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Due to the characteristics of aggressiveness and high risk of postoperative

recurrence, non-small cell lung cancer (NSCLC) is a serious hazard to human

health, accounting for 85% of all lung cancer cases. Drug therapies, including

chemotherapy, targeted therapy and immunotherapy, are effective treatments

for NSCLC in clinics. However, most patients ultimately develop drug

resistance, which is also the leading cause of treatment failure in cancer. To

date, the mechanisms of drug resistance have yet to be fully elucidated, thus

original strategies are developed to overcome this issue. Emerging studies have

illustrated that circular RNAs (circRNAs) participate in the generation of

therapeutic resistance in NSCLC. CircRNAs mediate the modulations of

immune cells, cytokines, autophagy, ferroptosis and metabolism in the tumor

microenvironment (TME), which play essential roles in the generation of drug

resistance of NSCLC. More importantly, circRNAs function as miRNAs sponges

to affect specific signaling pathways, directly leading to the generation of drug

resistance. Consequently, this review highlights the mechanisms underlying

the relationship between circRNAs and drug resistance in NSCLC. Additionally,

several therapeutic drugs associated with circRNAs are summarized, aiming to

provide references for circRNAs serving as potential therapeutic targets in

overcoming drug resistance in NSCLC.
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Introduction

Lung cancer is a malignant tumor with high morbidity and mortality worldwide, with an

evaluated 2.2 million new cancer cases and 1.8 million deaths in 2020 (1), and 85% of them

are NSCLC (2). There have been significant advances in the treatment of NSCLC over the

past several decades, particularly in targeting the mutations of epidermal growth factor
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receptor (EGFR) and anaplastic lymphoma kinase (ALK). In

addition, immune checkpoint inhibitors, such as programmed

death-1 (PD-1)/programmed death-ligand-1 (PD-L1) antibodies,

have been used to treat driver gene-negative NSCLC (3). However,

with the generation of drug resistance, the efficacy of chemotherapy

and targeted therapy for NSCLC is greatly weakened. Hence, a

better understanding of the drug resistance and identifying new

therapeutic targets towards resistance are urgently needed.

Acquired drug resistance is one of the biggest challenges to

clinical NSCLC treatment. The discovery of EGFR tyrosine kinase

inhibitor (EGFR-TKI) effectively prolonged the remission and

survival of patients with EGFR sensitive mutations in advanced

NSCLC, mainly exon 19 deletions or the L858R point mutation in

exon 21. However, almost all patients initially sensitive to the first or

second generation EGFR-TKIs eventually developed drug resistance

due to multiple molecular mechanisms. Normally, T790M

mutation in exon 20 of EGFR gene is the most pervasive

mechanism of acquired EGFR-TKI resistance (4). Consequently,

it is essential to investigate effective solutions to manage drug

resistance in NSCLC patients.

CircRNAs are derived from back splicing (5) with a closed-loop

structure that emanates from the exosome. Since circRNAs have no

5’ or 3’ ends, they are resistant to RNA exonuclease-mediated

degradation and thus are more stable (6). Accumulating studies

showed that circRNAs are involved in multiple cellular biochemical

processes of NSCLC, including proliferation (7), differentiation,

metastasis, apoptosis and ferroptosis (8), demonstrating that

circRNAs play a crucial role in NSCLC (9). Currently, a great

number of literatures reported that the upregulated or

downregulated expressions of circRNAs are closely associated

with triggering NSCLC tumor cells to generate resistance to

therapeutic drugs. In general, circRNAs mediate the development

of drug resistance mainly through regulating miRNAs in NSCLC

(10, 11). Furthermore, circRNAs can induce the occurrence of

tumor drug resistance through multiple approaches, including

inhibiting cancer cell apoptosis (12), accelerating drug excretion

from cells (13), promoting DNA damage repair (14), maintaining

the characteristics of tumor stem cells (15), and enhancing

autophagy (16). Notably, in view of the relationship between

circRNA and multidrug resistance, the unique back splicing of

circRNA is a potential specific target for NSCLC, and precise

regulation of circRNAs may play a therapeutic role in eliminating

drug resistance. In this review, we summarize the recent findings of

circRNAs in drug resistance of NSCLC, with the aim of providing

references for overcoming drug resistance in NSCLC.
The function of circular RNAs
in NSCLC

Emerging evidence suggests that circRNAs employ several

mechanisms to exert their biological functions in NSCLC
Frontiers in Oncology 02
(Figure 1). CircRNAs could function as sponges of miRNAs to

form complexes to compete with endogenous RNAs (ceRNAs)

(17), exerting a significant role of proliferation, apoptosis (18)

and generating drug resistance (19) in NSCLC. Regulatory

networks are formed when circRNAs attach to other

molecules, constituting circRNA-DNA, circRNA-RNA, and

circRNA-protein interactions (20). It is widely known that

circRNAs with miRNA response elements (MREs) can operate

as competitive molecules by binding to various miRNAs,

reducing the ability of miRNAs to influence downstream

mRNA expression (20). Secondly, circRNAs in the nucleus

regulate alternative splicing (21, 22) and transcription (23).

Moreover, circRNAs can serve as protein sponges or protein

scaffolds in which circRNAs interact with some proteins (5),

including specific RNA-binding proteins (RBPs) (24) to

modulate proliferation and invasion in NSCLC (25). Thus,

there exists a non-negligible relationship between circRNAs

and NSCLC, while the potential mechanisms are still needed

to be clearly investigated.
The mechanisms of circRNAs
mediating drug resistance of NSCLC

Exosomes

Exosomes refer to a group of extracellular vesicles with sizes

ranging between 30 and 150 nm (26). The exosomes are capable

of transferring functional molecules, such as circRNAs, mRNAs

(27), enzymes, and lipids (28), to neighboring or distant cells to

regulate cellular activities. Thus, exosomes have a critical

position in intercellular communication (29). The functional

molecules of exosomes are associated with a variety of cancer-

related activities, such as angiogenesis, metastasis, cell growth,

survival and cancer stem cell renewal (30). It has also been

shown that cancer cells secrete exosomes and cancer cell-derived

exosomal circRNAs could serve as tumor markers (31). In

human serum exosomes, it has been discovered over 1000

circRNAs, which are 6 times more than linear RNA. In

addition, circRNAs derived from exosomes are found to

promote resistance of NSCLC cells to chemotherapy, targeted

therapy, and immunotherapy. Serum-derived exosomes express

high levels of hsa_circ_0014235, which increases cisplatin

(CDDP) chemoresistance in NSCLC cells (32). Yu et al.

demonstrated that circ_0001658 induced TWIST1 expression

through sponging miR-409-3p to promote gefitinib resistance in

NSCLC (33) . A l so , Ma et a l . demons t ra t ed tha t

hsa_circ_0002130 could contribute to osimertinib resistance in

NSCLC through sponging miR-498 (34). Additionally, Chen

et al. illustrated that cancer cell-derived exosomal circUSP7

could induce CD8+T cell dysfunction and anti-PD1 resistance

by modulating the miR-934/SHP2 axis of NSCLC (11).
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Therefore, it is worthy to deeply understand the primary target

molecules and signaling pathways of circRNAs that affect the

acquisition of drug resistance, to establish a solid theoretical

foundation for circRNA-based treatments.
MiRNAs sponges

As post-transcriptional regulators of gene expression, miRNAs

perform functions by pairing their seed region directly with

messenger RNAs of protein-coding genes (35). Meanwhile, many

circRNAs exhibit dominant biological functions by acting as

miRNAs sponges (36). More specifically, circRNAs in the

cytoplasm are identified to pair with complementary binding sites

of miRNAs to regulate target gene expression (37). A growing

number of studies have revealed that circRNA serving as a miRNA

sponge is one of the major mechanisms of drug resistance in

NSCLC. Zheng et al. found that the expression of circPVT1 was

positively contributed to CDDP and pemetrexed chemotherapy

resistance via modulating miR-145-5p/ABCC1 axis in lung

adenocarcinoma (LUAD) (38). Zhang et al. suggested that
Frontiers in Oncology 03
circSOX13 was significantly overexpressed in NSCLC. The

elevated circSOX13 was able to increase the malignant behavior

and CDDP resistance of NSCLC via binding to miR-3194-3p (39).

In addition, circ_PRMT5 was demonstrated to promote CDDP

resistance by sponging miR‐4458, resulting in the overexpression of

miR‐4458 targeted gene REV3L in NSCLC (40). Moreover, Zhou

et al. found that enforced expression of PDPK1 could reverse the

effects of knockdown of has_circ_0004015 on gefitinib sensitivity in

NSCLC cells (41). Despite these findings, there still exist numerous

circRNAs by binding miRNAs to control drug sensitivity of

NSCLC. As a result, targeting the function of circRNA as a

miRNA sponge could be an ideal therapeutic strategy to

overcome drug resistance of NSCLC.
Autophagy

Autophagy, a cellular “self-digestion” process, is a vital

biological process involved in cellular survival. It has been

demonstrated that the interaction between autophagy and

TME significantly affects tumor progression (42). During long
FIGURE 1

General mechanisms of circRNAs functions in NSCLC. (A) circRNAs act as miRNA sponges. (B) circRNA-protein interactions. (C) circRNAs
function as protein scaffolding. (D) circRNAs modulate alternative splicing. (E) circRNAs regulate gene transcription. The meaning of "→" is
"process".
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periods of tumor cells dormancy, autophagy can be induced by

cancer therapeutic drugs and frequently contributes to cancer

cell survival and the eventual outgrowth of tumors. On the one

hand, autophagy is the recycling of degrading cellular

metabolites for cellular survival (43). On the other hand, the

proteins involved in various stages of autophagy regulate the

apoptotic pathway (44). Accumulating evidence indicates that

circRNAs influence drug resistance by the regulation of

autophagy (45). For instance, circ_0085131 as a molecular

sponge of mir-654-5p to overexpress autophagy-associated

factor ATG7, leading to CDDP resistance of NSCLC (46). In

addition, Zhong et al. found upregulation of circ_100565

regulated autophagy, proliferation and apoptosis, contributing

to CDDP resistance of NSCLC (16). The underlying mechanism

was that circ_100565 served as a sponge of miR-377-3p and

overexpression of circ_100565 led to the increasing expression of

miR-377-3p targeted gene ADAM28. Another study showed

that circEHD2 governed the proliferation and glycolysis of

NSCLC, but refrained autophagy and apoptosis through

binding to miR-3186-3p targeting FOXK1, curbing the

malignant phenotype of NSCLC (47). Whether circEHD2 can

mediate drug resistance by affecting autophagy deserves

further exploration.
Ferroptosis

Ferroptosis is a newly identified form of cell death mediated by

ironmetabolism and oxidative stress (48). Currently, ferroptosis has

been identified to associate with the development and therapeutic

resistance of NSCLC (49–52). Thus targeting ferroptosis can be a

relatively novel therapeutic approach for NSCLC treatment. One

recent study showed that depletion of USP35, a member of

deubiquitinases family, can boost ferroptotic cell death and

enhance the sensitivity of cisplatin and paclitaxel chemotherapy

in lung cancer cells (53). Another study reported that inhibiting

glutathione peroxidase 4 could surmount resistance to lapatinib by

increasing ferroptosis in NSCLC patients (54). Notably, numerous

researches about ferroptosis have focused on the function associated

with circRNAs. Li et al. recently discovered that circFOXP1

promoted malignant development of lung cancer by suppressing

ferroptosis (55). Wang et al. revealed that circDTL served as an

oncogene by regulating apoptosis and ferroptosis through the miR-

1287-5p/GPX4 axis during the development of NSCLC (8).

Therefore, it also deserves to be further investigated whether

circRNAs could mediate therapeutic resistance of NSCLC via

regulating ferroptosis.
Metabolism

Emerging studies have shown that the metabolic

reprogramming of TME has far-reaching ramifications for
Frontiers in Oncology 04
anticancer treatment resistance (56). In order to increase ATP

production, malignancies reprogramme metabolism of tumor

cells to oxidative phosphorylation (OXPHOS) in response to

pharmacological treatment. Cancer-associated fibroblasts

(CAFs) may participate in cancer cell-autonomous pathways

to generate therapy resistance by promoting OXPHOS behavior

and providing energy-rich foods in specific settings (57, 58). In

addition, hypoxia-inducible factor 1a (HIF-1a), a transcription

factor, regulates a large number of gene products involved in

energy metabolism and glycolysis contributed to anticancer drug

resistance (59). Currently, the relationship between circRNA and

metabolism in NSCLC has gained a great deal of attention. Xu

et al. discovered that knockdown of circAKT3 clearly decreased

HIF-1a-dependent glycolysis and improved lung cancer cells

sensitivity to CDDP by targeting the miR-516b-5p/STAT3 axis

(60). Shi et al. reported that circ_0008928 silencing could

enhance CDDP sensitivity and inhibit glycolysis metabolism

by downregulating miR-488/HK2 Axis in CDDP-resistant

NSCLC (61). Evidently, it is worthwhile to further explore the

relationship between circRNAs and altered metabolism, thus

helping to address the problem of drug insensitivity in NSCLC

cells (The potential mechanisms of circRNAs in NSCLC are

shown in Table 1).
RNA-binding proteins

Expect for functioning as miRNAs sponges to generate drug

resistance, several literatures reported that circRNAs could

modulate drug sensitivity as the sponges of RNA-binding

proteins (RBPs). Chen et al. demonstrated that circ_0000079

could decline tumor cell invasion and CDDP resistance in

NSCLC by interfering the formation of the FXR1/PRCKI

complex (65). Another study found that circ_GRHPR

interacted with the RBP PCBP2 could boost NSCLC cell

proliferation and invasion, while it is still needed to identify

whether circ_GRHPR could induce drug resistance of NSCLC

(25). Consequently, a better understanding of the interaction

between circRNAs and RBPs is beneficial to discover a novel

therapeutic target for conquering drug resistance. (The potential

mechanisms of circRNAs mediating drug resistance of NSCLC

are shown in Figure 2)
Signaling pathways associated with
circRNAs in NSCLC

MAPK Signaling Pathway

The members of mitogen-activated protein kinase (MAPK)

family integrate signals that impact proliferation (66),

differentiation, survival (67), migration, and tumorigenesis in a
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cell context and cell type specific manner (68). Of note, the

transcriptional regulator inhibitor of differentiation could

activate the p38MAPK pathway to promote chemoresistance

by increasing stemness in cancer cell populations (69, 70).

Recently, several circRNAs have been illustrated to be

dysregulated in NSCLC and to govern the course of

carcinogenesis via regulating the MAPK signaling pathway.

Zhang et al. reported that has_circRNA_101237, was

frequently overexpressed in NCSLC and knockdown of

circRNA_101237 reduced cell proliferation, migration and

invasion. Mechanistically, circRNA_101237 functions as a

sponge of miR-490-3p targeting MAPK1 (71). Wang et al.

demonstrated that circ-ZKSCAN1 can sponge carcinogenic

miR-330-5p to elevate the level of FAM83A, leading to the

suppression of MAPK signaling pathway, thus facilitating

NSCLC progression (72). However, further investigation is

needed to completely understand the role of circRNAs

mediat ing drug res istance in NSCLC through the

MAPK pathway.
Wnt Signaling Pathway

Aberrant modifications of Wnt/b-catenin (73) are common,

while the mutations of b-catenin (74) and APC (75) are rear in

NSCLC. The activation of Wnt has been shown to promote drug

resistance in NSCLC (76–78). Accumulating studies

demonstrated that circRNAs could promote NSCLC
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development through the Wnt pathway activation. As proof,

circ _0067934 is highly expressed in NSCLC and promotes

tumor progression. In contrast, depletion of circ_0067934

hinders cell proliferation, migration, invasion and EMT and

promoted apoptosis in NSCLC via inhibition of the Wnt/b-
catenin pathway (79). Li et al. demonstrated that circCCT3

functions as a sponge of miR-107 to enhance invasion and

EMT of NSCLC via regulating Wnt pathway and FGF7 (80). In

addition, circ_PRKDC (81) activate Wnt pathway to induce 5-

fluorouracil in colorectal cancer. Therefore, it is evident that

circRNAs have a non-negligible part in drug resistance by

regulating the Wnt signaling pathway. However, how

circRNAs can cause drug resistance via Wnt signaling pathway

in NSCLC needs to be further investigated.
PI3K pathway

Phosphatidylinositol-3 kinases (PI3Ks), consist of a lipid

kinase family characterized through generating the second

messenger phosphatidylinositol-3,4,5-trisphosphate (PI-3,4,5-

P3) (82). Subsequently, AKT is activated after interacting with

these phospholipids, resulting in cell survival (83), cell cycle

progression (84), and cellular proliferation (85). The

components of the PI3K/AKT signaling pathway are

commonly changed during cancer development. It has been

shown that aberrant activation of the PI3K/AKT pathway was

frequently involved in drug resistance (86). Amplification of
TABLE 1 The potential mechanisms of circRNAs in NSCLC.

Mechanisms CircRNAs Targets Effects References

exosomes hsa_circ_0014235 miR-520a-5p/CDK4 axis contributes cisplatin-resistance in NSCLC (32)

hsa_circ_0002130 miR-498 contributes osimertinib-resistance in NSCLC (34)

circUSP7 miR-934/SHP2 axis contributes anti-PD1 resistance in NSCLC (11)

miRNAs spognes
(ceRNAs)

CircPVT1 miR-145-5p/TAGLN2 contributes cisplatin and pemetrexed resistance in NSCLC (38)

circSOX13 miR-3194-3p/MAPREl axis contributes cisplatin resistance in NSCLC (39)

Circ_PRMT5 miR‐4458/REV3L axis contributes cisplatin resistance in NSCLC (40)

hsa circ_0004015 miR-1183/PDPK1 axis contributes gefitinib resistance in NSCLC (41)

autophagy circ_0085131 autophagy-associated factor
ATG7

contributes cisplatin resistance in NSCLC (46)

circEHD2 miR-3186- 3p/FOXK1 axis expedites autophagy and apoptosis of NSCLC (47)

circ_100565 miR-337-3p/ADAM28 axis contributes to cisplatin resistance of NSCLC cells (16)

circHIPK3 miR124-3p-STAT3-PRKAA/
AMPKa axis

modulates autophagy (62)

ferroptosis circFOXP1 suppresses lung adenocarcinoma cell survival (55)

circDTL miR-1287-5p/GPX4 axis regulates apoptosis and ferroptosis in NSCLC (8)

circ_101093 ferroptosis desensitization in lung adenocarcinoma (63)

metabolism circAKT3 miR-516b-5p/STAT3 axis regulates sensitivity to cisplatin and glycolysis in NSCLC (60)

circ_0008928 miR-488/HK2 Axis regulates cisplatin sensitivity, and glycolysis metabolism in NSCLC (61)

circPTK2 miR-942/TRIM16 axis overexpression of circPTK2 reduced cisplatin resistance and suppressed
glycolysis of DP in NSCLC

(64)
fr
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MET could activate PI3K, leading to the development of TKIs

resistance in lung cancer (87). Recent studies have revealed that

aberrant expression of circRNAs affected the components of the

PI3K signaling pathway to induce chemoresistance in NSCLC.

For example, circ_CDR1-AS contributes to resistance to

pemetrexed and CDDP through activating the EGFR/PI3K

pathway in LUAD (88). Additionally, circ_0017639 (89) and

circ_0008594 (90) both can facilitate the progression of NSCLC

by PI3K signaling pathway. Therefore, circRNAs are potential

targets for intervening in drug resistance problems, with

circRNAs playing a significant role in the modulation of the

PI3K/AKT pathway.
STAT3 signaling pathway

It has been indicated that pharmacological inhibition of the

oncogene addiction pathways was related to feedback activation

of the cell survival protein STAT3 and could therefore reduce the

efficacy of drug therapy in NSCLC (91). So far, circRNAs also

promote drug resistance via activating the STAT3 signaling.

Dong et al. found that the expression of circ_0076305 was

positively linked with STAT3 expression in NSCLC tissues and

circ_0076305 could induce STAT3 expression through sponging

miR-296-5p, thus leading to CDDP resistance in NSCLC (92).

These results suggest that the STAT3 pathway is deeply involved

in circRNAs-mediated drug resistance in NSCLC. (The
Frontiers in Oncology 06
relationship between signaling pathways and circRNAs in

NSCLC are shown in Figure 3).
Specific drug resistance associated
with circRNAs in NSCLC

Resistance to paclitaxel

Paclitaxel (PTX) is the first member of the taxane family to

be employed in cancer treatment; taxanes cause cellular death by

halting mitosis through the regulation of microtubule stability

(93). It imposes the anti-tumor effects through interrupting the

dynamics of microtubules, thereby leading to the mitotic block

and cell death (94). PTX has become a widely treatment option

for NSCLC patients, followed by the generation of PTX

resistance in NSCLC. Guo et al. demonstrated that

circ_0011292 promoted PTX resistance in NSCLC via

modulating the miR-379-5p/TRIM65 axis, indicating that

knocking down circ_0011292 might be a feasible therapeutic

option for PTX resistance in NSCLC (95). Another study

reported that the expression of circ_ZFR was elevated in PTX-

resistant NSCLC, while knockdown of circ_ZFR was able to

reverse PTX resistance by downregulation of KPNA4 via

sponging miR-195-5p (96). Similarly, Xu et al. demonstrated

that overexpression of hsa circ_0002874 induced PTX resistance

by functioning as a sponge of miR1273f, suggesting that
FIGURE 2

CircRNAs mediate drug resistance of NSCLC (A) circRNAs function as miRNA sponges to mediate drug resistance. (B) circRNAs govern drug sensitivity
as the sponges of RBPs. (C) circRNAs mediate drug resistance through a signaling pathway. (D) circRNAs control drug resistance by inhibiting T cells.
(E) circRNAs regulate autophagy derived proteins to mediate drug resistance. (F) circRNAs control drug resistance by curbing glycolysis. The meaning of
"→" is "promote", and "T" is "inhibit".
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overexpression of circ_0002874 or ectopic expression of

miR1273f could weaken PTX sensitivity in A549 cells (97).

This study also revealed that hsa_circ_0002874 could be a

potential PTX resistant biomarker in NSCLC (97). In addition,

Li et al. showed that circ_0002483 overexpression increased the

PTX sensitivity of NSCLC cells via sponging miR-182-5p,

leading to the upregulation of miR-182-5p targeted genes

GRB2, FOXO1, and FOXO3 (98). Collectively, these literatures

demonstrate the prominence of circRNAs as miRNAs sponges

in NSCLC PTX resistance, pointing to the possible options for

NSCLC patients with PTX resistance.
Resistance to docetaxel

Docetaxel (DTX), a highly efficient anticancer medication, is

a standard therapy for NSCLC (99). DTX is beneficial in

preventing the malignant progression of NSCLC and

prolonging the survival of NSCLC patients (100, 101).

Furthermore, evidence has clarified the relationship between

dysregulation of circRNAs and DTX resistance in NSCLC. Du

et al. showed that high level of circ_0014130 contributed to DTX

resistance by regulating the miR-545-3p-YAP1 axis, and

knockdown of circ_0014130 could reverse the chemoresistance

in NSCLC cells (102). Another report found that circ_0003998

inhibited apoptosis and DTX sensitivity in DTX-resistant

NSCLC by modulating the miR-136-5p/CORO1C axis. On the
Frontiers in Oncology 07
contrary, depletion of circ_0003998 rendered the resistant cells

to regain the sensitivity of DTX (103). These investigations

illustrated that DTX resistance have close associations with

circRNAs in NSCLC, implying that it might be promising to

identify circRNAs as the potential therapeutic targets for

overcoming PTX and DTX resistance.
Resistance to cisplatin

CDDP is widely used for the treatment of NSCLC as a

common chemotherapeutic drug, however, a great number of

studies have reported that circRNAs could hinder the clinical

utility of platinum-based chemotherapy through diverse

mechanisms (104). For instance, has_circRNA_103809 was

overexpressed in CDDP-resistant NSCLC cells, sponging miR-

337-3p to upregulate miR-337-3p targeted gene GOT1, and

depletion of has_circRNA_103809 re-sensitized the NSCLC

cells to CDDP (105). Chen et al. discovered that circ-CUL2

and RB1CC1 were downregulated, whereas miR-888-5p was

upregulated in NSCLC cell lines. Besides, the upregualtion of

circ_CUL2 inhibited A549/DDP cell growth and repressed

CDDP resistance through sponging miR-888-5p/RB1CC1 axis

(19). What’s more, circ_100565 sponging miR-377-3p was able

to increase ADAM28 expression, leading to NSCLC cells

resistance to CDDP. Circ_100565 was overexpressed in

CDDP-resistant NSCLC and knockdown of circ_100565 could
FIGURE 3

The relationship between signaling pathways and circRNAs in NSCLC (A) Circ_ZKSCAN1 sponges miR-330-5p to increase the expression of
FAM83A, resulting in the inhibition of MAPK signaling pathway, thus promoting the progress of NSCLC. (B) Circ_0067934 promotes NSCLC
development by regulating miR-1182/KLF8 axis and activating Wnt/b-catenin pathway. (C) CircRNA CDR1-AS contributes to pemetrexe and
cisplatin resistance via the EGFR/PI3K signaling pathway. (D) CircAKT3 regulates cisplatin resistance of NSCLC via modulating STAT3 by
sponging miR-516b-5p. The meaning of "→" is "promote", and "T" is "inhibit".
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overrode the resistance (16). In addition, Zhang et al. identified

that circSOX13 enhanced MAPRE1 expression by competitively

binding miR-3194-3p, resulting in CDDP resistance in NSCLC

cells (39). Similarly, circ_103762 expression was elevated

following CDDP treatment in NSCLC patients. Overexpression

of circ_103762 induced CDDP resistance and increased MDR

expression by suppressing DNA damage inducible transcript 3

(CHOP) (106). Furthermore, Chang et al. found that

circ_0017639 silencing inhibited tumor growth and enhanced

CDDP sensitivity in vivo. Meanwhile, circ_0017639 also

promoted apoptosis and suppressed proliferation, invasion,

and migration of CDDP-resistant NSCLC cells via miR-1296-

5p/SIX1 axis in vitro (107). These results indicate that circRNAs

are supposed to be the functional biomarkers and novel

therapeutic targets for NSCLC.
Resistance to pemetrexed

Pemetrexed (PTX) has been a prominent focus in anticancer

therapy research (108). In fact, pemetrexed and CDDP

combination chemotherapy is frequently employed in the

treatment of LUAD (109). Recently, Zheng et al. reported that

elevated circ_PVT1 expression is linked to CDDP and

pemetrexed insensitivity in NSCLC patients, and circ_PVT1

contributes to CDDP and pemetrexed resistance by miR-145-

5p/ABCC1 axis (38). Mao et al. indicated that CDR1 Antisense

RNA (CDR1-AS), an overexpressed circRNA in many tumors,

promoted PTX and CDDP chemoresistance via regulating

EGFR/PI3K signaling pathway in LUAD. Knockdown of

circRNA-CDR1-AS could restore PTX and CDDP sensitivity

in chemo-resistant LUAD cells; however, this effect was negated

by the activation of EGFR/PI3K pathway (88). In view that

pemetrexed resistance keeps constantly occurring in the

chemotherapy of NSCLC, more circRNAs contributing to

pemetrexed resistance would be uncovered in future.
Resistance to gemcitabine

Gemcitabine is a first-line treatment option with significant

clinical effects in NSCLC. Meanwhile, the combination of

gemcitabine and CDDP exhibited a synergistic anti-tumor activity

in NSCLC patients. Lu et al. found that circPVT1 expression was

reduced after the combined therapy of CDDP and gemcitabine.

Meanwhile, circ_PVT1 expression was higher in the chemotherapy-

resistant group than the chemotherapy-sensitive group, indicating

that circ_PVT1 expression is linked to chemotherapy resistance

(110). To date, several studies have shown that circRNAs caused

gemcitabine resistance in pancreatic cancer (PC). For example,

circ_FARP1 operates as a ceRNA via sponging miR-660-3p to

elevate LIF expression, ultimately activating the STAT3 signaling

pathway and causing gemcitabine resistance in PC patients (111).
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Additionally, Yu et al. manifested that knockdown of circ_0092367

caused aggressive EMT features and gemcitabine resistance by

regulating the miR-1206/ESRP1 axis in PC cells (112). Although

most of the current literatures focus on the relationship between

gemcitabine resistance and circRNAs in PC, gemcitabine resistance

in NSCLC is also worthy of further investigation.
Resistance to gefitinib, erlotinib,
and osimertinib

Some cancer patients with specific genomic aberrations have

benefited from targeted therapies (113). EGFR-TKIs (Gefitinib,

Erlotinib, and Osimertinib) are the most common treatments for

NSCLC with EGFR mutation (114). However, a majority of

patients eventually develop resistance towards these therapies.

Recent several studies have shown that EGFR-TKIs resistance

may be associated with tumor-derived exosomal cirRNAs. For

instance, Lu et al. reported that circ_RACGAP1 induced

gefitinib resistance in NSCLC via miR-144/CDKL1 signaling

cascade. Depletion of circ_RACGAP1 dramatically inhibited the

cell cycle progression and reversed gefitinib resistance (115).

Moreover, circ_0014235 acts as a sponge of miR-146b-5p to

upregulate miR-146b-5p targeted gene YAP, leading to the

increase of PD-L1 expression and immune escape, thereby

promoting gefitinib resistance in NSCLC (116). In addition,

Sheng et al. illustrated that overexpression of circ_SETD3

triggered gefitinib resistance by sponging miR-873-5p, whereas

depletion of circ_SETD3 improved NSCLC cell sensitivity to

gefitinib (117). Joseph et al. discovered that EGFR-TKI

resistance was positively linked with the expression of

circ_CCDC66, which was upregulated through FAK and c-Met

but downregulated through nAchR7a (118).

Regarding the functions of circRNAs in the resistance of

osimertinib, a third-generation EGFR-TKI, Liu et al.

demonstrated that has_circ_0005576 promoted osimertinib

resistance by regulating miR-512-5p/IGF1R axis in LUAD cells

(119). Another report clearly showed that has_circ_0002130

expression was considerably increased in osimertinib-resistant

NSCLC cells and serum exosomes from osimertinib-resistant

NSCLC patients, suggesting circ_0002130 may promote

osimertinib resistance. Furthermore, in osimertinib-resistant

NSCLC cells, has_circ_0002130 induced cell proliferation,

survival, and glycolysis through sponging miR-498 to

upregulate miR-498 targeted genes GLUT1, HK2, and LDHA

(34). Thus, interfering with circRNA expression could be a

promising solution to the problem of EGFR-TKIs resistance.
Resistance to crizotinib

As the first-generation ALK inhibitor, crizotinib showed

superior efficacy compared to platinum–pemetrexed
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chemotherapy in NSCLC with ALK, MET and ROS1 alterations

(120). However, acquired crizotinib resistance is a major

challenge in NSCLC management. Emerging evidence has

manifested that circRNAs are involved in crizotinib resistance.

One recent study reported that F-circEA1, a fused circular RNA

derived from an EML4-ALK1, promoted tumor proliferation,

migration, invasion, and cell cycle progression, as well as

crizotinib resistance in NSCLC cells. Besides, knockdown of F-

circEA1 significantly inhibited EML4-ALK1 expression and the

downstream signaling pathway of ALK (18).
Resistance to immunotherapy

Antibody-directed therapies against immunological

checkpoints, also known as immunological checkpoint

inhibitors (ICI), have remarkable effects in the treatment of

advanced lung cancer (113). Notably, the blockade of PD-1/PD-

L1 has been identified to be effective in NSCLC (121, 122).

However, T cell activation and antigen recognition disorders

promote resistance to PD-L1 therapy (123). Several studies have

illustrated the aberrant expressions of circRNAs have a very close

connection with immunotherapy resistance. Chen et al.

demonstrated that exosomal circUSP7 contributed to anti-PD1

immunotherapy in NSCLC cells by inhibiting CD8+ T cell

function. Mechanistically, circUSP7 increases the expression of

SHP2 through sponging miR-934 (11). Another study showed

that circFGFR1 was frequently upregulated in NSCLC and ectopic

expression of circFGFR1 induced cell proliferation, survival,

invasion and immune evasion. More importantly, circFGFR1

increased CXCR4 expression by functioning as a sponge of

miR-381-3p, leading to NSCLC resistance to anti-PD-1 therapy

(124). Zhang et al. found that circHMGB2 promoted

the proliferation of NSCLC and remodeled the TME, limiting

the efficacy of PD-1 blockade in NSCLC treatment viamodulating

the miR-181a-5p/CARM1 axis (125). Besides, Ge et al.

demonstrated that circ_CELF1 was elevated in primary NSCLC

tissues. Circ_CELF1 was able to increase the expression of target

gene EGFR through acting as a sponge of miR-491-5p, resulting in

NSCLC progression and resistance to immunotherapy (126).

These findings indicate that the dysregulation of circRNAs

serves as a crucial part of ICI resistance in NSCLC. (The

current literatures describing circRNAs in drug resistance and

underlying mechanisms are listed in Table 2).
CircRNAs as therapeutic targets to
overcome drug resistance in NSCLC

Based on the findings described above, circRNAs have great

potential to serve as therapeutic targets to surmount chemo-, TKI-

and ICI-resistance in NSCLC. Expression plasmids and RNA
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function and loss-of-function of circRNAs, respectively. Many

scholars conducted plenty of researches on recovering the

sensitivity of NSCLC cells to drug therapies through the

intervention of circRNAs expression. Wang et al. reported that

enforced expression of cirPTK2 reduced CDDP resistance in

A549/CDDP and H1299/CDDP cells through regulation of the

miR-942/TRIM16 axis (64). Zhang et al. demonstrated that

knockdown of circ_0072088 with small hairpin RNA (shRNA)

significantly suppressed CDDP resistance in NSCLC cells. As a

sponge of miR-944, depletion of circ0072088 led to

downregulation of LASP1 (140). Using both small interfering

RNA (siRNA) and shRNA, silencing circ0004015 (si-circ0004015

and sh-circ0004015) resulted in inhibiting CDDP resistance in

CDDP-resistant NSCLC cells (141). Even more strikingly, some

studies showed that targeting circRNA could completely reverse

drug resistance by activating the apoptotic pathway. Wang et al.

found that ectopic expression of circASK1 attenuated gefitinib

resistance via its encoded protein ASK1-272a.a, which competes

with ASK1 for binding to AKT to suppress AKT-mediated ASK1-

Ser83 phosphorylation. As a result, gefitinib sensitivity was

restored by activation of the ASK1/JNK/p38 pro-apoptotic

signaling in LUAD cells (142). (The circRNAs as potential

therapeutic targets for overcoming drug resistance in NSCLC

are shown in Table 3).
Discussions and perspectives

In this review, we summarized recent findings and research

breakthroughs on the role of specific circRNAs in drug resistance

in NSCLC. The study of how circRNAs mediate drug resistance is

one of research hot topics (39). It has been documented that

circRNAs control cellular processes through several mechanisms

which include modulating transcription (23), serving as sponge

for miRNAs (134), acting as a platform or sponge for proteins

(65), regulating splicing at the same locus (22), forming functional

circRNA-protein complexes (65), directly binding to mRNAs to

regulate their expression, outcompeting linear mRNAs for protein

binding and encoding peptides (5, 146). However, a vast majority

of reports in drug resistance-associated circRNAs have focused on

their function as miRNA sponge (107, 119). Further investigations

are needed to elucidate involvement of other molecular

mechanisms of circRNAs in NSCLC drug resistance. In

addition, previous studies have concentrated on differential

expression and functions of circRANs between drug-resistant

and -sensitive NSCLC tumor cells. The role of circRNAs in the

TME of drug resistant NSCLC and the effect of circRNAs derived

from TME on NSCLC drug resistance remain elusive. Moreover,

the mechanisms by which circRNAs are up- or down-regulated in

drug resistant NSCLC are also largely unknown. The study of

these aspects will further enhance our understanding of the
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mechanisms of drug resistance and identify potential therapeutic

targets to overcome the resistance in NSCLC.

Based on the results from various reports, a number of

circRNAs were dysregulated in a single drug resistant NSCLC

cell line or patient (97, 147, 148). Future investigations are

required to address whether these circRNAs contribute to the

drug resistance individually or together, and whether they form

networks and which circRNA is a key player within the net to

control the resistance. In addition, the strategy to target circRNA
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is inadequate. Currently, circRNAs are typically silenced using

miRNA-based approach (141) and overexpressed using

expression vectors (64). However, miRNA molecules have a

number of limitations even though nanoparticles or exosomes

delivery systems could improve their stability, intracellular entry,

and immunogenicity. Moreover, circRNA expression viral

plasmids could cause unanticipated side effects. Thus, it is

crucial to develop new effective approaches to target circRNAs

for overcoming drug resistance in NSCLC.
TABLE 2 circRNAs function as miRNAs sponge in drug resistance of lung cancer.

Drug CircRNAs MiRNAs Target genes/proteins Effects References

Cisplatin circ_SOX13 miR-3194 MAPRE1 contributes resistance (39)

circ_CUL2 microRNA-888-5p RB1CC1 contributes resistance (19)

circ_0002360 miR-6751-3p ZNF300 contributes resistance (127)

hsa_circ_0017639 miR-1296-5p SIX1 contributes resistance (107)

circ_PIP5K1A miR-493-5p ROCK1 contributes resistance (128)

circ_0058357 miR-361-3p ABCC1 contributes resistance (129)

circ_PRMT5 miR-138-5p MYH9 enhance sensitivity (14)

circ_100565 miR-337-3p ADAM28 contributes resistance (16)

circ_0020123 miR-140-3p HOXB5 contributes resistance (130)

circAKT3 miR-516b-5p STAT3 contributes resistance (60)

circ_ PRMT5 miR‐4458 REV3L contributes resistance (40)

circ_0000079 – FXR1/PRCKI contributes resistance (65)

hsa_circRNA_103809 miR-377-3p GOT1 contributes resistance (105)

circ_0072083 miR-545-3p CBLL1 contributes resistance (131)

circ_CPA4 let-7 miRNA PD-L1 contributes resistance (132)

circ- CDR1as miR-641 HOXA9 contributes resistance (133)

circ_0076305 miR-296-5p STAT3 contributes resistance (92)

Gefitinib circ_0014235 miR-146b-5p YAP/PD-L1 contributes resistance (116)

circ_MACF1 miR-942-5p TGFBR2 contributes resistance (12)

circ_0001658 miR-409-3p TWIST1 contributes resistance (33)

circ_SETD3 miR-873-5p APPBP2 contributes resistance (117)

hsa_circ_0004015 miR-1183 PDPK1 contributes resistance (41)

circRACGAP1 miR-144-5p CDKL1 contributes resistance (115)

circ_102481 miR-30a-5p ROR1 contributes resistance (134)

Taxol hsa_circ_0011298 miR-486-3p CRABP2 contributes resistance (135)

circ_0002360 miR-585-3p GPRIN1 contributes resistance (136)

hsa_circ_0030998 miR-558 MMP1/MMP17 contributes enhance sensitivity (137)

hsa_circ_0002483 miR-182-5p GRB2, FOXO1, and FOXO3 enhance sensitivity (98)

Docetaxel circ_0003998 miR-136-5p CORO1C enhance sensitivity (103)

Paclitaxel circ_0001821 miR-526b-5p GRK5 contributes resistance (138)

circ_0011292 miR-379-5p TRIM65 contributes resistance (95)

circ_ZFR miR-195-5p KPNA4 contributes resistance (96)

hsa_circ_0002874 miR1273f MDM2/P53 contributes resistance (97)

Osimertinib hsa_circ_0002130 miR-498 GLUT1, HK2, and LDHA contributes resistance (34)

hsa_circ_0005576 miR-512-5p IGF1R contributes resistance (119)

Anti-PD-1 circ-FGFR1 miR-381-3p CXCR4 contributes resistance (124)

circUSP7 miR-934 SHP2 contributes resistance (11)

circHMGB2 miR-181a-5p CARM1 contributes resistance (139)
fr
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All in all, based on further extensive studies on the

mechanisms of circRNA-mediated drug resistance, modulating

circRNAs will be a novel therapeutic approach to conquer

NSCLC drug resistance in the future.
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