoparticles
are effective in quenching ROS in vitro. Furthermore, Arya et al. [57] documented that CeO2 nanoparticles inhibited
cell apoptosis via maintaining the mitochondrial membrane potential and restoring the NADH/NAD (+) ratio and
cellular ATP. Hosseini et al. [58] indicated that the isolated rat pancreatic islets cultured in a high glucose-containing
medium supplied with CeO2 nanoparticles significantly reduced H2O2-induced apoptosis of islets as verified by
the reduced activity of Caspase-3. Moreover, Ghaznavi et al. [54] cited that CeO2 increased the survival of the
undifferentiated PC12 cells subjected to high glucose-triggered oxidative injury and reduced the ROS generation
and the down-expression of Caspase-3 protein. Also, these nanoparticles triggered the up-regulated levels of the
Bcl-2 protein.

Numerous animal models have been investigated for studying diabetes or evaluating the efficacy of anti-diabetic
agents. Streptozotocin (STZ) is regarded as the most commonly recognized diabetogenic drug for creating diabetic
animal models [59].

The current investigation revealed the successful homing of the implanted PKH26-stained IPCs derived from
MSCs differentiation in the presence of Se/Ti (III) or CeO2 nanomaterials to the diabetic pancreas as proved by
the detection of PKH26 stained cells in the pancreatic tissue of all IPCs-infused rats. Transplanted stem cells have
been reported to successfully accommodate the damaged pancreatic tissues in STZ-induced diabetic animals [33].
Moreover, Ianus et al. [60] mentioned that mouse MSCs can differentiate into functional pancreatic β-cells when
accommodating to the pancreatic islets following implantation. Nevertheless, the mechanisms by which MSCs are
migrated to the tissues and crossed the endothelial cell layer are unknown. The injured tissue possibly expresses
particular receptors to enable MSCs adhesion and migration to the injury site. A study performed by Sordi [61]

indicated that the MSCs migration to the pancreas tissue could be facilitated by CXCR4–CXCL12 and CX3CR1–
CX3CL1 axes, the essential chemotactic regulators known to mediate cell migration.

The data of our work revealed that the untreated diabetic rats exhibited a significant increase in the fasting
blood glucose level accompanied by a significant reduction in the insulin serum level indicating the significant
clinical signs of diabetes. These findings mirror the previous study of Chen et al. [62] and Krishnan et al. [63]. STZ
is an N-nitroso derivative of glucosamine that is exclusively consumed by pancreatic- β-cell via glucose transporter
(GLUT-2) causing DNA alkylation. This DNA cleavage results in the activation of poly ADP ribosylation, which
in turn leads to a decline in ATP and NAD+ cellular content. Moreover, STZ injection generates superoxide and
hydroxyl radicals, which eventually leads to pancreatic β-cells destruction by necrosis [64].

The untreated diabetic rats showed a significant decline in liver HK and G6PD activity contrasted with the
negative control group. This result is in coherence with that of Krishnan et al. [63]. Our study suggested that the
possible reason for the declined activity of the hepatic HK and G6PD could be attributed to insulin depletion
following STZ injection. This suggestion is greatly reinforced by the study of Babukumar et al. [65]. Many studies
have demonstrated that the alteration in glucose metabolizing enzymes is implicated in diabetes pathogenesis
and progression [66]. Insulin is known to modulate the activities of many carbohydrate metabolic enzymes such
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as HK and G6PD [67]. Hexokinase is one of the major glucose metabolic enzymes, that phosphorylates glucose
into glucose 6-phosphate. Its inadequacy in diabetes results in reduced glycolysis and decreased consumption of
glucose for ATP synthesis. It has been reported that HK is insulin-dependent and has a crucial role in keeping
up the glucose homeostasis in all the cells metabolizing glucose by ATP to produce glucose-6-phosphate. While,
G6PD catalyzes the initial step in the pentose phosphate pathway, providing NADPH essential for maintaining the
reduced glutathione, an important intracellular antioxidant, thus protecting the cells from oxidative damage [65].

According to the present outcomes, untreated diabetic rats exhibited insignificant upregulation in the pancreatic
VEGF gene expression level concomitant with insignificant down-expression of pancreatic PDX-1 gene as compared
with negative control rats. Furthermore, a significant over-expression of the pancreatic HIF-1α and Caspase-3 genes
has been demonstrated in the untreated diabetic rats versus the negative control counterparts. VEGF is a potent
mediator of neovascularization, a process of forming new blood vessels from the endothelial cells in the vascular
system [68]. VEGF expression is known to be modulated by HIF-1α. Under hypoxic conditions, stabilized HIF-1α

undergoes nuclear translocation where it binds to HIF-response elements on the target genes’ promoters to activate
their transcription with the aid of the co-activator protein p300 [69]. Thangarajah et al. [70] reported the aberration
of hypoxia-triggered VEGF expression in diabetic tissue in vitro as well as in diabetic animals in response to soft
tissue ischemia. This could be explained by the reduced functional activity of HIF-1α that modulates the hypoxia-
induced VEGF expression. These investigators suggested that hyperglycemia mediates the production of superoxide
as well as the glycolytic metabolite; methylglyoxal responsible for modification of the co-activator p300 and hence
decreases its association with HIF-1α, resulting in impaired HIF-1α- mediated VEGF gene transactivation and
poor vascularization.

On the other side, some studies reported up-regulated VEGF levels in diabetic retinopathy and nephropathy
and the vascular dysfunction is mediated by elevated expression of VEGF in the kidney of experimental animals
with diabetic complications [71].

PDX-1 is the main transcriptional regulator responsible for the regulation of pancreatic β-cells differentiation,
maturation and function. PDX-1 is known to regulate the transcriptional activity of SLC2a2/GLUT2 and glucoki-
nase (GCK). Together SLC2a2 and GCK can mediate glucose homeostasis and insulin release [72]. Elevated glucose
levels stimulate insulin release by β-cells. Such a process entails glucose uptake by GLUT2 followed by its phos-
phorylation by GCK [73]. Reduced PDX-1 activity stimulates hyperglycemia and β-cell dysfunction and apoptosis,
which is correlated to SLC2a2 and GCK down-expression [74]. SLC2a2 and GCK control the glucose-stimulated in-
sulin release by pancreatic β-cells. Therefore, the downregulated PDX-1 and associated reduced SLC2a2 expression
are coupled with hyperglycemia tolerance of β-cells [75].

Our data delineated that diabetic rats experienced a significant upregulation in pancreatic HIF-1α and Caspase-
3 gene expression patterns contrasted with the negative control rats. Several investigations have reported that
hyperglycemia promotes hypoxic injury and produces mitochondrial ROS [76]. Glomerular mesangial cells in
diabetic mice revealed a significant increase in HIF-1α expression level. Moreover, Yan et al. [77] indicated that
the high glucose level induces HIF-1α transcriptional activity and promotes VEGF; its downstream gene in the
endothelial cells. The results of Li et al. [78] reported that hyperglycemia could promote hypoxia and stimulate
HIF-1α expression in both normal and cancerous pancreas.

Prolonged hypoxia causes the death of pancreatic beta-cells by necrosis [79]. However, activation of apoptotic
pathways upon hypoxia exposure has also been reported. Thus, activated Caspase-3 co-localizes with HIF-1α in
pancreatic islets, indicating that apoptosis is activated in the islet parts where hypoxia is most profound [50]. The
observed upregulation of the pancreatic Caspase-3 gene in the untreated diabetic rats complies with the results of
Chen et al. [62]. Hyperglycemia activates the pancreatic RAS, resulting in reduced insulin release and increased
β-cell death in diabetes [80]. The enhanced glucose level promotes RAS and activates the transcriptional activity of
AT1R [62]. Ang II stimulates the generation of ROS via AT1R-coordinated NADPH oxidase and up-regulates the
expression of the apoptotic genes, including Bax and Caspase-3 [81].

Histological investigation of the pancreatic tissue section of the untreated diabetic rats showed diffused degenera-
tion and necrosis of Langerhans islets and pancreatic acini associated with infiltration of mononuclear inflammatory
cells. These findings are in harmony with those of Krishnan et al. [63] who reported shrinkage of islet cells with fatty
infiltration upon examination of pancreatic tissue of STZ-induced diabetic rats. Moreover, Chen et al. [62] indicated
that STZ injection results in swollen islet cells with hyaline degeneration, nuclear dissolution and condensation.
Furthermore, Qinna and Badwan [82] demonstrated that diabetic pancreatic sections contain a small number of
normal islets and the endochylema of islets displaying granular degeneration and necrosis.
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The findings of the current study clarified that the implanted IPCs, originating from culturing MSCs in the
presence of Se/Ti (III) or CeO2 nanomaterials, significantly reduced the fasting blood glucose level and elevated
the serum insulin level in the diabetic rats when compared with the untreated diabetic rats. This comes in line with
the study of Hashemi Tabar et al. [41] who demonstrated that ADSCs-derived IPCs implantation in STZ-induced
diabetic rats could alleviate hyperglycemia and increase insulin secretion. Our study suggested that the observed
inhibition of hyperglycemia and elevated serum insulin level following IPCs infusion could be going back to the
pancreatic secretion of insulin from the regeneration of Langerhans islets.

A significant rise in hepatic HK and G6PD activity was recorded, following the generated IPCs implantation in
the diabetic rats when compared with the untreated diabetic rats. This finding could be explained by the endogenous
regenerative activity of the transplanted IPCs in STZ-induced diabetic rats, resulting in elevated insulin secretion
and hence stimulating the hepatic carbohydrate metabolizing enzymes’ activities [7].

Our data clarified that the infusion of IPCs in the diabetes-induced rats provoked significant over-expression of
pancreatic VEGF and PDX-1 genes versus the untreated diabetic rats. The genetic data of Brissova et al. [83] indicated
that VEGF produced by islets is responsible for revascularization of the transplanted islets. The high islet vascularity
is responsible for the quick response to blood glucose and insulin release. Regarding the upregulation of the PDX-1
gene expression level upon infusion of IPCs in diabetic rats, this result is previously explained by Hashemi Tabar
et al. [41]. These investigators demonstrated the ability of the implanted cells to express PDX-1 could be the reason
for the observed upregulation in its expression level in pancreatic tissue.

The present findings indicated that the implantation of IPCs in diabetic rats triggered a significant down-
expression of the pancreatic HIF-1α gene. This observation matches with our in vitro outcomes that the generated
MSCs–derived IPCs in the presence of nanomaterials showed a significant reduction of HIF-1α gene transcriptional
level under hypoxic conditions. The observed down-expression of pancreatic HIF-1α gene following IPCs trans-
plantation could be attributed to their ability in controlling hyperglycemia as reported in the present investigation,
which is the leading factor of hypoxia [78].

Our data clarified that the generated IPCs infusion in diabetes-induced rats elicited a significant down-expression
of the pancreatic Caspase-3 gene which corroborates the finding of Anjum et al. [84]. This finding could be allied
to the ability of the transplanted cells to manage hyperglycemia and induce insulin release [7]. As it has been
demonstrated that high glucose promotes islet cell apoptosis [62].

The histological investigation of the pancreatic tissue sections of IPCs-infused rats revealed that the implanted cells
managed to in revert the harmful impact of STZ on the pancreas. The results of Anjum et al. [84] study demonstrated
that the pre-conditioned IPCs displayed increased survival rate and enhanced angiogenic and pancreatic gene
expression levels indicating that these cells may enhance the pancreatic function and architecture. It has been cited
that the damaged pancreatic tissues can release large amounts of cytokines and transcription proteins to mediate
the repair of pancreatic β-cells or stimulate pancreatic stem cells to produce pancreatic β-cells [85].

Conclusion
The current investigation clarifies that the tested nanomaterials (Se/Ti III or CeO2) can potently promote the con-
version of MSCs into insulin-releasing cells and potentiate their ability to survive under low oxygen circumstances
in vitro and in vivo. This pronounced effect could be allied to the ability of these nanomaterials to scavenge free
radicals and re-establish the balance between apoptotic and anti-apoptotic genes. Strikingly, our study highlights
the anti-diabetic efficacy of the generated IPCs in alleviating the detrimental impact caused by hyperglycemia and
hypoinsulinemia. This superior effect could be attributed to their superior capability to accommodate the diabetic
pancreas following systemic implantation, control blood glucose, restore the pancreatic insulin synthesis and secre-
tion from the regenerated β-cell regeneration, retrieve hexokinase and glucose-6-phosphate dehydrogenase activities,
promote angiogenesis, attenuate hypoxia and inhibit apoptosis. Hence, hypoxia-resistant insulin-producing cells
could represent a future promising candidate for ameliorating the pathological indices of diabetes mellitus.

Future perspective
This approach highlights the impressive role of the chosen nanomaterials in generating hypoxia-resistant IPCs that
offer an inspirational strategy for treating diabetes. In the future, hypoxia-combating IPCs could be an alternative
to islet transplantation that lacks long-term functionality due to oxygen deprivation following implantation.
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Summary points

• Mesenchymal stem cells of either adipose tissue or bone-marrow source were successfully differentiated into
functional insulin-producing cells (IPCs) as proved by the upregulation of pancreatic β-cell-related gene
expression.

• Se/Ti(III) and CeO2 nanomaterials were proved to effectively protect the generated insulin-producing cells from
hypoxia conditions.

• The generated IPCs were able to combat hypoxia stress in vitro as evidenced by the upregulation of
anti-apoptotic genes and down-regulation of hypoxia and apoptotic gene expression levels.

• The generated PKH-26-labeled IPCs were successfully home to the diabetic pancreas following transplantation.
• IPCs implantation in vivo provoked a significant decline in glucose level as well as a significant increase in insulin

serum level, HK and G6PD activities. Also, it could inverse the detrimental impact of streptozotocin on the
pancreatic tissue architecture suggesting the anti-diabetic potential of the infused IPCs.

• The infused IPCs could also combat hypoxia in vivo as evidenced by the significant upregulation in VEGF and
PDX-1 and down-regulation in HIF-1α and Caspase-3 gene expression levels.

• Such prominent effect of hypoxia-resistant IPCs required to be applied in a clinical setting.
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