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Abstract
Omics data integration is becoming necessary to investigate the genomic mechanisms

involved in complex diseases. During the integration process, many challenges arise such

as data heterogeneity, the smaller number of individuals in comparison to the number of

parameters, multicollinearity, and interpretation and validation of results due to their com-

plexity and lack of knowledge about biological processes. To overcome some of these

issues, innovative statistical approaches are being developed. In this work, we propose a

permutation-based method to concomitantly assess significance and correct by multiple

testing with the MaxT algorithm. This was applied with penalized regression methods

(LASSO and ENET) when exploring relationships between common genetic variants, DNA

methylation and gene expression measured in bladder tumor samples. The overall analysis

flow consisted of three steps: (1) SNPs/CpGs were selected per each gene probe within

1Mb window upstream and downstream the gene; (2) LASSO and ENET were applied to

assess the association between each expression probe and the selected SNPs/CpGs in

three multivariable models (SNP, CPG, and Global models, the latter integrating SNPs and

CPGs); and (3) the significance of each model was assessed using the permutation-based

MaxT method. We identified 48 genes whose expression levels were significantly associ-

ated with both SNPs and CPGs. Importantly, 36 (75%) of them were replicated in an inde-

pendent data set (TCGA) and the performance of the proposed method was checked with a

simulation study. We further support our results with a biological interpretation based on an

enrichment analysis. The approach we propose allows reducing computational time and is

flexible and easy to implement when analyzing several types of omics data. Our results

highlight the importance of integrating omics data by applying appropriate statistical
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strategies to discover new insights into the complex genetic mechanisms involved in dis-

ease conditions.

Author Summary

At present, it is already possible to generate different type of omics–high throughput–data
in the same individuals. However, we lack methodology to adequately combine them.
Many challenges arise while the amount of data increases and we need to find the way to
identify and understand the complex relationships when integrating data. In this regard,
new statistical approaches are needed, such as the ones we propose and apply here to inte-
grate three types of omics data (genomics, epigenomics, and transcriptomics) generated
using bladder cancer tumor samples. These innovative approaches (LASSO and ENET
combined with a permutation-based MaxT method) allowed us to find 48 genes whose
expression levels were significantly associated with genomics and epigenomics markers.
The adequacy of this approach was confirmed by the use of an independent data set from
The Cancer Genome Atlas Consortium: 75% of the genes were replicated. Previous sound
biological evidences further support the results obtained.

Introduction
Integrating different omics data types, such as genomics, epigenomics and transcriptomics,
may provide a new strategy to discover unknown genomic mechanisms involved in complex
diseases [1–3]. In cancer, tumor initiation and progression are the consequence of alterations
in multiple pathways and biological processes including gene mutations, epigenetic changes,
modifications in gene regulation, and environmental influences. In the process to integrate all
of this information many challenges arise, among them the high dimensionality of data—since
>2 omics data sets with millions of measurements are available from the same set of individu-
als—and the huge heterogeneity of omics data due to the different measurement scales [4].
Besides that, the data might be highly correlated, i.e. Single Nucleotide Polymorphisms (SNPs)
that are in high linkage disequilibrium (LD) block or DNA CpG sites that belong to the same
CpG island, contributing to multicollinearity in the analysis. Another challenge in omics data
integration regards to the very small number of individuals in comparison to the number of
parameters (“n<< p”). In addition, interpretation and validation of omics derived results
require of resources that are still lacking at present. In this rapidly evolving scenario, advanced
methodological techniques are continuously emerging, demanding the development of
improved data analysis tools [5–7].

Integrative omics analysis refers to the combination of at least two different types of omics
data. Relationships between two sets of omics parameters such as the expression quantitative
trait loci (eQTL) [2,8,9] or the methylation-QTL (methQTL) [3,10,11], have been recently
reported. The approach most commonly used for this type of pairwise analysis has been uni-
variate models (i.e., Spearman/Pearson correlation or linear regression models), assuming that
the changes in gene expression levels are only affected by one parameter. Until present, the
combination of>2 omics data has been less explored.

Towards this end, the previously mentioned challenges are magnified and there is a lack of
advanced methodologies to deal with them. Recently, we published an integrative framework
as a first approach to integrate genomics, epigenomics, and transcriptomics in individuals with
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urothelial bladder cancer (UBC) [12]. In that work, we found that some gene expressions were
co-regulated by both DNAmethylation and genetic variants, both acting together in trans rela-
tionships. Therefore, the integration of multiple types of omics data by applying multivariable
approaches becomes essential to understand the intricacy of the genomic mechanisms behind
complex diseases and to overcome the abovementioned challenges.

In this regard, previous developments are Principal Component Analysis (PCA), to reduce
data dimensionality, or Canonical Correlation Analysis (CCA) to investigate the overall corre-
lation between two sets of variables. However, these methods are descriptive or exploratory
techniques rather than hypothesis-testing tools. While some statistical applications have been
developed in an omics integrative framework (sparse canonical correlation analysis [13], multi-
ple factor analysis [14], or multivariate partial least square regression [15]), none of them offers
the possibility to combine>2 omics data together in the same model.

The Least Absolute Shrinkage and Selection Operator (LASSO) proposed by Tibshirani in
1996 [16] and the Elastic Net (ENET) proposed by Hui Zou and Trevor Hastie in 2005 [17] are
penalized regression methods that, after appropriate standardization, can model more than
one type of omics data, face multicollinearity issues, and mitigate the “n<< p” problem. More
importantly, both methods simultaneously execute variable selection and parameter estima-
tion, thus reducing the computation time, while the traditional methods work on the two prob-
lems separately, first selecting the relevant parameters and then computing the estimates.
LASSO and ENET have already been applied to GWAS studies [18–20] as well as in the context
of integrative studies [21]. One limitation of penalized regression techniques is that the penalty
produces biased estimators; consequently, standard errors are not meaningful and cannot pro-
vide p-values to assess significance. Here, we propose a permutation-based approach to assess
significance and we combine it with a correction for Multiple Testing (MT) using the MaxT
algorithm [22]. We apply this permutation-based MaxT method with LASSO and ENET to
identify relationships between common genetic variation, DNAmethylation, and gene expres-
sion, all determined in UBC tumor samples. Specifically, we first built a two omics integrative
model associating SNPs or CpGs with gene expression levels and, then, we integrated the three
omics data to assess whether changes in gene expression levels could be confounded/modified
by genetic variants and/or DNA methylation.

Material and Methods

Penalized regression methods
LASSO and ENET penalized regression methods are applied to high-dimensional problems
with a large number of parameters. The penalization produces a shrinkage of the regression
coefficients towards zero given a sparse model reducing the irrelevant parameters. Both meth-
ods deal with highly correlated variables though in a different way. LASSO tends to select one
variable from a group of correlated features whereas ENET selects the whole group of variables,
when evidence for their relevance exists. The shrunk estimators introduce a bias while reducing
the variance resulting in a better precision and accuracy model and, therefore, increasing its
statistical power.

Definition of the methods. Consider the standard linear regression model where y =
(y1, . . .yn)

t is the response variable and x = (x1j, . . .xnj)
t j = 1, . . .p are the standardized predic-

tors, the LASSO solves the l1 penalized regression problem, the Ridge regression [23] solves the
l2 penalized regression problem and the ENET is the combination between the l1 and l2 penal-
ized regression problem.
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For the LASSO and ENET estimates cb0;
bb ¼ ðbb1; . . . ;
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Here, t� 0 is the tuning parameter that controls the amount of shrinkage that is applied to

the estimates. For bb0
j the un-penalized least squares estimate, t0 ¼

Pjbb0
j j. Values of t< t0 will

lead to shrinkage towards 0; some coefficients may be exactly equal to 0.
Using the Lagrangian form, this optimization problem is equivalent to (LASSO):
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where λ is the penalty parameter related to t. To obtain the optimal penalty, k-fold cross valida-
tion (CV) was applied [24] maximizing the penalized log-likelihood function.

(ENET):

bbenet ¼ argmin
1

N

XN
i¼1

ðyi � xibÞ2 þ l1
Xp

j¼1

jbjj þ l2
Xp

j¼1

b2

j
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where λ1, λ2 are the penalty parameters related to t. In this sense, ENET can be viewed as a

penalized least squares method. With α = λ2/(λ1 + λ2), solving bbenet in Eq (4) is equivalent to
the following optimization problem:

bbenet ¼ argmin
1

N

XN
i¼1

ðyi � xibÞ2 þ ð1� aÞ
Xp

j¼1

jbjj þ a
Xp

j¼1

b2

j

( )
ð5Þ

This expression involves a convex combination of the LASSO and ridge penalty. When α =
1 the ENET becomes ridge regression and when α =0 the ENET becomes LASSO. To obtain
the optimal penalty (λ), k-fold CV selecting the best α was applied. This value was obtained
using a vector of α�(0.01, 0.99) by 0.01.

The LASSO and ENET methods described above were applied to our data with the R pack-
age glmnet, that relies on cyclical coordinate descent, computed along a regularization path
[25]. To avoid small sample size limitations in variable selection while not introducing an
important bias k = 5 was used in the k-fold CV.

These methods are promising in the context of high-throughput data but one of their draw-
backs is that they do not provide p-values to assess statistical significance of relationships, nor
give a formal assessment of the overall goodness-of-fit. Therefore, a permutation based strategy
was adopted to assess significance of discovered relationships combined with a MT correction
approach (MaxT algorithm [22]) building upon the statistical concept of deviance. The

Penalized Regression for omics Integration

PLOS Genetics | DOI:10.1371/journal.pgen.1005689 December 8, 2015 4 / 22



deviance is used to compare two models and in this case we defined it as

Deviance ¼ 2½loglikðfullmodelÞ � loglikðnullmodelÞ�:

Here loglik is the loglikelihood function, fullmodel refers to the model with the parameters
selected by LASSO or ENET, and nullmodel is the model with only the intercept estimated.
Thus, the interpretation would be, the higher the deviance the better the model.

Permutation-based MaxT method
MaxT algorithm of Westfall & Young [22] is a step-down FWER-controlling MT procedure.
The method uses the raw p-values or directly the statistics as explained in [26]. Using this
approach, the permutation needed to obtain the p-values was combined with the one needed
to apply the MaxT algorithm saving computational time. In this work, we used the deviance
obtained per each of the permuted LASSO/ENET model to compute the MaxT algorithm and
individuals within gene expression measure were permuted, that is the dependent variable in
the models. The algorithm is explained in Box 1.

Discovery phase: The Spanish Bladder Cancer/EPICURO Study
70 patients with a histologically confirmed UBC were recruited in 2 hospitals during 1997–
1998 as part of the pilot phase of the Spanish Bladder Cancer/EPICURO Study. According to
established criteria based on tumor stage and grade for UBC, the tumors were classified as low-
grade non-muscle invasive, high-grade non-muscle invasive, and muscle invasive. Three sets of

Box 1. Permutation-based MaxT method
From the original data, order the deviance obtained per each observed statistics:

jDs1j � jDs2j � jDs3j � � � � � jDsmj:

For the bth permutation, b = 1. . .B
1. Permute the n individuals of each of the vectors Ym = (y1, . . . yn)m

2. Compute the statistics D1b,. . .Dmb

3. Compute the Ui,b = maxl = i. . .m|Dsl,b|, the successive step-down procedure is: Um,b =
|Dsm,b|

. . .

U2;b ¼ maxjDs2;b; Ds3;b; . . . ;Dsm;bj

U1;b ¼ maxjDs1;b; Ds2;b; Ds3;b; . . . ;Dsm;bj

4. The steps are repeated B times and the adjusted p-values are estimated by:

Padj;i ¼
#fb;Uib � jDsijg

B
for i ¼ 1 . . . m
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omics data were obtained using fresh tumor tissue, including common genetic variation
(GSE51641), DNAmethylation (GSE71666), and gene expression (GSE71576). The three
omics data overlapped in 27 individuals that are included in this study and comprise 44% low-
grade non-muscle invasive tumors, 30% high-grade non-muscle invasive tumors and 26%
muscle invasive tumors. S1 Table shows the IDs of the 27 samples used in the following analy-
sis. The local ethics committee of the participating centers approved the study and written
informed consent was obtained from all participants at the time of recruitment.

Genotyping of tumor samples was performed using Illumina HumanHap 1M array. A total
of 1,047,101 SNPs were determined in 46 individuals and, after the standard quality control
and filter the SNPs that were in perfect LD (r2 = 1), they resulted in 567,513 SNPs. The applica-
tion of multivariable models required no missing values, so genotypes were imputed with BEA-
GLE 3.0 method [27]. CpG methylation data was generated using the Infinium Human
Methylation 27 BeadChip Kit. At each CpG site, the methylation levels were measured with M-
values using the log2 transformation of the β-values since they are more statistically valid due
to a better approximation of the homoscedasticity. The initial number of CpGs in the studied
array was 27,578 and after background normalization and QC, a total number of 23,034 CpGs
were left for analysis. Gene expression data were obtained from 44 tumor samples using the
Affymetrix DNAMicroarray Human Gene 1.0 ST Array with 32,321 probes. After the applica-
tion of QC, it resulted in 20,899 probes determined in 37 individuals. Further details about the
preprocessing of the data and the quality control applied can be found elsewhere [12]. The
three measures were annotated using the UCSC hg19, NCBI build 37 to make them compara-
ble and homogenize their position in the genome.

Simulation study
To generate a simulation sample, the association between SNPs and/or CpGs with gene expres-
sion was broken and therefore no significant results should be observed. To do that, 10-gene
expression probes were randomly selected from our discovery sample showing no correlation
structure between the probes and following a multivariate normal distribution. Then, the mean
(μ = 8.4) and variance (σ2 = 0.4) of all the probes together were obtained. Finally, a simulated set
of gene expression probes was generated using the normal distribution obtained and considering
the same sample size of the discovery phase (p = 20,899 probes and N = 27 individuals).

Replication phase: The Cancer Genome Atlas (TCGA)
UBC tumor data were obtained from The Cancer Genome Atlas (TCGA) consortium (https://
tcga-data.nci.nih.gov/tcga/) to replicate our findings. Data was downloaded and processed with
the TCGA-Assembler [28]. The study included only individuals with muscle invasive UBC and
the tumors were profiled with genome wide 6.0 Affymetrix, RNASeqV2, and HumanMethyla-
tion450K Illumina arrays yielding data for 20,502 gene expression probes, 905,422 SNPs, and
350,271 CpGs. The total number of individuals with overlapping data from the three platforms
was 238 and they were used in the replication phase of this contribution. S2 Table shows the
IDs corresponding to these 238 samples.

Overall analysis flow
Penalized regression methods LASSO and ENET were applied to the discovery data in combi-
nation with the proposed permutation-based MaxT method to select the SNPs and/or CpGs
associated with gene expression levels in the following multivariable models:
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SNP model:

Gene Expression levelsi ¼ a1SNP1 þ a2SNP2 þ � � � þ apSNPp; i ¼ 1 . . . m

CPG model:

Gene Expression levelsi ¼ g1CPG1 þ g2CPG2 þ � � � þ gpCPGp; i ¼ 1 . . . m

Global model = SNP + CPG model:

Gene Expression levelsi ¼ a1SNP1 þ � � � þ apSNPp þ g1CPG1 þ � � � þ gpCPGp; i ¼ 1 . . . m

To apply this integrative idea to our set of data the following steps were performed: (1)
SNPs and CpGs that were in a 1MB window upstream and downstream were selected from
each probe in the gene expression array; (2) LASSO and ENET were applied to each probe and
model (SNP, CpG, and Global models) obtaining the deviance per model; and (3), the permu-
tation-based MaxT method was applied to obtain the adjusted p-values (B = 100 permutations
and significant adjusted p-value< 0.1). The scenario and workflow is represented in Fig 1.

Subsequently, this analysis flow was applied to the simulated data set using the same criteria.
In the replication scenario, we aimed at determining whether the genes that were significant in
the discovery phase were also significant in the replication dataset. Therefore, the analysis was
restricted to the genes found to be significant in the discovery phase considering all models
(SNP, CPG and/or Global) and methods (LASSO and/or ENET). Following the pipeline shown
in Fig 1, we focused on the significant genes found in the discovery phase and SNPs and CpGs
were selected in 1MB window from the TCGA database, even if the SNPs and CpGs were not
the same as those analyzed in the discovery phase. Second, LASSO and/or ENET were con-
ducted to SNP, CPG, and/or Global models. Finally, the permutation-based MaxT method was
applied to obtain significance and correct for multiple testing. The replication analysis was per-
formed with the same software and criteria as in the discovery analysis.

Gene enrichment analysis
To provide a biological interpretation to the results, the entire list of the significant genes identified
in the discovery phase by both LASSO and ENET, and by the three models, was used to perform a
gene enrichment analysis with the bioinformatics tool DAVID [29,30]. The functional annotation
clustering analysis module offered by DAVID was used. The gene term annotation is based on 14
annotation categories (Gene Ontology (GO), Biological process, GOMolecular Function, GO Cel-
lular Component, KEGG Pathways, BioCarta Pathways, Swiss-Prot Keywords, BBID Pathways,
SMARTDomains, NIH Genetics Association DB, UniProt Sequence Features, COG/KOGOntol-
ogy, NCBI OMIM, InterPro Domains, and PIR Super-Family Names) collected in the DAVID
tool knowledgebase (https://david.ncifcrf.gov/knowledgebase/DAVID_knowledgebase.html). The
method identifies related genes by measuring the similarity of their global annotation profiles. So,
the “grouping term” is based on the idea that two genes that have similar annotation profiles are
functionally related. Each group term provides an enrichment score (ES) that indicates biological
significance when�1.3 (equivalent to non-log scale 0.05). DAVID also provides a p-value to
examine the significance of gene-term enrichment, which is corrected by Benjamini MT [31].

Results

Discovery phase
LASSO and ENET were applied to 20,899 gene expression probes in each of the three models.
Under the conditions mentioned above, LASSO yielded 9 genes with a significant signal in the
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Fig 1. Scenario and workflow of the overall analysis implemented. The integrative framework proposed is based on three steps. Step 1 corresponds to
the selection of SNPs and CpGs in 1MB window upstream and downstream from each probe in the gene expression array. Step 2 corresponds to the
application of LASSO and ENET to each probe obtaining the deviance per probe. Step 3 corresponds to the permutation-based MaxT method application
where gene expression levels within the individuals are permuted B = 100 times obtaining the deviance per probe.

doi:10.1371/journal.pgen.1005689.g001

Penalized Regression for omics Integration

PLOS Genetics | DOI:10.1371/journal.pgen.1005689 December 8, 2015 8 / 22



Table 1. Statistically significant genes associated with SNPs and/or CpGs selected by LASSO&Permuted basedmaxT algorithm.

Gene Name Chromosome Model Deviance p-value1

AIM2 1 SNPs 55.8 0.1

CpGs 61.5 0.06

PLA2G2A 1 CpGs 71.4 0.01

S100A9 1 CpGs 53.7 0.03

SNPs + CpGs 52.4 0.08

HMGCS2 1 CpGs 53.3 0.02

PIGR 1 CpGs 75.8 < 0.01

CTSE 1 CpGs 60.7 0.06

S100A2 1 SNPs + CpGs 58.7 0.04

CP 3 CpGs 51.1 0.02

TMEM45A 3 SNPs + CpGs 57.3 0.08

IGJ 4 CpGs 58.4 0.03

SNPs + CpGs 59.0 0.09

UBD 6 SNPs + CpGs 75.0 0.07

TRIM31 6 SNPs + CpGs 47.1 0.1

PTN 7 SNPs 67.0 0.08

SNPs + CpGs 92.0 < 0.01

ARHGEF35 7 SNPs + CpGs 49.6 0.09

CRH 8 SNPs + CpGs 56.7 0.1

CRTAC1 10 SNPs 66.2 0.03

MSMB 10 CpGs 67.3 0.06

CRTAC1 10 SNPs 60.9 0.1

SNPs + CpGs

TNNT3 11 CpGs 44.9 0.09

SAA1 11 SNPs + CpGs 127.8 0.04

SCCN1A 12 SNPs 57.9 0.08

CpGs 58.8 0.03

KRT5 12 CpGs 58.2 0.03

TSPAN8 12 SNPs + CpGs 67.2 0.05

MYBPC1 12 SNPs + CpGs 74.5 0.08

SLC38A4 12 SNPs + CpGs 51.7 0.08

GTSF1 12 SNPs + CpGs 46.7 0.1

OLFM4 13 CpGs 60.0 0.06

FREM2 13 CpGs 46.0 0.06

SNPs + CpGs 70.2 0.06

IGHD 14 SNPs + CpGs 59.4 0.1

C15orf48 15 CpGs 49.9 0.02

SNPs + CpGs 83.7 0.05

CAPNS2 16 SNPs + CpGs 54.9 0.07

KRT20 17 CpGs 48.4 0.05

SNPs + CpGs 93.7 < 0.01

KRT13 17 CpGs 53.6 0.02

SERPINB4 18 SNPs 98.4 < 0.01

SNPs + CpGs 68.5 0.03

SERPINB3 18 SNPs 171.6 < 0.01

SNPs + CpGs 162.7 < 0.01

CEACAM7 19 CpGs 76.0 < 0.01

(Continued)
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SNP model, 19 in the CpG model, and 23 in the Global model. Table 1 shows the significant
genes, mapped to each probe, with its deviance and p-value. Fig 2A–2C display all the probes
analyzed with their deviances represented across the genome. Detailed information about the
SNPs and/or CpGs mapped to these genes is provided as Supplementary Material (S1–S6
Excel). ENET identified a lower number of significant genes: 11 in the SNP model, 6 in the
CpG model, and 4 in the Global model. These results are shown in Table 2 and Fig 2D–2F.
When the MT correction threshold was relaxed, ENET provided additional significant genes.

Some genes overlapped among methods and models: CLIC6 was identified by the three
LASSO models; AIM2 and SCNN1A came out in the SNP and CpG models; PTN, CRTAC1,
SERPINB3 and SERPINB4 were identified in the SNP and Global models; and S100A9, IGJ,
FREM2, C15orf48 and KRT20 emerged in the CpG and Global models. Interestingly, 15 genes
showed significance in the Global model when combining 3 omics data while they were not
detected when analyzing only 2 types of omics data. The overlap of genes identified by the
ENET model was lower:MSMB and IGF2 were identified by the SNP and CpG models, and
PTN and SERPINB3 were selected by the SNP and the Global models. When comparing the
methods, an overlap between LASSO and ENET was found for four (PTN, SERPINB3, SER-
PINB4 and CEACAM6), one (MSMB), and three (SERPINB3, PTN and IGHD) significant
genes in the SNP, CpG, and Global models, respectively. These results are displayed in Fig 3
using Venn diagrams. In the simulation study, as expected, no gene was significantly associated
with any of the two methods and the three models. An example of the deviances of each gene
for the SNP 303 model and LASSO method is shown in S1 Fig.

Replication phase
The replication study was restricted to those genes (n = 48) that showed significant results in
the discovery phase and we applied the same models, methods, and criteria of analysis to the
TCGA data. Overall, we were able to replicate 75% of the results: 36 out of the 48 genes yielded
a significant association at least in one of the models considered. Regarding the LASSO models,
we replicated 3/9 genes from the SNP models, 17/19 genes from the CPG models, and 19/23
genes from the Global models (Table 3). Regarding ENET, we replicated 3/10 genes from the
SNP model, 3/6 genes from the CPG model, and 3/3 genes from the Global model (Table 4).

Gene enrichment analysis
Using DAVID, 46 out of 48 genes showing significant signals in the discovery phase were
annotated from 14 public categories. After enrichment analysis, 7 clusters with an ES�1.3
were found (S3 Table). The cluster with the highest ES (3.5) regarded to the terms “extracellular
region, secreted, and signal peptide” grouping the genes OLFM4, CRTAC1,MSMB, IGJ,

Table 1. (Continued)

Gene Name Chromosome Model Deviance p-value1

CEACAM6 19 SNPs 79.6 0.01

CXCL17 19 SNPs + CpGs 46.8 0.1

CLIC6 21 SNPs 75.3 0.01

CpGs 45.1 0.09

SNPs + CpGs 75.3 0.07

GSTT1 22 SNPs 40.4 0.07

1The p-value was obtained after applying the permuted based–maxT algorithm and was therefore corrected for MT.

doi:10.1371/journal.pgen.1005689.t001
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MMP7, IGF2, PIGR, TCN1, CXCL17, S100A9, SAA1, IGHD, CRH, CTSE, FREM2, PLA2G2A,
CEACAM7, CEACAM6, CEACAM5, REN, PTN, CP.

The rest of the clusters with an ES�1.3 were not significant after MT correction. Cluster 5
(ES = 1.4) contains 3 genes coding for keratins (KRT5, KRT13, KRT20), cytoskeletal compo-
nents that are regulated during urothelial differentiation, whose expression is altered in UBC,
that have been proposed as markers for the molecular taxonomy of UBC [32]. In addition, clus-
ter 7 “EF hand and calcium ion binding” (ES = 1.3) contains multiple genes shown to play an
important role in cancer (S100A9, S100A2, CAPNS2, ANXA10, CRTAC1, FREM2,MMP7,
PLA2G2A), including two members of the S100A family of proteins.

Discussion
Integration analysis is an emerging area in the field of omics data analysis to find new biological
insights into complex traits [33]. In this regard, our pathophysiological understanding of

Fig 2. Deviance across the genomewhen applying LASSO and ENET to select SNPs, CpGs or both (Global model). The dots in the figure indicate the
deviance of each gene located in the corresponding position in the genome. There are a total of 20,899 gene expression probes measured. Significant genes
after applying the permutation-based MaxT method are tagged. The figures represent the deviance per gene expression probe using LASSO for the SNP
model (A), the CpGmodel (B) and the Global model (C) and using ENET for the SNPmodel (D), the CpGmodel (E) and the Global model (F).

doi:10.1371/journal.pgen.1005689.g002
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cancer could be improved by using innovative approaches based on omics data to identify hid-
den mechanisms in which multiple factors are involved. We previously analyzed the set of
omics data used here following a multi-stage approach by proposing an omics integration anal-
ysis framework. The results of this previous work highlighted relevant omics trans-acting rela-
tionships in UBC [12]. Here, we propose an omics integrative analysis pipeline using LASSO
and ENET, and focus on cis-acting relationships that appear to have a predominant role in the
regulation of gene expression [34]. The three omics data are combined in a large input matrix
and then a permutationbased MaxT method is adapted to assess the significant models while
correcting for MT.

In comparison with classical approaches [6,7], our strategy has several advantages, including
the possibility of working with a large number of parameters, even if the sample size is small,
dealing with more than one set of heterogeneous data with highly-correlated variables, and
providing MT corrected p-values to assess the models’ goodness of fit. Furthermore, the results
are easily interpretable due to the dimensionality reduction during the variable selection
process.

The expression of 48 genes was found to be significantly associated with SNPs and CpGs in
UBC, pointing to new mechanisms in an intricate scenario where common genetic variants
and DNA methylation regulate gene expression in cis-acting (1MB) relationships. Some of the
genes were identified by the three models and by the two methods, likely underscoring the exis-
tence of true relationships.

The application of LASSO and ENET as part of the aforementioned integrative analysis
framework led to different results. This is not surprising, mainly for two reasons: (1) the α

Table 2. Statistically significant genes associated with SNPs and/or CpGs selected by ENET&Permuted basedmaxT algorithm.

Gene Name Chromosome Model Deviance p-value1

REN 1 CPG 84.3 0.03

CRABP2 1 CPG 65.2 0.09

ANXA10 4 SNP 137.0 0.01

PTN 7 SNP 97.2 0.07

SNP +CPG 102.5 0.09

MSMB 10 SNP 91.8 0.07

CPG 78.9 0.06

MMP7 11 SNP 94.8 0.06

TCN1 11 SNP 88.9 0.07

IGF2 11 SNP 101.6 0.05

CPG 92.1 0.04

MMP7 11 SNP + CPG 99.4 0.08

GTSF1 12 SNP 109.6 0.05

IGHD 14 SNP + CPG 97.5 0.1

SERPINB4 18 SNP 105.2 0.04

SERPINB3 18 SNP 171.6 0.02

SNP + CPG 171.3 0.01

CEACAM6 19 SNP 108.4 0.03

NRLP2 19 CPG 84.2 0.04

CEACAM5 19 CPG 92.1 0.06

IGLJ3 22 SNP 97.7 0.05

1The p-value was obtained after applying the permuted based–maxT algorithm and corrected by MT.

doi:10.1371/journal.pgen.1005689.t002
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parameter (Eq 5) used by LASSO is always equal to 1 while ENET uses α< 1. This gives a
smaller penalization and therefore more variables with β 6¼ 0 were foreseen using ENET; and
(2) the fact that SNPs and CpGs may be correlated, mainly when they are closely positioned in
the genome, leads LASSO to select one from the set of parameters that are highly correlated
while ENET forms groups of nets with these variables. In our analysis, only 4/24 (SNP model),
1/25 (CpG model) and 3/28 (Global model) genes were shared by both methods. The genes
detected only by LASSO showed large deviances and borderline p-values with ENET. Wald-
mann et al [35] reported that ENET usually detects more true and false positive associations.
In our case, this may result in an increased probability of having significant associations by
chance. In turn, this can lead to reduced power. On the other hand, ENET selected some genes

Fig 3. Venn diagrams showing the overlap between the significant genes compared by the twomethods (LASSO and ENET) andmodels (SNPs,
CpGs and Global). (A) Number of significant genes using the LASSOmethod for the three models (SNP, CPG, and Global); (B) number of significant genes
using the ENETmethod for the three models (SNP, CPG and Global); and (C) number of significant genes per model comparing the two methods (LASSO
and ENET).

doi:10.1371/journal.pgen.1005689.g003
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Table 3. Significant genes obtained by LASSO&Permuted basedmaxT algorithm for the three models (SNP, CPG, and Global) in the original data-
set (EPICURO Study) and the replication dataset (TCGA).

Original Data (EPICURO) Validation Data (TCGA)

Gene probeset Chr Start end Dev p-
value

SNPs
(N)

CpGs
(N)

Dev p-
value1

SNPs
(N)

CpGs
(N)

SNPs
(overlap)

SNPs
(rep)

CpGs
(overlap)

CpGs
(rep)

SNP
model

SERPINB3 8023696 18 61322433 61329197 171.6 <0.01 29 0 1 0 3 0

SERPINB4 8023688 18 61304495 61311502 98.4 <0.01 15 0 1 0 2 0

CEACAM6 8029098 19 42259398 42276113 79.6 0.01 10 0 1 0 0 0

CLIC6 8068383 21 36041688 36090519 75.3 0.01 30 3.5E-
08

0.9 1 14 0

CRTAC1 7935535 10 99624758 99790585 66.2 0.03 18 2.4E
+09

0.001 12 4 1 (LD)

GSTT1 8074980 22 24376141 24384284 40.4 0.07 16 8.3E
+07

<0.001 34 4 1 (LD)

PTN 8143144 7 136912092 137028546 67.0 0.08 9 0 1 0 1 0

SCNN1A 7960529 12 6456011 6486523 57.9 0.08 26 0 1 0 8 0

AIM2 7921434 1 159032275 159046647 55.8 0.1 6 5.7E
+05

0.03 1 2 0

CPG
model

CEACAM7 8037053 19 42177235 42192096 76.0 < 0.01 19 1.5E
+07

< 0.001 2 17 0

PIGR 7923929 1 207101869 207119811 75.8 < 0.01 21 6.4E
+08

0.001 19 18 1

PLA2G2A 7913216 1 20301925 20306932 71.4 0.01 10 5.2E
+09

< 0.001 57 9 0

CP 8091385 3 148890292 148939832 51.1 0.02 3 1.6E
+09

< 0.001 24 1 0

HMGCS2 7919055 1 120290620 120311555 53.3 0.02 8 0 1 0 8 -

KRT5 7963427 12 52908361 52914243 58.2 0.02 25 3.6E
+12

< 0.001 112 24 5

C15orf48 7983478 15 45722763 45725645 49.9 0.02 7 1.5E
+08

< 0.001 23 5 0

KRT13 8015323 17 39657233 39661865 53.6 0.02 8 8.2E
+11

< 0.001 5 6 0

IGJ 8100827 4 71521259 71532348 58.4 0.03 2 4.2E
+08

< 0.001 19 2 0

SCNN1A 7960529 12 6456011 6486523 58.8 0.03 29 2.1E
+09

< 0.001 12 27 0

S100A9 7905571 1 153330330 153333502 53.7 0.04 11 5.0E
+11

< 0.001 33 9 1

KRT20 8015124 17 39032141 39041495 48.4 0.05 3 5.9E
+09

< 0.001 45 3 0

CTSE 7909164 1 206317459 206332103 60.7 0.06 12 3.4E
+09

< 0.001 36 12 1

AIM2 7921434 1 159032275 159046647 61.5 0.06 8 4.7E
+07

0.002 27 4 0

OLFM4 7969288 13 53602972 53626186 60.0 0.06 10 1.6E
+10

< 0.001 47 9 6

MSMB 7927529 10 51549553 51562590 67.3 0.06 7 0 1 0 6 0

FREM2 7968678 13 39261173 39461265 46.0 0.08 2 4.4E
+07

< 0.001 13 1 0

CLIC6 8068383 21 36041688 36090519 45.1 0.09 4 1.2E
+08

< 0.001 19 4 0

TNNT3 7937749 11 1940799 1959935 44.9 0.09 26 5.2E
+08

< 0.001 72 22 0

Global
model

SERPINB3 7920285 18 61322433 61329197 162.7 <0.01 15 0 3.0E
+09

<0.001 6 4 1 0 0 0

KRT20 7905571 17 39032141 39041495 93.7 <0.01 19 7 5.7E
+09

<0.001 8 38 0 0 0 0

PTN 7935535 7 136912092 137028546 92.0 <0.01 12 0 2.6E
+08

<0.001 0 1 0 0 0 0

SERPINB4 7938758 18 61304495 61311502 68.6 0.03 4 0 7.9E
+08

<0.001 27 11 0 0 0 0

SAA1 7962559 11 18287808 18291521 127.8 0.04 20 1 7.9E
+08

0.6 0 1 5 1 0 0

(Continued)
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that were not selected by LASSO, mainly due to the correlated structure of the parameters. An
example of this is displayed in Fig 4, showing thatMMP7 has three correlation nets that proba-
bly are responsible for the gene selection with ENET and not with LASSO. These comparisons
are shown in S4 Table.

Regarding the differences between the models, 13/25 and 6/20 significant genes in the CpG
and 6/20 the SNP models, respectively, were not significant in the Global model. It is reported
in the literature that 10% of SNPs are associated with gene expression and DNAmethylation
[36,37], hence DNAmethylation may confound or modify the association between SNP and
gene expression. Even though this is a potential explanation, discordances resulting from sam-
ple size cannot be discarded since the penalty function is selected by CV. However, k = 5 was
used to apply the k-fold CV to decrease the problem of small sample size without increasing
bias. In the reverse scenario, 16 genes were selected exclusively in the Global model. Some of

Table 3. (Continued)

Original Data (EPICURO) Validation Data (TCGA)

Gene probeset Chr Start end Dev p-
value

SNPs
(N)

CpGs
(N)

Dev p-
value1

SNPs
(N)

CpGs
(N)

SNPs
(overlap)

SNPs
(rep)

CpGs
(overlap)

CpGs
(rep)

S100A2 7957966 1 153533587 153538306 58.7 0.04 20 7 1.0E
+11

<0.001 1 5 5 0 3 0

C15orf48 7964927 15 45722763 45725645 83.7 0.05 19 6 1.7E-
07

<0.001 1 6 0 0 0 0

TSPAN8 7963817 12 71518877 71551779 67.2 0.05 8 1 9.9E
+05

0.02 1 0 3 0 1 0

FREM2 7968678 13 39261173 39461265 70.2 0.06 14 2 2.9E
+07

<0.001 3 10 3 0 1 0

CLIC6 7983478 21 36041688 36090519 75.3 0.07 25 2 1.4E
+08

<0.001 21 15 0 1 (LD) 0 0

UBD 7995712 6 29523390 29527702 75.0 0.07 6 5 8.8E
+08

<0.001 0 25 0 0 0 0

CAPNS2 7981724 16 55600584 55601592 54.9 0.07 8 1 5.8E
+07

<0.001 10 12 0 0 0 0

MYBPC1 8023688 12 101988747 102079657 74.5 0.08 23 3 9.9E-
08

1 0 1 2 0 2 0

TMEM45A 8037197 3 100211463 100296285 57.3 0.08 12 0 1.6E
+08

0.001 11 19 0 1 (LD) 0 0

S100A9 8015124 1 153330330 153333502 52.5 0.08 6 4 4.9E
+11

<0.001 15 24 0 1 (LD) 4 1

SLC38A4 8023696 12 47158544 47219780 51.7 0.08 15 1 1.6E
+08

0.001 8 15 6 0 1 0

IGJ 8068383 4 71521259 71532348 59.0 0.09 3 2 3.3E
+08

0.003 1 3 0 0 0 0

ARHGEF5 8081288 7 143883177 143892791 49.6 0.09 8 0 1.2E
+07

<0.001 11 8 0 1 (LD) 0 0

CRTAC1 8100827 10 99624758 99790585 60.9 0.1 7 5 3.8E
+09

<0.001 7 9 1 0 3 1

IGHD 8136981 14 106303102 106312014 59.4 0.1 7 1 - - - - - - - -

CRH 8151092 8 67088612 67090846 56.7 0.1 3 0 9.4E
+08

<0.001 7 10 0 0 0 0

TRIM31 8178330 6 30070674 30080867 47.1 0.1 23 4 5.8E
+08

<0.001 0 43 0 0 0 0

CXCL17 8143144 19 42932696 42947136 46.8 0.1 3 5 7.4E
+08

<0.001 8 11 0 0 0 0

GTSF1 8124650 12 54849737 54867386 46.7 0.1 2 1 2.1E
+07

<0.001 18 46 2 0 1 1

1Bonferroni correction for the p-value were: 0.005 (SNP model), 0.003 (CPG model) and 0.002 (Global model); SNPs (N) and CpGs (N) are the number of

SNPs and CpGs that were selected by LASSO per each gene expression probe in EPICURO data with the Illumina HumanHap 1M array and the

Methylation 27k array; SNPs (overlap) and CpGs (overlap) are the number of SNPs and CpGs that were present in the TCGA data with the Genome wide

6.0 Affymetrix and the Methylation 450k array; and the SNPs (rep) and CpGs (rep) are the ones selected by LASSO in the TCGA data in common with the

EPICURO data. The gene with “no p-value” is a gene that was not present in the RNASeqV2 in TCGA data.

doi:10.1371/journal.pgen.1005689.t003
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the genes identified had high deviances and borderline p-values, probably because the Global
models increase the deviance due to the addition of more information when integrating data.
For the nonsignificant genes, the explanation could be the existence of an interaction effect
between SNPs and CpGs (S5 Table). This further supports the importance of integrating omics
data to discover hidden information.

The validity of the strategy that we have developed, and of the results obtained, is supported
by the fact that 75% (36/48) of the genes identified in the discovery phase were replicated using
TCGA data by applying the same strategy. This represents 64% of all gene models found since
some of the genes overlap between models and approaches. Also, the null results of the simula-
tion study indicate that the significant associations found are unlikely to be due to chance.

Table 4. Significant genes obtained by ENET&Permuted basedmaxT algorithm for the three models (SNP, CPG, and Global) in the original dataset
(EPICURO Study) and the replication dataset (TCGA).

Original Data (EPICURO) Validation Data (TCGA)

Gene probeset Chr Start end Dev p-
value

SNPs
(N)

CpGs
(N)

Dev p-
value1

SNPs
(N)

CpGs
(N)

SNPs
(overlap)

SNPs
(rep)

CpGs
(overlap)

CpGs
(rep)

SNP
model

ANXA10 8098246 4 169013707 169108891 137.0 0.01 17 1.4E
+08

<0.001 13 7 1

SERPINB3 8023696 18 61322433 61329197 171.6 0.02 30 1.4E
+09

0.08 32 3 0

CEACAM6 8029098 19 42259398 42276113 108.4 0.03 28 1.4E
+09

0.04 4 5 0

SERPINB4 8023688 18 61304495 61311502 105.2 0.04 31 1.1E
+08

0.07 10 8 1 (LD)

GTSF1 7963817 12 54849737 54867386 109.6 0.05 19 1.6E
+06

0.08 7 9 2 (LD)

IGF2 7937772 11 2150348 2170833 101.6 0.05 56 3.9E
+12

0.002 31 12 0

IGLJ3 7981730 22 23247030 23247205 97.7 0.05 183 - - - - -

MMP7 7951217 11 102391240 102401478 94.8 0.06 19 2.8E
+08

0.004 10 6 1 (LD)

PTN 8143144 7 136912092 137028546 97.2 0.07 24 0 1 0 10 0

MSMB 7927529 10 51549553 51562590 91.8 0.07 78 0 1 0 0 0

TCN1 7948444 11 59620281 59634041 88.9 0.07 122 0 1 0 0 0

CPG
model

REN 7923608 1 204123944 204135465 84.3 0.03 22 0 1 1 22 0

IGF2 7937772 11 2150348 2170833 92.1 0.04 15 8.1E
+12

<0.001 609 12 7

NLRP2 8031398 19 55476652 55512508 84.2 0.04 34 8.0E
+08

< 0.001 10 28 2

CEACAM5 8029086 19 42212530 42234436 92.1 0.06 26 9.3E
+08

0.009 1 23 0

MSMB 7927529 10 51549553 51562590 78.9 0.06 9 6.2E
+07

0.3 36 7 1

CRABP2 7921099 1 156669410 156675375 65.2 0.09 39 1.1E
+10

<0.001 132 35 11

Global
model

SERPINB3 7920285 18 61322433 61329197 171.3 0.01 27 1 5.3E
+09

<0.001 37 15 0 0 1 1

MMP7 7951217 11 102391240 102401478 99.4 0.08 62 18 2.3E
+08

0.003 5 2 0 0 0 0

PTN 8143144 7 136912092 137028546 102.5 0.09 20 0 6.1E
+08

<0.001 16 15 0 0 0 0

IGHD 7981724 14 106303102 106312014 97.5 0.1 35 6 - - - - - - - -

1Bonferroni correction for the p-values is: 0.008 (CPG model) and 0.01 (Global model); SNPs (N) and CpGs (N) are the number of SNPs and CpGs that

were selected by ENET per each gene expression probe in EPICURO data with the Illumina HumanHap 1M array and the Methylation 27k array; SNPs

(overlap) and CpGs (overlap) are the number of SNPs and CpGs that were present in the TCGA data with the Genome wide 6.0 Affymetrix and the

Methylation 450k array and the SNPs (rep) and CpGs (rep) are the ones selected by ENET in the TCGA data in common with the EPICURO data. The

gene with no p-value is a gene that was not present in the RNASeqV2 in TCGA data.

doi:10.1371/journal.pgen.1005689.t004
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Importantly, several of the genes that emerged from our analyses have been previously
shown to be important in bladder cancer biology, including KRT20, IGF2, CTSE, ANXA10 and
CRH. These genes have already been proposed for a panel of molecular markers to improve the
diagnosis and follow-up of UBC as part of a 12-gene expression urine signature to identify
patients suffering from UBC and predict tumor aggressiveness [38]. The five genes aforemen-
tioned were also replicated in the TCGA data. Furthermore, KRT20, IGF2, and CTSE have also
been previously associated with UBC. KRT20 is a highly specific marker of umbrella cells in

Fig 4. Example of a correlation plot forMMP7 detected by the Global model using ENET but not using LASSO. The bar color represents the levels of
correlation from 0 (no correlation) to 1 (perfect correlation) between SNPs and CpGs that were selected for theMMP7models. Three nets of correlated
variables are the ones responsible that the gene is only selected by ENET and not by LASSO.

doi:10.1371/journal.pgen.1005689.g004
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normal urothelium and its expression is commonly altered in papillary non muscle-invasive
UBC as well as in muscle-invasive UBC. It has been proposed that the correlation between
FGFR3mutations with normal KRT20 expression pattern may indicate that the mutation
occurs earlier [39]. Loss of imprinting (LOI) is a common epigenetic event in cancer and a LOI
of IGF2 has been reported in UBC [40]. In our analysis, IGF2 was detected in the SNP and
CPG models suggesting that both type of factors may be involved in regulating the expression
levels of this gene. CTSE expression was significantly associated with progression-free survival
in pTa tumors in a study of gene expression profiles in UBC [41].

We also performed a gene enrichment analysis to assess whether the significant genes had
related biological functions. The cluster with the highest ES was”Extracellular region, secreted,
and signal peptide”. Secreted proteins are known to play a crucial role in cell signaling and the
cellular secretome has a major impact on multiple aspects of tumor cell biology (cell growth,
migration, invasion, and angiogenesis) [42]. One cluster highly enriched in keratins points to
the regulation of cell differentiation, known to be important in the molecular classification of
UBC. In addition, some genes—including S100A9 and S100A2—were grouped under the “EF
hand and calcium ion binding” term. The S100 family is composed of, at least, 24 members car-
rying the Ca2+ binding EF-hand motif. Expression of S100 protein family members is regulated
during inflammation and carcinogenesis and has been associated with poor prognosis in
patients with UBC [43]. Other studies have reported an overexpression of S100A9 in UBC tis-
sue [44,45].

Limitations of this work are the small sample size of the discovery phase study, due to the
lack of enough fresh tumor tissue from the same set of individuals, and the lack of a compara-
ble and independent UBC patient series with the 3-omics data available to replicate our results.
While the discovery EPICURO study recruited all patients with UBC, the TCGA project
focused on muscle-invasive UBC. In addition, different highthroughput technologies/plat-
forms were used in each of the studies. The SNP arrays genotyped different SNPs and, conse-
quently, provided different genomic coverage. The TCGA used a DNAmethylation array of
450k with much higher resolution than the 27k the one used in the EPICURO study. Finally,
the use of different technologies to measure transcriptomics is a considerable limitation. In the
EPICURO discovery phase, gene expression levels were measured with microarrays which pro-
vide relative values at probe set level, that is, for one gene different expression levels can be
obtained from each mapped probe, while in the TCGA study gene expression was measured
with RNA-seq which gives absolute gene expression values. These differences between data sets
introduce a massive heterogeneity that makes the replication even more difficult. In spite
of that, we replicated 75% of the identified genes (64% of the models) with TCGA data, provid-
ing strong support to the appropriateness of our approach and the relevance of the results
obtained. Another potential limitation is the fact that tumor samples are heterogeneous regard-
ing neoplastic cell content and stromal cell composition. Consequently, we checked the expres-
sion of all significant genes in a panel of UBC cell lines with available microarray expression
data [46] and found that all but one (IGJ) are expressed in urothelial tumor cells, indicating
that our analyses likely reflect genomic regulatory events in the tumor cells. It is, however,
likely that relevant genomic interactions control gene expression not only in neoplastic cells
but also in the stroma. Given the importance of the latter in tumor progression, further integra-
tive omics studies using microdissected material will be highly informative.

One important strength of the approach used here is the lack of need to filter by LD in
SNPs, or grouping CpGs within CpG islands, when dealing with a huge number of heteroge-
neous and correlated parameters delivered by different arrays. This emanates from the fact that
LASSO and ENET can deal with highly correlated variables while performing variable selec-
tion. By performing data reduction/filtering before applying the statistical methods, there is a
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chance to filter out the functional SNPs and/or CpGs and thereby lose their association with
gene expression. The adaptation of a strategy that performs a permutation and the maxT algo-
rithm to assess p-values and to correct by MT, avoiding a double permutation and therefore
reducing computational time, is also worthwhile emphasizing. In this regard, the permutation-
based method considers the permutation of individuals within each gene, allowing to control
for the possible dependence structure between genes. In addition, the MaxT algorithm is a per-
mutationbased FWER controlling procedure which is adapted to the correlation structure
found in the data and has been shown to be asymptotically optimal under dependence [47]

In summary, we demonstrate that the integration of multiple omics data types allows the
identification of hidden mechanisms that were missed when analyzing single omics data types
individually. There is an urgent need to develop statistical methods to fill the gap between the
huge amount of data generated and the mechanistic understanding of complex diseases. Here,
we present two penalized regression methods (LASSO and ENET) in combination with a per-
mutation–based strategy (permutation-based MaxT method) to deal with common problems
found in integrative analysis: heterogeneity between data types, number of individuals much
smaller than the parameters to assess, multicollinearity, and sparseness to facilitate the inter-
pretation of the results. This approach is flexible and easy to implement in different omics data
and diseases as well as when considering interaction terms in the model.

We contribute to the field with a methodological development and with several significant
and sound molecular associations conforming part of the genetic architecture of UBC. By
using this cancer as an example, we conclude that modeling the intricacy of omics data varia-
tion with appropriate statistical strategies will certainly improve our knowledge of the mecha-
nisms involved in complex diseases.

Data availability statement
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