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Abstract
This review explores the historical and current state of our knowledge about urodele limb regen-

eration. Topics discussed are (1) blastema formation by the proteolytic histolysis of limb tissues

to release resident stem cells and mononucleate cells that undergo dedifferentiation, cell cycle

entry and accumulation under the apical epidermal cap. (2) The origin, phenotypic memory, and

positional memory of blastema cells. (3) The role played by macrophages in the early events of

regeneration. (4) The role of neural and AEC factors and interaction between blastema cells in

mitosis and distalization. (5) Models of pattern formation based on the results of axial reversal

experiments, experimentson the regenerationofhalf anddoublehalf limbs, andexperimentsusing

retinoic acid to alter positional identity of blastema cells. (6) Possible mechanisms of distalization

during normal and intercalary regeneration. (7) Is pattern formation is a self-organizing property

of the blastema or dictated by chemical signals from adjacent tissues? (8) What is the future for

regenerating a human limb?
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1 INTRODUCTION

Evidence from the fossil record indicates that urodeles (salaman-

ders and newts) of the Permian period (the last period of the Pale-

ozoic era, ∼300 million years ago) were capable of limb regenera-

tion (Fröbisch, Bickelmann, & Witzmann, 2014). How the urodeles

evolved the ability to regenerate limbs is a matter of speculation

(Brockes, 2015). Although teleost fish can regenerate fins, and larval

anurans can regenerate developing limb buds as long as the ampu-

tation plane does not pass through differentiated tissue, urodeles

are today the only tetrapod vertebrates that can regenerate limbs

throughout their life cycle, as well as tails, spinal cord, heart tissue,

lens, and retina (Brockes&Kumar, 2008;Nacu&Tanaka, 2011; Stocum

& Cameron, 2011; for reviews). Although adult mice and humans can

regenerate the distal tip of the terminal phalanges, their limbs do not

regenerate after amputation at more proximal levels. In humans, the

remedies for such amputations are replants, allotransplants, or bionic

appendages.

Some gene activities, progenitor cells, and tissue interactions in

regenerating salamander limbs are similar to those of regenerat-

ing mouse digit tips (for reviews see Simkin et al., 2015; Zielens,

Ransom, Leavitt, & Longaker, 2016). These similarities have
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encouraged the idea that mammals have retained a latent ances-

tral genetic circuitry for appendage regeneration that might be

activated by appropriate interventions and applied to the goal of

regenerating a human limb. Research on the mechanisms of urodele

limb regeneration is central to this goal, and continues to expand

within the broader context of regenerative biology and medicine. This

paper is intended as a broad review of what we know—and do not

know—about the basic biology of urodele limb regeneration.

2 PHASES AND STAGES OF LIMB

REGENERATION

Spallazani (1768) was the first to provide a description of limb regen-

eration, in adult newts (Dinsmore, 1991). Systematic studies on limb

development and regeneration, however, did not begin until late in

the 19th century. In 1901, T. H. Morgan reviewed our conceptual

and experimental knowledge of regeneration in his classic book

Regeneration. Amphibian limb regeneration studies were numerous

worldwide during the first half of the 20th century and continued to

expand as a part of experimental developmental biology. These studies

began with the anatomy, morphology, and histology of regeneration,
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F IGURE 1 Phases, stages, and longitudinal sections of forelimb regeneration in a urodele larva (Ambystomamaculatum) after amputation through
the mid-stylopodium of the forelimb. Longitudinal sections at various stages of regeneration: (A) accumulation blastema, or early bud; (B) medium
bud; (C) late bud, with arrow pointing to a blood vessel, and prominent AER; (D) notch, indicating anlagen of anterior two digits (D1, D2), dis-
tal humerus, and radius (R) and ulna (U). The arrow indicates the re-forming basement membrane. (E) Two-fingerbud whole mount stained with
methylene blue. H, humerus; R, radius; U, ulna; C, carpal region. The arrow points to the elbow joint. (F) Methylene blue stained whole mount of
fully regenerated limb. After Stocum (2012, Chapter 8)

followed by experimental manipulations to reveal interactions among

tissues during regeneration, and have continued into the 21st century

focused on the molecular biology and immunology of regenerative

mechanisms. A substantial number of texts on limb regeneration have

summarized the information that has come out of these later studies

(Carlson, 2007; Goss, 1969; Mattson, 1976; Needham, 1952;

Polezhaev, 1972; Schmidt, 1968; Stocum, 1995, 2012; Tsonis, 1996;

Vorontsova & Liosner, 1960;Wallace, 1981).

Thornton (1968) reviewed the histological and morphological

events of limb regeneration in detail. These events can be arbitrar-

ily divided into two overlapping phases (Fig. 1). The first phase is the

breakdownof stump tissues (histolysis) at theamputation site toyield a

collection of undifferentiated progenitor cells called the accumulation

or early bud blastema similar in structure to the early embryonic limb

bud. The formation of a limb bud-like blastema in continuity withmore

proximal differentiated tissues is an injury response unique to urode-

les. The accumulation blastema is avascular and lacks innervation. The

second phase is the development of the accumulation blastema by

coordinated growth,morphogenesis, and differentiation to replace the

amputated structures. Initiation of this phase coincides with the re-

vascularization and re-innervation of the accumulation blastema.

The developmental phase of limb bud regeneration can be subdi-

vided into several morphological stages, each characterized by its own

unique histological structure and pattern of gene expression: a con-

ical medium bud, a larger late bud or palette during which rediffer-

entiation of the amputated segments is initiated in a proximal to dis-

tal and anterior to posterior order, culminating in the appearance of

the digits. Amputated limbs follow the “rule of distal transformation”;

i.e., they regenerate only those parts distal to the level of amputation,

even when the proximodistal (PD) polarity of the limb is reversed by

implanting its distal end in a pocket made in the flank and amputat-

ing through the stylopodium. The blastemas that form on each cut end

of the stylopodium both regenerate all the parts normally distal to the

level of the cut (Butler, 1955; Deck&Riley, 1958; Dent, 1954). Urodele

limbs can regenerate after repeatedamputations, andall four limbswill

regenerate if amputated simultaneously. Adult newt limbs regenerate

with high morphological fidelity after one amputation, but repeated

amputations lead to progressively greater numbers of abnormalities in

the regenerates (Dearlove &Dresden, 1976).Whether this is a general

rule in other urodele larvae or adults is not known.

3 FORMATION OF THE ACCUMULATION

BLASTEMA

The accumulation blastema forms as the result of three pro-

cesses: (1) formation of a wound epidermis to close the wound by

epidermal migration from the cut edges of the skin; (2) generation of

progenitor (“blastema”) cells by histolysis and the release of dediffer-

entiated and/or resident stem/progenitor cells; and (3) blastema cell

migration andaggregationunder anapical thickeningof thewoundepi-

dermis, the apical epidermal cap (AEC). The AEC is a distal signaling

center for promoting blastema cell mitosis that is analogous to the api-

cal ectodermal ridge (AER) of amniote limb buds.

3.1 Thewound epidermis

Immediately after amputation the wound is sealed by a thrombin-

catalyzed blood clot. The epidermal basal cells at the edge of the cut
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skin lose their intercellular junctions and hemidesmosomal junctions

that adhere them to the basement membrane and migrate through

the clot to close the wound within a few hours. The migrating cells

do not divide (Hay & Fischman, 1961), but a zone of dividing epi-

dermal cells proximal to the wound edge supplies a continual stream

of migrating cells (Lash, 1955; Repesh & Oberpriller, 1978, 1980).

Fibronectin in the clot is the adhesive substrate for the migrating

epithelial cells (Donaldson & Mason, 1977; Donaldson, Mahan, Yang,

& Crossin, 1991; Repesh, Furcht & Smith, 1981). As the accumula-

tion blastema forms, the wound epidermis thickens at its apex to form

the AEC.

The wound epidermis expresses two antigens designatedWE3 and

WE6 that are thought to be actin-binding proteins and to regulate

secretion and/or ionic composition (Castilla & Tassava, 1992; Estrada,

Park, Castilla, & Tassava, 1993; Goldhamer, Tomlinson, & Tassava,

1989; Tassava & Acton, 1989; Tassava, Castilla, Arsanto, & Thouveny,

1993; Tassava, Johnson-Wint, & Gross, 1986). These antigens are not

expressed in uninjured epidermis, indicating that they are specific to

regeneration. The gene for Sp9, a transcription factor that plays a key

role in amniote limb development by its positive regulation of fibrob-

last growth factor 8 (Fgf8) expression (Kawakami et al., 2004), is also

expressed in the wound epidermis of regenerating axolotl limbs and

may be involved in formation of the AEC (Satoh, Cummings, Bryant, &

Gardiner, 2010a). Epidermal ion channels generate early signals oblig-

atory for blastema formation, including Na+ influx/H+ efflux (Adams,

Masi, & Levin, 2007; Jenkins, Duerstock, & Borgens, 1996). How these

early signals are linked to secretory functions of the wound epider-

mis and the subsequent events of histolysis and dedifferentiation is

not clear, but may involve upregulation of nitric oxide signals in the

epidermis and stimulation of a rise in cytosolic Ca2+ that results in

the localization of protein kinase C to the plasma membrane, where

it is activated by diacylglycerol to regulate transcription (Rao et al.,

2009). Many other genes are upregulated in the wound epidemis, the

functions of which have not yet been determined (Campbell et al.,

2011).

3.2 Histolysis

Histolysis is the degradation of extracellular matrix (ECM) of limb

tissues local to the amputation surface by proteolytic enzymes, par-

ticularly lysosomal acid hydrolases and matrix metalloproteinases

(MMPs) (Dresden &Gross, 1970; Ju &Kim, 1998;Miyazaki, Uchiyawa,

Imokawa, & Yoshizato, 1996; Park & Kim, 1999; Santosh et al., 2011;

Schmidt, 1968; Yang & Bryant, 1994; Yang, Gardiner, & Bryant, 1999).

Histolysis liberates fibroblasts from the dermis, interstitial connective

tissue of muscle, periosteum, and nerve sheath, as well as Schwann

cells from the peripheral nerves. Myofibers fragment at their cut ends

and break up into mononucleate cells while simultaneously releas-

ing Pax7+ muscle stem cells, the satellite cells (Hay, 1959; Sandoval-

Guzmanet al., 2014; Thornton, 1938a, b).MMPsalso prevent reassem-

bly of a basement membrane, thereby ensuring contact between

the wound epidermis and the underlying tissues. The importance of

MMPs to histolysis is underscored by the failure of blastema for-

mation in amputated newt limbs treated with the MMP inhibitor

GM6001 (Vinarsky, Atkinson, Stevenson, Keating, & Odelberg, 2005).

The wound epidermis and the AEC are major sources of MMPs

(Godwin, Pinto, & Rosenthal, 2013) and also function to eliminate cel-

lular and particulate debris generated by tissue destruction and the

bactericidal activity of neutrophils and macrophages (Singer & Inoue,

1964; Singer & Salpeter, 1961).

Histolysis of stump tissue continues until the medium bud stage,

when it declines due to the activity of tissue inhibitors of metal-

loproteinases (TIMPS) (Santosh et al., 2011; Stevenson, Vinarsky,

Atkinson, Keating, & Odelberg, 2006). TIMP1 is upregulated when

MMP levels approach maximum, and exhibits a spatial pattern of

expression congruent with patterns of MMP expression in the wound

epidermis, proximal epidermis, and internal tissues undergoing disor-

ganization. HowMMP and TIMP expression patterns are coordinated

is unknown.

3.3 Dedifferentiation

3.3.1 Transcriptional changes

The cells liberated by histolysis are mononucleate progenitor

(blastema) cells that are a mixture of resident stem/progenitor cells

and dedifferentiated cells. Blastema cells resemble the mesenchymal

cells of the limb bud, with large nuclei, sparse cytoplasm, large num-

bers of free ribosomes, and a vesiculated endoplasmic reticulum (Hay,

1958, 1959; Lentz, 1967). They exhibit intense DNA, RNA, and protein

synthesis (Anton, 1965; Bodemer, 1962; Bodemer & Everett, 1959;

Hay & Fischman, 1961; Morzlock & Stocum, 1971). Blastema cells

appear within 2–3 days post-amputation in larval urodeles and within

4–5 days in adult newts. As they accumulate, new capillaries and nerve

axons regenerate from their cut ends into the accumulation and the

wound epidermis thickens into the AEC.

Dedifferentiation involves epigenetic nuclear reprogramming that

suppresses the transcription of differentiation genes, while activat-

ing transcription of genes and translation of proteins associated with

stemness, reduction of cell stress, and remodeling internal structure

(Gardiner & Bryant, 2002; Geraudie & Ferretti, 1998; Rao et al., 2009).

Inhibition of these transcriptional changes by actinomycin D does not

affect histolysis, but does prevent or retard dedifferentiation, lead-

ing to regenerative failure or delay (Carlson, 1969). Dedifferentiated

cells express a more limb bud-like ECM in which type II collagen syn-

thesis is suppressed, type I collagen synthesis remains the same, and

fibronectin, tenascin, and hyaluronate accumulate (Ashahina, Obara, &

Yoshizato, 1999; Gulati, Zakewski, & Reddi, 1983;Mescher &Munaim,

1986; Onda, Poulin, Tassava, & Chiu, 1991). A temporary “transitional

matrix” has been described during early blastema formation in ampu-

tatednewt limbs thatmay facilitate the cellularizationofmyofibers and

sustain dedifferentiation of the resulting mononucleate cells (Calve,

Odelberg, & Simon, 2010).

The molecular details of transcriptional regulation during dediffer-

entiation are only partly known. Approaches to examining gene activ-

ity during regeneration involve quantifying the expressionof individual

genes and global analyses of gene and protein expression. Individual

genes associated with progenitor status that are upregulated during
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blastema formation aremsx1,msx2, nrad, rfrng, and notch (Cadinouche,

Liversage, Muller, & Tsifildis, 1999; Carlson, Bryant, & Gardiner, 1998;

Crews et al., 1995; Géraudie & Ferretti, 1998, for a review; Koshiba,

Kuroiwa, Yamamoto, Tamura, & Ide, 1998; Shimizu-Nishikawa, Tsuji,

& Yoshizato, 2001; Simon et al., 1995). Msx1 inhibits myogenesis

(Woloshin et al., 1995) and its forced expression in mouse C2C12

myotubes causes cellularization and reduced expression of muscle

regulatory proteins (Odelberg, Kollhof, & Keating, 2001). Inhibiting

msx1expressionwith anti-msxmorpholinos in culturednewtmyofibers

prevents their cellularization and reduces their expression of mus-

cle regulatory proteins (Kumar, Velloso, Imokawa, & Brockes, 2004).

Nrad expression is correlated with muscle dedifferentiation (Shimizu-

Nishikawa et al., 2001), andNotch is a major mediator of stem cell self-

renewal (Lundkvist & Lendahl, 2001).

A number of differentially upregulated genes in the early axolotl

limb blastema were identified by subtractive hybridization (Gorsic,

Majdic, & Kornel, 2008). Most of these genes fell into the cate-

gories of metabolism, cell physiological process, cell cycle regulation,

and protein synthesis and transport. Subtractive hybridization was

also used to compare transcript expression after amputation at a

regeneration-competent versus a regeneration-deficient stage of

Xenopus limb bud development (King et al., 2003). This study iden-

tified three categories of cDNA clones: clones expressed at both

competent and deficient blastemas, clones with highest expres-

sion in regeneration-competent blastemas, and clones with highest

expression in regeneration-deficient blastemas.

Microarray and RNA-Seq analysis of regenerating axolotl limbs has

identified suites of genes encoding progenitor cell markers, stage-

specific genes, and genes regulated by neural signals (Knapp et al.,

2013; Looso et al., 2013; Mercer et al., 2012; Monaghan et al., 2009,

2012; Stewart et al., 2013; Vascotto, Beug, Liversage, & Tsilfildis,

2005; Voss et al., 2015). Bryant, et al. (2017) have assembled an

axolotl transcriptome that identifies transcripts enriched in individ-

ual limb tissues and which distinguishes blastemas from differenti-

ated limb tissues. This study revealed two highly upregulated genes,

the RNA binding protein gene cirbp and the serine protease inhibitor

gene kazald1. Cirbp has a cytoprotective role in limb regeneration,

whereas knockdown or overexpression of the kazald1 protein impairs

regeneration.

Since not all transcripts are translated into proteins, proteomic

studies are also important to the analysis of regenerativemechanisms.

Franco et al. (2013) have reviewed proteomic studies of regeneration

in a wide variety of organisms that have high regenerative ability.

Changes in the proteome during blastema formation in regener-

ating axolotl, newt, and developing and adult Xenopus limbs have

been investigated by Rao et al. (2009, 2014), Looso et al. (2013),

and King, Mescher, and Neff (2009). These studies have revealed

patterns of upregulation and downregulation of proteins in various

biological process categories such as signaling, transcription, trans-

lation, cytoskeleton, ECM, metabolism and cell cycle. The highly

upregulated and downregulated genes and proteins identified in

genomic, transcriptomic, and proteomic studies can now be the

focus for specific analysis of regenerative pathways (Jhamb et al.,

2011).

Three of the six transcription factor genes (klf4, sox2, c-myc) used

to reprogram mammalian adult somatic cells to induced pluripotent

stem cells (iPSCs) (Takahashi et al., 2007; Yu, Vodyanik et al., 2007)

were found to be upregulated during blastema formation in regen-

erating newt limbs, and also during lens regeneration (Maki et al.,

2009). The Lin 28 protein, the product of a fourth transcription fac-

tor gene used to derive iPSCs (Yu, Vodyanik et al., 2007), is also upreg-

ulated during blastema formation in regenerating axolotl limbs (Rao

et al., 2009). Blastema cells, however, are not pluripotent. In a compar-

ison of iPSCs and regenerating Xenopus limb and tail buds, Christen,

Robles, Raya, Paramonov, and Izpisua Belmonte (2010) found that

some pluripotency genes—Oct4, Sox2, c-Myc, klf4, tert, Sall4 and

others—were expressed before and during regeneration, but were not

upregulated to the extent expected for pluripotency. Thus, although

these factors may play a role in nuclear reprogramming during limb

regeneration, they may not be expressed to the degree required to

achieve pluripotency, or other factors must exist (or be lacking) that

prevent reprogramming to this extreme.

Micro RNAs (miRNAs), small non-coding RNAs that downregulate

gene expression by binding to complementary sequences in the 3′

untranslated region of target mRNAs, are expressed in a gene reg-

ulatory circuit in regenerating axolotl limbs and fish fins (King &

Yin, 2016). A specific miRNA identified in the axolotl regeneration

blastema is miR-21, which targets the gene Jagged1, and may down-

regulate this gene to facilitate transition from a proliferative state

to cell fate commitment (Holman, Campbell, Hines, & Crews, 2012).

The further molecular characterization of transcription factor and

miRNAnetworks, aswell as changes in epigeneticmarks, will be crucial

for understanding the mechanism of dedifferentiation in regenerating

amphibian limbs.

Five proteins involved in canonical or non-canonical Wnt signaling

were detected in a proteomic analysis of axolotl limb blastema for-

mation (Rao et al., 2009). These were Wnt 8, APC, the Disheveled-

binding CCDC88c, DIXDC1, and inversin. Wnt 8, APC, and DIXDC1

are part of the canonical Wnt pathway. Wnt 8 and APC were strongly

upregulated, but DIXDC1, a positive regulator of the canonical path-

way, was downregulated. Inversin and CCDC88c are components of

the non-canonical pathway. Inversin switches the canonical pathway

to the non-canonical pathway by targeting the Disheveled protein

for degradation by the proteasome or by the activation of the c-jun

N-terminal kinase (JNK) pathway by DVL2 and axin (Kestler & Kuhl,

2008), and CCDC88c is a negative regulator of the canonical path-

way. Both were strongly upregulated. These results suggest that both

canonical and non-canonical Wnt pathways regulate blastema forma-

tion. They are consistentwith the findingofGhosh, Roy, Seguin, Bryant,

and Gardiner (2008) that genes for both pathways are expressed in

the regenerating axolotl limb, and with the finding that the canoni-

cal pathway (via Wnt 8) promoted zebrafish fin regeneration whereas

the non-canonical pathwaywas inhibitory (Stoick-Cooper et al., 2007).

The canonical Wnt pathway has also been implicated in deer antler

regeneration (Mount et al., 2006) and Xenopus tadpole tail regenera-

tion (Lin & Slack, 2008). Further studies will be required to understand

the details of howWnt signaling pathways regulate appendage regen-

eration in different species.
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3.3.2 Dedifferentiation ofmyofibers

Dismantling of phenotypic structure and function is most visible in the

myofibers of regenerating adult newt limbs, but the molecular details

of internal structural remodeling in dedifferentiating cells are poorly

understood. Two small purine molecules dubbed myoseverin and

reversine that cause cellularization of C2C12 mouse myofibers have

been screened from combinatorial chemical libraries (Chen, Zhang,

Wu, Schultz, &Ding, 2004; Rosania et al., 2000).Myoseverin disrupted

microtubules and upregulated genes for growth factors, immunomod-

ulatory molecules, ECM remodeling proteases, and stress-response

genes, consistent with the activation of pathways involved in wound

healing and regeneration, but did not activate the whole program of

myogenic dedifferentiation innewt limbs (Duckmanton,Kumar,Chang,

& Brockes, 2005). Reversine treatment of mouse C2C12 myotubes

resulted in mononucleate cells that mimic mesenchymal stem cells in

their ability to differentiate in vitro into osteoblasts and adipocytes,

as well as muscle cells (Anastasia et al., 2006). Myoseverin and rever-

sine are thus useful in analyzing the events of structural remodel-

ing involved in dedifferentiation and may have natural counterparts

that can be isolated. Furthermore, several small molecules that inhibit

GS-3K, p38 MAP kinase, and adenylyl cyclase and activate G-protein

induce the proliferation of mononucleate mammalian C2C12 muscle

cells derived by reversine treatment, thus mimicking early steps of

urodele limb regeneration (Jung &Williams, 2011; Kim et al., 2012).

Recent evidence indicates that themononucleate cells produced by

fragmentation of adult myofibers involve a caspase-induced cell death

program that under other circumstances leads to apoptosis (Zitvogel,

Kepp, & Kroemer, 2010), but during limb regeneration results in an

autophagic program resulting in a proliferation-competent population

of myogenic cells that can redifferentiate into myofibers (Wang et al.,

2015).

3.4 Entry into the cell cycle

[3H]-thymidine labeling studies have shown that, as progenitor

blastema cells are forming into an accumulation blastema, they enter

the cell cycle and synthesize DNA. The pulse labeling index reaches

10%–30% during formation of the adult newt accumulation blastema

(Loyd & Tassava, 1980; Mescher & Tassava, 1976). By contrast, the

mitotic index is low, between0.1%and0.7% (average∼0.4%, or4/1000
cells) in both Ambystoma larvae (Kelly & Tassava, 1973) and adult

newts. The total lengthof the cell cyclehasbeencalculatd tobeapprox-

imately 40 h for regenerating axolotl limbs (McCullough & Tassava,

1976) and 45 h for regenerating adult newt limbs (Grillo, 1971).

The fact that blastema cells synthesize DNA but divide only infre-

quently during formation of the accumulation blastema suggests that

a large proportion of dedifferentiating cells arrest in G2 (Mescher &

Tassava, 1976). Further indirect evidence for G2 arrest is the strong

upregulation of the ecotropic viral integration factor 5 (Evi5) through-

out blastema formation in regenerating axolotl limbs and regenerat-

ing ear hole tissue of MRL/mpj mice (Heber-Katz et al., 2013; Rao

et al., 2009). Evi5 is a centrosomal protein that accumulates in the

nucleus during early G1 in mammalian cells and prevents them from

prematurely enteringmitosis by stabilizingEmi1, a protein that inhibits

cyclin A degradation by the anaphase-promoting complex/cyclosome

(APC/C) (Eldridge et al., 2006). At G2, Emi1 and Evi5 are phosphory-

lated by Polo-like kinase 1 (PLK1) and targeted for ubiquitin-driven

degradation, allowing the cell to entermitosis. Thus, high levels of Evi5

during blastema formation may restrain cells from entering mitosis

until they are fully dedifferentiated and present in enough numbers to

form an accumulation blastema (Rao et al., 2009). To test this hypothe-

sis, it will first be necessary to determine the spatiotemporal expres-

sion pattern of Emi1 and Evi5. The hypothesis predicts that these

proteins would be expressed at high levels in both migrating wound

epidermis (which does not divide) and themesenchyme of the accumu-

lation blastema, and that expressionwould decrease as the cells transit

to a normal cell cycle during blastema growth.

The signals that induce liberated cells to enter the cell cycle have

been studied in detail in myotubes derived from the newt A1 cell line

of myogenic precursors (Ferretti & Brockes, 1988). Serum stimulation

of A1 myotubes induces their partial dedifferentiation, as manifested

by downregulation of the Myf5 gene (Imokawa, Simon, & Brockes,

2004). A thrombin-activated factor present in the serum of all ver-

tebrates tested thus far (Straube, Brockes, Dreschel & Tanaka, 2004;

Tanaka, Gann, Gates, & Brockes, 1997) promotes progression through

G1 and S in cultured newt myotubes by activating a sustained extra-

cellular signal-regulated kinase (ERK1/2) pathway that downregu-

lates the Sox6 and p53 (tumor suppressor) proteins (Yun, Gates, &

Brockes, 2013, 2014), facilitating phosphorylation and inactivation of

the retinoblastoma protein (pRb) to block entry into S-phase. Mouse

myonuclei do not synthesize DNA in response to serum stimulation

(Tanaka et al., 1997). Newt blastema extract promotes dedifferenti-

ation and DNA synthesis in both newt and mouse C2C12 myotubes

in vitro (McGann, Odelberg, & Keating, 2001), and mouse myonuclei

will synthesize DNA if they are part of a mouse/newt heterokaryon

(Velloso, Simon, & Brockes, 2001). Yun et al. (2014) have shown that

mouse myotubes briefly activate the ERK1/2 pathway, but do not sus-

tain the activity, and thus fail to deactivate pRb. In addition, mam-

malian myotubes must overcome an additional block to DNA synthe-

sis by the ARF tumor suppressor protein encoded by the ink4a locus,

which is expressed only in taxa above the urodeles (Pajcini, Corbel,

Sage, Pomerantz, & Blau, 2010).

Although the thrombin-activated protein is both necessary and

sufficient to stimulate the entry of myonuclei into the cell cycle,

it is not sufficient to drive them through mitosis, and they arrest

in G2. Myofiber cellularization and cell cycle entry are indepen-

dent of one another, since cell-cycle-inhibited myofibers implanted

into newt limb blastemas break up into mononucleate cells (Velloso,

Kumar, Tanaka, & Brockes, 2000). Mitosis, however, requires mononu-

cleate cell status. The identity of the thrombin-activated protein is

unknown, although some evidence suggests that it may be a potent

growth factor required in very small amounts (Straube et al., 2004).

Sugiura, Wang, Barsacchi, Simon, and Tanaka (2016) reported that

a MARCKS (myristoylated alanine-rich C-kinase substrate)-like pro-

tein called the muscle LIM protein (MLP) initiates entry into the cell

cycle of muscle-derived blastema cells. This protein clusters phyloge-

netically with other vertebrate MLPs, which generally play a role in
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muscle differentiation. MLP is secreted within 12 h after amputa-

tion of an adult newt limb and its activity is essential for entry into

the cell cycle. Whether MLP is a general initiator of cell cycle entry

for blastema cells derived from other limb tissues or larval limbs is

unknown, as is its relation to the thrombin-activated factor.

3.5 Molecular markers of blastema cells

In addition to the antigens expressed by the AEC, several antigens

specific to mesenchymal blastema cells have been identified by

immunochemical methods. The antigen 22/18 is expressed by 80%

of newt medium bud blastema cells, in cultured newt blastema

cells, and during the tissue regeneration of newt muscle (Ferretti &

Brockes, 1988; Griffin, Fekete, & Carlson, 1987; Kintner & Brockes,

1984, 1985). This antigen is an intermediate filament that under-

goes a conformational change during limb regeneration (Ferretti

& Brockes, 1990). Its expression appears to be nerve-dependent,

because it is not expressed in the limb bud or in regenerating aneu-

rogenic limbs (Fekete & Brockes, 1988; Ferretti & Brockes, 1991;

Gordon & Brockes, 1988). Three keratins, keratins 8 and 18 and a

newt type II keratin, NvKII, are expressed in newt blastema cells

(Ferretti, Brockes, & Brown, 1991; Ferretti, Fekete, Patterson, & Lane,

1989). NvKII and 9G1 are also expressed in the AEC of the newt limb

blastema. The functions of these proteins are unknown. The gene

encoding the PRRX1 paired homeobox protein is expressed in the

nuclei of axolotl and Xenopus limb blastema cells (Satoh, Gardiner,

Bryant, & Endo, 2007; Suzuki, Satoh, Ide, & Tamura, 2007). This protein

is essential for limb bud skeletal patterning (Nohno et al., 1993). It

is activated by dermal fibroblasts during blastema formation in the

amputated axolotl limb and its expression is induced by MMP activity

(Satoh, Makanae, Hirata, & Satou, 2011).

3.6 Tissue contributions to the blastema

Extensive histological and experimental analysis has shown that

blastema cells originate from the mesodermal tissues directly subja-

cent to thewound epidermis (Butler&O'Brien, 1942; Thornton, 1968).

The wound epidermis itself makes no contribution to this cell pop-

ulation (Riddiford, 1960). Nearly half the cells of the blastema are

derived from dermal fibroblasts (Muneoka, Fox, and Bryant, 1986a),

but the total fibroblast contribution is probably well above 50% when

the fibroblasts of the periosteum, muscle interstitial tissue, and nerve

sheath are considered. Experiments in which transgenic green fluores-

cent protein (GFP) neurula stage axolotl tissues contributing to the

limb were grafted in place of their counterparts in non-GFP neuru-

lae and the developed limbs amputated showed that dermal fibrob-

lasts, Schwann cells, skeletal cells, andmyogenic cells contribute to the

blastema (Kragl et al., 2009; Fig. 2).

The myogenic contribution, however, varies with species and phase

of the life cycle. Satellite cells are the source of regenerated muscle

in larval and metamorphosed axolotls (Sandoval-Guzman et al., 2014).

The larval newt limb also mobilizes satellite cells to regenerate mus-

cle, but the adult newt limb switches to dedifferentiation of mononu-

cleatemyofiber fragments as the primary source ofmuscle progenitors

F IGURE 2 Blastema cells have a memory of cellular origin. Results
of experiments tracing tissues grafted from transgenic GFP axolotls
to white axolotls, based on data from Kragl et al. (2009), Sandoval-
Guzman et al. (2014) and Tanaka et al. (2016). Blastema cells give rise
to the same tissue of origin in the regenerate, with the exception of
dermal cells, which can also transdifferentiate to skeletal cells. Muscle
in larval axolotls and newts is regenerated by satellite cells, whereas
regenerated muscle in adult newts is derived primarily from mononu-
cleate cells produced by fragmentation of cut myofibers

(Tanaka et al., 2016; Young, Bailey, Markwald, & Dalley, 1985). Never-

theless, satellite cells have been identified by electron microscopy in

adult newt limb muscle (Cameron, Hilgers, & Hinterberger, 1986) and

can form myotubes when explants of this muscle are cultured in vitro

(Schrag &Cameron, 1983). These cells may be involved in the regener-

ation of injuredmuscle and in the repair ofmuscle in the overlap region

between the blastema and disorganized stump tissues in regenerating

adult newt limbs. Why there should be dual mechanisms for muscle

regeneration after muscle injury versus amputation is an interesting

question that has not been sufficiently explored.

There are several questions yet to be answered about the origin of

the blastema. For example, what percentage of the blastema cells is

contributed by non-dermal fibroblasts? Might specific subpopulations

of progenitor cells exist in dermal and other fibroblast populations

that contribute to the blastema as opposed to dedifferentiation?

Is the switch from satellite cells to myofiber dedifferentiation in

adult newt limb regeneration an all or none event, or is it gradual,

and what regulates this switch? Do chondrocytes contribute to the

blastema?Hay (1958) described the dedifferentiation of chondrocytes

in the regenerating larval urodele limb, and Onda and Tassava (1991)

described the strong expression of an antigen, 9G1, in dedifferentiat-

ing newt limb chondrocytes during histolysis and blastema formation.

However, triploid-labeled cartilage gave rise to few chondrocytes in

the regenerate when grafted to the diploid axolotl limb (Muneoka,

Fox et al., 1986a; Steen, 1968) and chondrocytes were not observed

to contribute to the blastema at all in another set of experiments

where GFP-labeled cartilage was injured in evoking the formation

of a supernumerary blastema and limb (McCusker, Diaz-Castillo,
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F IGURE 3 Positionalmemory is encoded in the cell surface. (A) Blastemas derived from the same level (W/W,UA/UA) fuse in a straight linewhen
juxtaposed in culture, but when derived from different levels (W/UA), the more proximal blastema engulfs the distal one. Engulfment is prevented
by treating the culture with PIPLC or an antibody to Prod1. (B) Medium bud blastemas derived from the wrist, elbow, and mid upper arm (red)
grafted to the dorsal surface of the blastema/stump junction of a hindlimb regenerating from the mid-femur sort to their corresponding levels of
ankle (A), knee (K), andmid-femur (F) of the regenerating hindlimb. Retinoic acid, which proximalizes the positional identity of blastema cells, abol-
ishes the distal sorting of thewrist and elbow blastemas, so that they behave like upper arm blastema. P, posterior; K, knee; A, ankle; UA, upper arm

Sosnik, & Gardiner, 2016). This issue should be explored further to

determine whether the skeletal contribution to the blastema is via the

periosteum, cartilage/bone, or both, andwhether theremay be species

and developmental stage related differences in skeletal contribution

to the blastema, as for muscle.

3.7 Blastema cells have lineage-specific

and positional memories

Experiments grafting tissues and cells from animals transgenic for the

GFP have shown that blastema cells have two types of cellular mem-

ory. The first is a lineage-specific memory of limb and parent cell phe-

notype (Kragl et al., 2009). This memory dictates that blastema cells

derived from muscle and Schwann cells redifferentiate in a lineage-

specific manner as myogenic cells and Schwann cells (Fig. 2). Blastema

cells derived from fibroblasts differentiate into fibroblasts, but have

more flexibility in being able to transdifferentiate into chondrocytes

and tendon cells. In fact, a complete skeleton can regenerate distal to

the plane of amputation from dermal fibroblasts of the skin, as first

shown in experiments amputating boneless limbs of newts (Bischler &

Guyenot, 1925;Weiss, 1925) and later byNamenwirth (1974) in exper-

iments grafting normal skin in place of the skin of irradiated axolotl

limbs.

The second type of memory is positional identity, a memory of

the position of origin of blastema cells in relation to their neighbors

(Mittenthal, 1981). Positional memory is restricted to fibroblast-

derived blastema cells, and is the basis of the rule of distal transforma-

tion, ensuring that only the missing distal structures are regenerated

(Nacu et al., 2013). Blastema cells derived from muscle and Schwann

cells lack a memory of their position of origin. The position they

come to occupy during pattern formation is flexible and regulated by

fibroblast-derived blastema cells. Phenotypic and positional memory

is probably due to retention of a major part of the original epigenetic

codes imposed on the genome in developing limb buds, as reflected in

a stably maintained histone methylation pattern of blastema cell DNA

(Hayashi et al., 2015).

Positional identity is encoded in the blastema cell surface, as shown

by in vitro and in vivo assays (Fig. 3). When pairs of proximal and dis-

tal blastemas were juxtaposed at their bases and cultured in hang-

ing drops, the proximal blastema engulfed the distal one, whereas

a pair of blastemas from the same level simply fused in a straight

line (Nardi & Stocum, 1983). Based on the work of Steinberg (1978),

this result suggests a distal (stronger) to proximal (weaker) gradient

of blastema cell intercellular adhesion. The existence of this gradi-

ent in vivo was demonstrated by an “affinophoresis” assay in which

undifferentiated blastemas from wrist, elbow, and mid upper arm lev-

els of the forelimb were grafted individually to the blastema-stump

junction of hindlimbs regenerating from the mid-femur. The wrist and

elbow blastemas sorted to their corresponding levels on the regen-

erating host blastema (ankle and knee, respectively) while the mid

upper arm blastema remained at the mid-femur level (Crawford &

Stocum, 1988a; Egar, 1993). Further evidence that positional identity

is encoded in cell surface adhesion molecules was obtained by show-

ing that retinoic acid (RA), which proximalizes the positional identity of

axolotl limb blastema cells (Maden, 1982a), abolished the distal sorting

of blastemas in the affinophoresis assay (Crawford & Stocum, 1988b).

The sorting behavior of distal from proximal cells was confirmed

by experiments grafting clusters of marked cells from an early wrist

blastema into the prospective humeral mesenchyme of an early mid

upper arm blastema, where they sorted out to participate in hand

formation (Echeverri & Tanaka, 2005). Genetic marking experiments

showed that the PD adhesive differentials exist at the single cell level

(Kragl et al., 2009). Position-dependent adhesion of cells in the devel-

oping and regenerating limb bud of the early Xenopus tadpole was also

demonstrated by the sorting out of distal and proximal cells from an

initial mixture of the two (Ohgo et al., 2010).
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A cell surface molecule implicated in establishing PD adhesive

differentials and coordination of proliferation and patterning in the

regenerating newt limb is Prod1, a member of the Ly6 family of

three-finger proteins that is anchored to the cell surface by a gly-

cosylphosphatidylinositol linkage (Morais da Silva, Gates, & Brockes,

2002). Antibody blocking of Prod1 or its removal from the blastema

cell surface by phosphatidylinositol-specific phospholipase C (PIPLC)

inhibited the recognition of adhesive differentials between distal and

proximal blastemas (Fig. 3), whereas overexpression of Prod1 in distal

blastema cells caused them to sort to a more proximal (less adhesive)

position when grafted into proximal blastemas (Echeverri & Tanaka,

2005). Other surface molecules that may be involved in position-

dependent adhesion of blastema cells are CD59, ephrins, and cad-

herins. Antibodies to CD59, which is expressed in a high to low

gradient along the PD axis of the gecko tail, abolished the nor-

mal engulfment of distal tail blastemas by proximal blastemas in

vitro (Wang et al., 2011). Antibodies to the EphA4 receptor and to

N-cadherin, or cleaving of ephrin A ligands from the cell surface with

phospholipase C, abolished the sorting of proximal and distal chick

limb bud cells from one another (Wada, 2011; Wada, Kimura, Tanaka,

Ide, & Nohno, 1998; Yajima, Yonei-Tamura, Watanabe, Tamura, & Ide,

1999), and RA treatment prevented the sorting of distal cells of the

chick limb bud from proximal cells (Tamura, Yokoyuchi, Kuroiwa, &

Ide, 1997). There is a need for a more refined analysis of position-

dependent cell surface molecular signatures if we are to understand

how proliferation and patterning are integrated. It is also possible that

positional information may reside in the ECM surrounding fibroblast-

derived blastema cells (Phan et al., 2015).

3.8 Macrophages play an important role in blastema

formation

The immune systemplays an important role inwound repair and regen-

eration (for reviews see Eming,Wynn, &Martin, 2017; Mescher 2017;

Mescher, Neff & King, 2017). Macrophages of the innate immune

system are a central mediator of wound repair in mammals. The

macrophages entering the wound are initially pro-inflammatory in

line with their bactericidal and phagocytic activities and their secre-

tion of growth factors and cytokines that regulate inflammation. The

macrophages then change to an anti-inflammatory phenotype secret-

ing factors that resolve inflammation and initiate structural repair

by fibroblasts when activated by interleukin 4/13 (IL-4/13). IL-4/13-

dependent macrophage proliferation is enhanced by their produc-

tion of defense collagens (Minutti et al., 2017), and the types of

defense collagens produced are dictated by the tissue location of

the macrophages. Making this pro-inflammatory to anti-inflammatory

switch requires that themacrophages first sense apoptotic neutrophils

(Bosurgi et al., 2017). The result is “normal” scar formation, but not

regeneration.

A positive correlation between tissue damage, cell senescence, and

the ease of in vivo reprogramming of somatic cells by Yamanaka tran-

scripton factors (OSKM) has been reported (Mosterio et al., 2016). The

cells of tissues lacking p16INK4a/ARF or treated with the senescence

inhibitor navitoclax exhibit reduced or no senescence and their ability

to be reprogrammed is compromised, whereas injured tissues that lack

the p53 protein (guardian of the genome that eliminates aberrant cells

with DNA damage) have large numbers of senescent cells that accu-

mulate in the tissue, produce elevated amounts of IL-6, and are more

receptive to reprogramming. These results were reproducible in vivo

by culturing cells either with senescent cells or in medium conditioned

by senescent cells.

Cell senescence thus seems to be essential to mammalian wound

repair, cellular reprogramming, and most likely to signal stem cells

to proliferate and replace senescent and apoptotic cells. The down-

side is that senescent cells accumulate in mammalian tissues with age,

reflecting a process that decreases the ability to regenerate worn out

cells. Thus, potential therapies for age related loss of tissue regener-

ative ability might involve interventions that eliminate accumulation

of senescent cells. In fact, drug-induced elimination of senescent cells

in mice was found to retard organ deterioration and tumor formation

and to extend life span by 20% (Baker et al., 2016). Likewise, elimina-

tion of the senescent foamy macrophages associated with atheroscle-

rosis reduced plaque formation in atherosclerosis-prone mice by 60%

(Childs et al., 2016).

The innate immune system has long been postulated as amajor fac-

tor that determineswhether appendages can regenerate or not (Harty,

Neff, King, & Mescher, 2003; Mescher & Neff, 2006; Mescher, Neff,

& King, 2013; for reviews). Urodeles, which can regenerate limbs as

larvae and adults, have a much less developed immune system than

anurans (frogs and toads), which regenerate limbs only as early tad-

poles, and mammals, which have no limb regenerative power except

for digit tips. Macrophages are particularly important for the events

of blastema formation during urodele limb regeneration (Godwin &

Brockes, 2006; Godwin & Rosenthal, 2014; Mescher, 2017; Mescher

et al., 2017; for reviews).

Godwin et al. (2013) demonstrated that pro- and anti-inflammatory

cytokines are upregulated during blastema formation in regenerating

axolotl limbs, coincidentwith a significant enrichment ofmacrophages,

which produce MMPs and make the pro- to anti-inflammatory

switch, just as in mammalian wound repair. Macrophage depletion by

liposome-encapsulated clodronate during blastema formation results

in regenerative failure and scarring of the limb stump. The epider-

mis closes the wound, but does not develop an AEC because dermal

scar tissue is interposed between the wound epidermis and underly-

ing tissues. By contrast, depletion after a blastema enters the growth

phase only delays regeneration. These results suggest a central role for

macrophages in limb regeneration by resolving inflammation by shift-

ing cytokine ratios in favor of the anti-inflammatory subset, and by

ECM degradation, including the basement membrane. Macrophages

are also necessary for the regeneration of ear punch hole tissue in

the African spiny mouse Acomys, which occurs by the formation of a

blastema around the rim of the wound (Simkin, Gawriluk, Gensel, &

Seifert, 2017). Pro-inflammatory macrophages fail to penetrate the

blastema tissue, but clodronate treatment eliminating both pro- and

anti-inflammatorymacrophages results in scarring.

A major role of macrophages during limb regeneration is to remove

senescent cells. Very few senescent or apoptotic cells are detected in

regenerating urodele limbs (Mescher, White, & Brokaw, 2000). Yun,
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Davaapil, and Brockes (2015) demonstrated that cell senescence is

induced during blastema formation in amputated axolotl limbs but

that senescent cells do not accumulate because they are cleared by

macrophages. Furthermore, this clearance is obligatory for blastema

formation. This may not be true for all vertebrates that regener-

ate appendages; macrophages and neutrophils were dispensable for

regeneration of zebrafish fins (Mathew et al., 2007). The question

then arises whether other macrophage functions in limb regenera-

tion require the engulfment of senescent cells, or whether senes-

cent cells release factors that facilitate reprogramming of limb cells to

blastema cells prior to being eliminated by macrophages? Other ques-

tions revolve around the role of adaptive immune cells in limb regen-

eration, and the nature of the immune environment of mouse digit tips

that allows them to regenerate.

3.9 Blastema cell migration and accumulation

TheG2 arrest of blastemacells indicates that theblastema formsexclu-

sively by migration and aggregation of cells beneath the AEC rather

than mitosis. The AEC appears to direct this process, as shown by

experiments inwhich shifting the position of theAEC laterally caused a

corresponding shift in blastema cell accumulation, and transplantation

of an additional AEC to the base of the blastema resulted in supernu-

merary blastema formation (Thornton, 1960a; Thornton & Thornton,

1965). Guidance by nerves was ruled out, since similar experiments

on aneurogenic limbs also resulted in eccentric blastema formation

(Thornton & Steen, 1962). Directional migration is provided by trans-

forming growth factor 𝛽1 (TGF-𝛽1) stimulated fibronectin produced

by basal cells of the AEC (Christensen & Tassava, 2000). Inhibition of

TGF-𝛽1 expression by the inhibitor of SMAD phosphorylation,

SB-431542, reduces fibronectin expression, resulting in failure of

blastema formation (Levesque et al., 2007).

4 BLASTEMA GROWTH

Growth of the accumulation blastema requires two synergistic

inputs to break G2 arrest and divide. First is the expression of

mitosis-promoting factors by regenerating nerve axons and the AEC.

Second is the interaction of blastema cells with non-neighboring

anterior−posterior (AP) or dorsal−ventral (DV) positional identities.
Unless these two conditions, along with re-vascularization, are met,

dedifferentiating cells may accumulate, but fail to persist and divide,

and disappear.

4.1 Role of the nerve in blastema growth

Nerves have long been recognized as the electrical system of the body,

but their role in niche support for stem cells of various organs, for reg-

ulation of wound repair, and for cell proliferation in amphibian limb

regeneration is of more recent recognition (Kumar & Brockes, 2012;

Pirotte, Leynen, Artois, & Smeets, 2015).

The English physician Tweedy John Todd reported in 1823 that

newt hindlimbs failed to regenerate if the sciatic nerve was severed

at the time of amputation. A hundred years later Schotte (1926) and

Locatelli (1929) confirmed a neural requirement for limb regeneration.

Butler and Schotte (1941) and Schotte and Butler (1941) showed that

larval salamander limbs denervated at any time between amputation

and the medium bud stage regressed to the level of the shoulder and

formed a scar. Compression injury or skeletal fracture of denervated

larval limbs without amputation also resulted in limb regression distal

and proximal to the injury (Thornton, 1954). Denervated and ampu-

tated adult newt limbs do not regress, but simply scar at the level of

amputation (Singer & Craven, 1948). Once re-innervation occurs, re-

opening the wound to remove scar tissue allows both larval and adult

limbs to regenerate. Regression of denervated larval limbs is due to

injury-activated proteolytic enzymes such as MMPs and can be pre-

vented by grafting a medium bud blastema to the amputation surface

(Schotte &Harland, 1943; Schotte, Butler, &Hood, 1941), most proba-

bly due to the synthesis of TIMPsby theblastema, although this has not

been demonstrated directly. Whether or not the nerve has any influ-

ence on TIMP expression is unknown.

Marcus Singer carried out a comprehensive series of studies on the

role of the brachial nerves (spinal nerves 3, 4, and 5) in regeneration of

the adult newt forelimb (Singer, 1942, 1943, 1945, 1946a, b, 1947a, b;

Singer&Egloff, 1949)which revealed that a threshold number of axons

(later expressed as amount of axoplasm per unit area of newt limb tis-

sue) is required for regeneration, and that the threshold is different at

different PD levels of the limb. The results of these studies were syn-

thesized into the neurotrophic hypothesis (Singer, 1952, 1964, 1965),

which states that the nerves provide a threshold level of trophic fac-

tors essential for the survival andproliferation of blastema cells. Singer

(1943, 1945) and Sidman and Singer (1960) found that, although aug-

mentation of the motor nerve supply in the absence of sensory inner-

vation can support regeneration, under normal circumstaces only the

sensory innervation is capable of meeting the threshold requirement;

the normal motor and sympathetic innervations cannot.

Later molecular studies showed that denervation does not affect

the DNA polymerase activity or enzymes that catalyze synthesis of

nucleotide precursors (Dresden & Moses, 1973; Manson, Tassava,

& Nishikawara, 1976), but drastically reduces the transcription of

all classes of RNA (Bantle & Tassava, 1974; Kelly & Tassava, 1973;

Morzlock & Stocum, 1972) for a reduction in total RNA synthesis of

75% (Dresden, 1969). Expression of genes specific to wound repair or

muscle did not differ in amputated control and denervated limbs, but

the transcription of genes associatedwith proliferationwas reduced in

denervated limbs coincident with the beginning of the growth phase

(Monaghan et al., 2009).

Denervation reduces protein synthesis by 50%−70% via reduc-

tion in transcription without any effect on the amino acid precursor

pool, rate of protein degradation, or rate of translation (Choo, Logan,

& Rathbone, 1978; Dresden, 1969; Lebowitz & Singer, 1970). Neural

and hormonal input to cultured adult newt limb blastemas maintains

DNA and protein synthesis by the blastema cells (Vethamany-Globus,

Globus, & Tomlinson, 1978). The protein profile changes throughout

blastemagrowthanddifferentiation (Dearlove&Stocum,1974; Singer,

1978; Singer & Ilan, 1977; Tsonis, Mescher, & Del-Rio Tsonis, 1992).

Changes in protein synthesis are reflected in the ECM, particularly in
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the synthesis of proteoglycan and collagen-associated glycosaminogly-

cans. Hyaluronate is the major glycosaminoglycan synthesized during

blastema formation in adult newt limbs (Smith, Toole, & Gross, 1975)

and is reduced the most by denervation (Mescher & Munaim, 1986;

Young, Dalley, & Markwald, 1989). Consistent with the scarring of

denervated and amputated newt limbs, collagen fibrillogenesis begins

prematurely (Bryant, Fyfe, & Singer, 1971; Vanrapenbush & Lasalle,

1989). The effect of denervation on a wide array of genes and proteins

revealed by global genomic and proteomic analysis (Looso et al., 2013;

Monaghan et al., 2009; Rao et al., 2009, 2014; Voss et al., 2015) is now

wide open for investigation.

Blastemas that have achieved the medium bud stage become inde-

pendent of the nerve for morphogenesis and differentiation. Their

cells remain nerve-dependent for proliferation, however, and form

miniature regenerates when denervated (Maden, 1981; Powell, 1969;

Schotte & Butler, 1944; Singer & Craven, 1948). The mitotic index

of the blastema is reduced to zero by denervation at any stage of

blastemagrowth (Goldhamer&Tassava, 1987;Maden, 1978b; Tassava,

Bennett, & Zitnik, 1974).

The relationship between regenerating nerve fibers and blastema

cells is a reciprocal one. The regeneration of nerve fibers into the

blastema is dependent on factors produced by the blastema cells.

Regeneration of axons from nerve cell bodies is promoted in vitro

by co-culture of neurons with blastema tissue (Richmond & Pollack,

1983). Several known neurotrophic factors such as brain-derived

neurotrophic factor, neurotrophins 3 and 4, glial-derived neurotrophic

factor, and hepatocyte growth factor/scatter factor can substitute

for blastema tissue in promoting axon outgrowth in vitro (Tonge &

Leclere, 2000). These factors are the ones produced by Schwann cells

that promote neuron survival and axon outgrowth in regenerating

peripheral nerves of mammals, raising the question of whether they

might be produced by the subpopulation of blastema cells derived

from Schwann cells. Regardless, axon outgrowth is significantly more

vigorous with blastema tissue, suggesting that blastema cells produce

other, as yet unidentified, factors that encourage neuron survival and

axon outgrowth. A comparison of genes expressed by axolotl dorsal

root ganglia (DRG) cells in the presence and absence of blastema

cells revealed 27 DRG genes that were differentially expressed in

the presence of blastema cells (Athippozhy, Lehtberg, Monaghan,

Gardiner, & Voss, 2014).

4.2 Role of the AEC in blastema growth

The AEC is equally important for limb regeneration. Transplanting

whole skin over the amputation surface (Chew & Cameron, 1983;

Mescher, 1976), or inserting the ends of amputated limbs or regen-

erates into a pocket made under flank skin (Butler, 1955; Polezhaev

& Faworina, 1935) or into the coelom (Deck, 1955; Goss, 1956a, b)

results in lack of blastema formation. Thornton (1954) noted that the

AEC is always present during blastema growth and patterning and fails

to form in anuran late tadpole limb buds that have lost the ability to

regenerate (Thornton, 1956). Regeneration fails in amputated larval

urodele limbs when the AEC is repeatedly removed (Thornton, 1957)

or its formation is suppressed by UV irradiation (Thornton, 1958).

Contact of the AEC with subjacent blastema cells is crucial for

blastema cell proliferation; interposition of dermis or the formation of

basement membrane between the two inhibits regeneration (Chew &

Cameron, 1983; Kim& Stocum, 1986b; Stocum&Crawford, 1987).

Depriving the growing blastema of the AEC has both similar and

different effects to denervation. Blastema mesenchyme stripped of

its epidermis by chelation and implanted into a dorsal fin tunnel such

that it cannot contact epidermis forms a miniature regenerate but,

unlike denervated blastemas, one that is truncated distally (Stocum &

Dearlove, 1972). Positioning themesenchyme so that its distal tip pro-

trudes fromthe tunnel and is re-coveredby fin epidermis alsoproduces

a miniature regenerate, but one that is complete in the PD axis, as

in denervated limbs. In these experiments, the blastema mesenchyme

is also denervated, but has the opportunity to receive innervation by

nerves of the dorsal fin. Cell proliferation was not directly assessed,

but miniaturization suggests that the AEC plays a role in mitosis. Dis-

tal truncation suggests that it also has a role in PD patterning, but it is

possible that removal of the AEC kills the distal-most blastema cells,

as has been shown for the chick limb bud (Dudley, Ros, & Tabin, 2002;

Rowe & Fallon, 1982). Direct evidence for a mitogenic role of the AEC

is thatDNAsynthesis andmitosis of AEC-free blastemalmesenchymes

cultured in vitro transfilter to dorsal root ganglia or brain neurons are

reduced by a factor of 3−4 (Globus, Vethamany-Globus, & Lee, 1980;

Smith & Globus, 1989). The molecular effects of AEC deprivation on

subjacent blastema cells have not been assessed, but 125 genes that

are highly upregulated in the AEC have been identified by transcript

analysis (Campbell et al., 2011).

4.3 The functional relationship of nerve

and AEC: hypotheses

The fact that limb regeneration is dependent on both nerves and

the AEC suggests a functional relationship between the two. Motor

axons make intimate contact with blastema cells that are probably

myogenic (Lentz, 1967). Singer (1949), Thornton (1954, 1956) and

Salpeter (1965) observed that the AEC was richly innervated by

regenerated sensory axons leading Thornton (1954) to propose that

sensory innervation induces formation of the AEC. This idea was

questioned by Singer, however, because augmenting the number of

motor axons could support regeneration in the absence of sensory

nerves (Sidman & Singer, 1960). Augmentation of motor axons was

achieved by cutting brachial nerves 3, 4, and 5, ablating the spinal gan-

glia, and connecting the cut ends of the nerves to their ventral roots,

allowing motor regeneration through the empty sensory endoneurial

tubes of spinal nerves 3, 4, and 5. The regenerated motor nerves were

randomly distributed throughout the blastema and did not enter the

wound epidermis. Nevertheless, the AEC formed and was maintained,

and regeneration took place normally, confirming that the effect of

the nerve on regeneration was quantitative rather than qualitative.

Thornton (1960b) repeated this experiment on larval Ambystoma

limbs with the same result, leading to the conclusion that there was no

interdependent functional relationship between nerves and AEC for

regeneration (Singer, 1965). The function ofwound epidermis andAEC

was considered to be removal of tissue debris and provision of external
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secretions. Later, Endo, Bryant, and Gardiner (2004) found that an

AEC formed independently of the nerve after creating a wound on an

axolotl limb, but regressed unless it became innervated, indicating that

Thornton was at least partly correct in his view that there is some sort

of dependence of the AEC on innervation.

Three major ideas have been put forward about the nature of the

nerve:AEC functional relationship in promoting blastema cell prolifer-

ation. These are (1) the nerve and AEC provide separate factors with

different roles in the cell cycle; (2) the AEC provides all factors neces-

sary for the cell cycle but is nerve-dependent to express them; (3) the

nerve andAEC express the samemitogen that drives blastema growth.

In all three hypotheses, the effect of the nerve is quantitative, as found

by Singer (1952).

4.4 Nerve and AEC have separate roles in the cell

cycle

In the 1970s, Roy Tassava and his students conducted a broad rang-

ing analysis of DNA synthesis and mitosis by blastema cells that

suggested separate but synergistic roles of nerves and AEC in regen-

eration at the level of the cell cycle (Tassava & McCullough, 1978).

Labeling of amputated limbs deprived of nerves or wound epidermis

with [3H]-thymidine showed that DNA synthesis of nascent blastema

cells is independent of both these tissues, but that in the absence of

either one the labeled cells were arrested in G2 of the cell cycle (Kelly

& Tassava, 1973; Mescher, 1976; Tassava et al., 1974). The cells can be

rescued by re-innervation (Olsen, Barger, & Tassava, 1984), but other-

wise undergo apoptosis and are removed by macrophages (Mescher

et al., 2000; Yun et al., 2015). Coincident with re-innervation of the

AEC, the labeling andmitotic indices of the accumulation blastema rise

as much as 10-fold (Mescher & Tassava, 1976; Loyd & Tassava, 1980).

These increases do not take place in limbs that are either denervated

or deprived of wound epidermis. [3H]-thymidine pulse labeling studies

indicate that the final cycling fraction of blastema cells is 92%−96% in

the regenerating limbs of axolotl larvae and over 90% in those of adult

newts (Goldhamer & Tassava, 1987; Tomlinson, Goldhamer, Barger, &

Tassava, 1985).

Based on these results, Tassava and Mescher (1975) proposed the

hypothesis that injury stimulates blastema cells to enter the cell cycle

and that the AEC maintains the cells in an undifferentiated state that

keeps them in the cell cycle and renders them responsive to mitogenic

signals supplied by the nerve. This idea is consistent with the results of

in vitro transfilter experiments by Globus et al. (1980) and Smith and

Globus (1989), demonstrating that adult newt blastema cells grown

opposite dorsal root ganglia or brain cells fail to undergo mitosis in

the absence of the wound epidermis, withdraw from the cell cycle, and

differentiate as cartilage, whereas in the presence of epidermal cells

and neural tissue they are maintained in an undifferentiated state and

proliferate.

4.5 The AEC is dependent on the nerve to express

blastema cell mitogens

In this hypothesis (Stocum, 2011) the AEC provides the mito-

genic factor(s) for proliferation but requires neurotrophic factor(s)

to express them. This hypothesis is derived from the results of

experiments on limb bud development, aneurogenic limb regenera-

tion, and the rescue of denervated limbs by neurotrophic and AEC

factors.

A reciprocal epithelial:mesenchymal interaction promotes the

growth of amniote embryonic limb buds (Saunders, 1948; Zwilling &

Hansborough, 1956). Briefly, the mesenchyme expresses Fgf10, which

induces and maintains the AER, and the AER expresses Fgf8, which

maintains Fgf10 expression and proliferation of the subjacent mes-

enchyme cells (see Gilbert & Barresi, 2016, for a review). Although an

AER is not present as a morphological entity in embryonic amphibian

limb buds (Sturdee & Connock, 1975), the apical ectoderm/epidermis

has the same outgrowth-promoting function (Balinsky, 1935; Steiner,

1928; Tarin & Sturdee, 1971; Tschumi, 1957). The apical epidermis

of amputated amphibian limb buds, which regenerate readily, is con-

figured into a visible AEC. Yokoyama et al. (2000) demonstrated that

mesenchymal Fgf10 maintains Fgf8 expression by the AEC in regen-

erating Xenopus limb buds, and vice versa. Xenopus limbs lose the

power of regeneration as they differentiate and form a blastema of

fibroblast-like cells (Dent, 1962; Van Stone, 1964). This loss is accom-

panied by a loss of Fgf10 expression by the fibroblastema and loss of

Fgf8 expression by the AEC (Yokoyama et al., 2000) due to changes in

the limb bud cells related to their differentiation (Filoni, Bernardini, &

Cannata, 1991; Sessions & Bryant, 1988). Fgf10-soaked beads placed

on the amputation surface of regeneration-deficient limbs of Xenopus

late tadpoles restore Fgf8 expression in the AEC and digit regenera-

tion, although notmore proximal structures (Yokoyama, Ide, & Tamura,

2001).

The neural requirement for regeneration is imposed on the devel-

oping limb bud only as it becomes innervated at late stages (Fekete

& Brockes, 1987). Urodele limb buds rendered aneurogenic by extir-

pating the neural tube during embryogenesis never acquire nerve

dependence for regeneration (Yntema, 1959a, b), but presumably

remain dependent on the AEC for blastema cell mitosis. Steen and

Thornton (1963) found that sleeves of aneurogenic limb skin of young

larvae packed with [3H]-thymidine-labeled internal tissues of neu-

rogenic larval limbs regenerated, whereas regeneration failed when

the skin of aneurogenic limbs was replaced with skin from innervated

limbs. These results suggest that innervation does not alter the

requirement of blastema cells for mitogens, but rather decreases the

capacity of the AEC to provide them.While it could be argued that the

results reflect dermal aneurogenic versus neurogenic contributions of

blastema cells, young larval limbs do not have a well-developed dermis

(Stearner, 1946), and the blastemas derived from the aneurogenic

skin/neurogenic internal tissues combination contained many labeled

cells, indicating their origin from the transplanted musculoskeletal

tissue.

Nerve dependence/independence can be oscillated back and forth.

Nerve dependence of aneurogenic larval limbs can be instituted

by transplanting them to neurogenic larvae. If the limbs are then

denervated for a period of time, they can regain nerve independence

(Thornton & Thornton, 1970). Even adult newt limbs showed some

capacity for nerve-independent regeneration when maintained in

a denervated condition after grafting them to the back (Singer &
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Mutterperl, 1963). Singer (1965) explained the ability of limb buds

and differentiated aneurogenic limbs to regenerate by postulating

that all their tissues have the capacity to produce the neurotrophic

factor. Production of the factor by these tissues is suppressed as the

limb becomes innervated, but in some cases can be restored under

conditions of denervation.

Reasoning from these facts, a model to explain blastema cell pro-

liferation in both aneurogenic and neurogenic limbs is that the AEC

provides diffusible mitogens, but the expression of these mitogens

becomes dependent on neural factors supplied by the sensory axons

innervating the AEC as the limb differentiates. If this model is cor-

rect, we should be able to define the AEC and nerve factors involved

in this interaction. Candidates for these roles shouldmeet several min-

imal criteria (Brockes, 1984). First, they should be expressed by the

AEC or DRG cell bodies innervating the limb. Further criteria to be an

AECmitogen are expression of the mitogen's receptor in the blastema

mesenchyme, loss of mitogen expression by denervation, ability of the

mitogen to support regeneration of denervated orAEC-deprived limbs

from early blastema formation to digit stages, and expression of the

mitogen by the AEC of regenerating aneurogenic limbs. Neural factors

should be transported from DRG cell bodies along limb sensory nerve

axons to theAECwhere theybind to their receptor, denervation should

prevent blastema cell mitosis by abolishing expression of AEC fac-

tors, and the candidates should support regeneration to digit stages in

denervated limbs.

4.5.1 Candidate AEC factors

An autoradiographic study of [3H]-fucose incorporation into the

blastema of regenerating newt limbs found that silver grains were first

detected over the basal cells of the AEC, followed by their appear-

ance over the subjacent blastema cells, suggesting the synthesis of

a glycoprotein by the AEC that diffused or was transported into the

blastema interior (Chapron, 1974). Histochemical analysis for peri-

odic acid−Schiff positive glycosylated material revealed its intracellu-

lar presence within the blastemal epidermis and extracellularly within

the mesenchymal blastema (Young et al., 1985). Many growth fac-

tors are glycoproteins, several of which are expressed by the AEC

and stimulate blastema cell proliferation in vitro and in vivo. Fgf1,

Fgf2, Fgf8, and the anterior gradient protein (AG) are expressed by

the AEC in vivo (Christensen, Weinstein, & Tassava, 2001, 2002; Han,

An, & Kim, 2001; Kumar & Brockes, 2007). Blastema cells express the

bek (FGFR2) receptor for Fgfs (Poulin & Chiu, 1995; Poulin, Patrie,

Botelho, Tassava, & Chiu, 1993) and the AG receptor Prod1 (Kumar &

Brockes, 2007). Fgf1 elevated the mitotic index of cultured blastema

cells (Albert & Boilly, 1988; Albert, Boilly, Courty, & Barritault, 1987;

Boilly, Cavanaugh, Hondermarck, Bryant, & Bradshaw, 1991), and Fgf2

elevated the mitotic index of blastema cells in amputated limbs cov-

eredby full-thickness skin (Chew&Cameron, 1983). TheonlyAECcan-

didate factors so far reported to be downregulated by denervation and

to substitute for the nerve in supporting the regeneration of dener-

vated limbs to digit stages are Fgf2 (Mullen, Bryant, Torok, Blumberg,

& Gardiner, 1996) and AG (Kumar & Brockes, 2007). Fgf2 was admin-

istered in beads only to late stage blastemas. AG is involved in head

developmentof theXenopusembryoandhasbeen themore thoroughly

investigated.

TheAGprotein is strongly expressed in the Schwann cells insulating

the axons of regenerating newt limbs at 5 and 8 days post-amputation,

when histolysis and initial dedifferentiation is under way. By 10 days

post-amputation, AG expression shifts to the gland cells of the AEC,

coincident with formation of the accumulation blastema. Denervation

abolishes AG expression, indicating that its expression in Schwann

cells and the AEC is induced by axons. The AG gene supports regener-

ation to digit stages when electroporated into denervated newt limbs

5 days post-amputation. Conditioned medium of Cos7 cells trans-

fected with the AG gene stimulates bromodeoxyuridine (BrdU)

incorporation into cultured blastema cells. This incorporation is

blocked by antibodies to Prod1, suggesting that AG acts directly on

blastema cells through Prod1 to stimulate their proliferation (Kumar

& Brockes, 2007). Finally, AG is expressed by the AEC of regenerating

aneurogenic limbs (Kumar, Delgado, Gates, Neville, Forge, & Brockes,

2011). Whether Fgf2 is expressed in the aneurogenic AEC has not

been investigated.

4.5.2 Nerve candidate factors

Factors expressed by DRG neurons that promote blastema cell pro-

liferation in vitro include transferrin (Mescher & Kiffmeyer, 1992;

Mescher, Connell, Hsu, Patel, & Overton, 1997), substance P (Globus

& Alles, 1990; Globus, Smith, & Vethamany-Globus, 1991), and Fgf2

(Mullen et al., 1996). Combinations of Fgf8 and bone morphogenetic

protein (BMP) have also been tested as neurotrophic factors. Both

are expressed in DRG neurons and are detectable in peripheral limb

nerve axons in vivo (Satoh, Makanae, Nishimoto, & Mitogawa, 2016).

Furthermore, they can substitute for the nerve in the outgrowth

of a supernumerary axolotl limb blastema in the Lheureux model

(Makanae,Mitogawa, & Satoh, 2014a).

4.6 The nerve and AEC express the samemitogenic

factor

Glial growth factor 2 (Ggf2, neuregulin 1) (Law, Shannon-Weickert,

Hyde, Kleinman, & Harrison, 2004) is mitogenic for Schwann cells

(Davies, 2000) and was suggested over 30 years ago as a nerve factor

for limb regeneration (Brockes, 1984; Brockes & Kintner, 1986). It is

expressedbyDRGneurons, is present in theblastema, and is decreased

by denervation. A newt clone of Ggf2 was briefly mentioned to rescue

regeneration to digit stages in denervated axolotl limbs when injected

intraperitoneally during blastema formation (Wang, Marchionni, &

Tassava, 2000).

A more detailed study of neuregulin 1 (NRG1) in regenerating

axolotl limbs (Farkas, Freitas, Bryant, Whited, & Monaghan, 2016)

showed that transcripts of nrg1 and its receptors erbb2 and erbb3 are

expressed by the basal cells of the AEC and by 56% of the blastema

mesenchyme cells. Antibody staining revealed expression ofNRG1and

ErbB2 in dorsal root ganglia and peripheral limb nerves. Denervation

of 16-day blastemas decreased the number of nrg1-expressing mes-

enchymal cells by 26%; the effect on nrg1 expression by basal wound

epidermis cells was not reported. Western blotting for NRG1 showed
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a slight drop in intensity in denervated blastemas, and the percent-

age of BrdU+ cells co-localizing with NRG1 was diminished by 20%,

a statistically significant reduction. Inhibition of NRG1/ErbB2 signal-

ing by immersion of animals in mubritinib abolished blastema for-

mation in amputated innervated limbs. Treatment of 16-day inner-

vated blastemas resulted in miniature regenerates, equivalent to the

regenerates obtained by delaying denervation until a well-established

blastemahas formed.NRG1-soaked beads implanted under thewound

epithelium of denervated limbs at 7 days post-amputation induced

blastema formation. Bead implants every 4 days from 19 to 36 days

post-amputation supported regeneration to digit stages, although not

to the same degree as in innervated controls.

These results suggest a synergistic relationship between nerve,

AEC, and blastema cells in which blastema cells autonomously express

NRG1 in the absence of nerve, but at a level that is insufficient for

mitosis. NRG1 from motor neurons would stimulate blastema cells

destined to form Schwann, skeletal, and muscle cells to increase their

own NRG1 expression. Sensory innervation would presumably stimu-

late NRG1 production in the basal cells of the wound epithelium and

AEC and/or promote epidermal cell mitosis. The nerve, the AEC, and

the blastema cells themselvesmay thuswork synergistically to express

a single molecule, NRG1, at a level sufficient for mitosis. This kind

of synergism would easily explain why there is a 10-fold increase in

proliferation once the accumulation blastema becomes innervated. It

would also explain why increasing motor innervation in the absence

of sensory innervation enables complete regeneration, because the

required threshold level of NRG1 could be reached in the absence of

sensory nerves. The nerve addiction for regeneration that arises dur-

ing limb development is thus interpreted as a quantitative increase in

the requirement by blastema cells for NRG1.

Further experiments are required to assess whether (1) dener-

vation abolishes or greatly reduces the expression of NRG1 by the

AEC; (2) knocking out motor innervationmaintains or increases NRG1

expression by the AEC and decreases it by blastema cells; (3) knock-

ing out sensory innervation decreases NRG1 expression by the AEC

and mitosis of epidermal cells; and (4) augmenting motor innervation

in the absence of sensory innervation augments NRG1 expression by

blastema cells. CRISPR knockout and knock-in gene technology may

allow greater precision in exploring the role of the nerve, AEC, and

blastema cells in blastema cell mitosis.

Several other questions remain about the synergistic relationship

between nerve, AEC, and blastema cells that require further research.

(1) Might there be multiple redundant and synergistic circuits com-

posed of different combinations of neural and AEC factors? (2) Canwe

label AEC and neural candidate factors and show that they move into

the blastema and bind to receptors on blastema cells? (3) Are NRG1

and/or Fgf2 expressed in limb buds or the blastemas of amputated

aneurogenic limbs? (4) If they are not, does exogenous administration

of these factors render aneurogenic limbs nerve-dependent?

Another relevant question is whether the epithelial:mesenchymal

interaction that characterizes urodele limb bud development and

aneurogenic limb regeneration ismaintained in neurogenic limb regen-

eration or is completely replaced by the nerve:AEC synergy. Does

the blastema mesenchyme produce a non-neural factor necessary to

maintain the AEC in addition to neural factors, as was postulated by

Meinhardt (1982)? Growth-factor-mediated epithelial:mesenchymal

interaction in urodele limb bud development and regenerating

aneurogenic limbs has not been sufficiently investigated, although

Fgf8 and Fgf10 are both expressed in urodele limb buds and

regeneration blastemas of neurogenic limbs (Christensen, Weinstein,

& Tassava, 2001; Han et al., 2001), and the expression of AG in

aneurogenic limbs suggests that AG might be part of an epithe-

lial:mesenchymal interaction in urodele limb bud development.

4.7 Interaction between positionally disparate

cells—role of Shh and Fgf8

Even in the presence of nerves and the AEC, blastema cells fail to

undergo mitosis unless their transverse axial positional identities are

sufficiently different to detect a discontinuity in the normal neighbor

landscape. This was shown by experiments in which the normal asym-

metryof newt limb skinwasmade symmetrical by90◦ rotationof a nar-

row longitudinal strip of skin cut from one quadrant, grafting it around

the circumference of an irradiated limb, and then amputating through

the strip (Lheureux, 1975). The result was the same kind of regener-

ative failure seen after denervation or deprivation of wound epider-

mis. Normal regeneration ensued, however, after amputation through

shorter longitudinal skin strips representing each quadrant that were

rotated and grafted to each quadrant of the underlying tissue (Fig. 4A).

The limb bud, which in most tetrapod species develops in a pos-

terior to anterior direction, has a posterior patch of mesenchyme

called the zone of polarizing activity (Fallon &Crosby, 1975;MacCabe,

Gasseling, & Saunders, 1973) that is the source of a posterior to

anterior gradient of the sonic hedgehog (Shh) protein (Harfe et al.,

2004; Riddle, Johnson, Laufer, & Tabin, 1993; Tickle, 2006). Xenopus

limbs, like other tetrapod limbs, develop in posterior to anterior order

(Keenan & Beck, 2016; Stopper & Wagner, 2005), and contain a pos-

terior mesenchymal polarizing zone expressing Shh (Cameron & Fal-

lon, 1977; Endo, Yokoyama, Tamura, & Ide, 1997). In these limb buds,

the shh enhancer is hypomethylated and shh is expressed, but becomes

hypermethylated in late tadpole limbs with loss of shh expression,

which is correlated with regeneration of only a cartilaginous spike

(Yakushiji et al., 2007). Treatment of amputated froglet limbs with an

agonist of Hedgehog signaling, the synthetic small molecule Hh-Ag,

induced activation of target genes of Shh and the formation of multi-

ple cartilaginous structures instead of a single spike (Yakushiji, Suzuki,

Satoh, Ide, & Tamura, 2009). These results suggest that Shh expres-

sion is necessary for froglet limb regeneration (Yakushiji, Yokoyama, &

Tamura, 2009).

By contrast, the skeletal elements of urodele limb buds and

blastemas differentiate in an anterior to posterior order. Neverthe-

less, Shh is expressed in a patch of posterior mesenchyme (Imokawa &

Yoshizato, 1997; Torok, Gardiner, Izpisua Belmonte, & Bryant, 1999),

while Fgf8 is expressed in the anterior mesenchyme and the basal

cells of the AEC (Han et al., 2001). Fgf8 is associated with ante-

rior patterning of the blastema during limb regeneration in Xenopus

(Christen& Slack, 1997). Transfection of shh into anterior blastema tis-

sue of the axolotl limb by vaccinia virus results in the regeneration of
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F IGURE 4 (A) Experiment showing that a longitudinal strip of unirradiated skin from one quadrant (here anterior) rotated 90o and grafted as a
cuff around the circumference of the amputated internal tissues of an irradiated limb (left) fails to regenerate, but if smaller unirradiated longitu-
dinal strips from each quadrant of the limb (A, anterior; P, posterior; D, dorsal; V, ventral) are rotated and grafted (right), the limb regenerates. (B)
Experiment based on Lheureux's model (1977) showing that a baculovirus construct containing the fgf8 gene can substitute for anterior skin and a
baculovirus construct containing the shh gene can substitute for posterior skin in evoking supernumerary limb formation at posterior and anterior
wound sites on the stylopodium, respectively, to which a nerve has been deviated. S, supernumerary limb

supernumerarydigits, butnotmoreproximal structures (Roy,Gardiner,

& Bryant, 2000).

The disparities of developmental polarity between the AP axes of

urodele and other limb buds/regeneration blastemas, coupled with

universal expression of shh in a posterior patch of polarizing mes-

enchyme, suggests that Shh may have a role in regeneration other

than AP patterning. Shh does not appear to be necessary for stylopo-

dial or zeugopodial AP patterning in the chick limb bud (Leitingtung,

Dahn, Li, Fallon, & Chiang, 2002), but has been implicated late in limb

bud development in defining digit number and identity by regulating

BMP expression in the prospective chick autopodium (Dahn & Fallon,

2000; Drossopoulou et al., 2000). In regenerating axolotl limbs, inhibi-

tion of Shh signalingwith cyclopamine resulted in regenerates contain-

ing all the segments distal to the amputation plane, but digital develop-

mentwas incomplete (Roy&Gardiner, 2000), andBMPexpressionwas

found to be independent of Shh signaling (Guimond et al., 2010). Thus

Shh in limb buds and regenerating limbs appears to have a patterning

role only in digital development.

Other experiments suggest a role for SHH and Fgf8 in mito-

sis and distalization of blastema cells. Lheureux (1977) devised

an experimental system that demonstrated a synergistic effect of

nerves and interaction between different APDV positional identities

of skin fibroblasts in the amputated adult newt limb. He made a

wound on the anterior or posterior side, or dorsal and ventral side

of an adult newt stylopodium, deviated a nerve to the wound site,

and juxtaposed a graft of skin from the opposite side of the limb

to the skin of the wound. By themselves, nerve deviation or juxta-

posing opposite positional identities resulted in the formation of

blastema cells that failed to persist and divide. Together, however,

they stimulated the formation of a blastema that grew and underwent

morphogenesis into a supernumerary limb. Lheureux's experimental

system was later used to achieve a similar result from the larval

axolotl stylopodium under the name “accessory limb model” (Endo

et al., 2004). These experiments also showed that the AEC forms

autonomously after wounding, but requires the nerve for subsequent

maintenance.

The Lheureux model was used to show that Shh can substitute for

posterior skin and Fgf8 can substitute for anterior skin to evoke a

supernumerary limb (Nacu, Gromberg, Oliveira, Dreschel, & Tanaka,

2016). Using a baculovirus vector system they injected shh under the

anterior skin of the axolotl stylopodium and Fgf8 under the poste-

rior skin (Fig. 4B). A wound was then created in the skin and a nerve

deviated to the site. The gene transfections substituted for cells of

opposite positional identity. Immersion of animals with anterior skin

wounds in a solution of smoothened agonist (SAG) to activate Shh

signaling also produced supernumerary limbs, whereas the FGFR sig-

naling inhibitor PD173074 blocked SAG-induced supernumerary for-

mation, showing that Fgf8 signaling was essential to promote Shh

expression.

Since Shh is not required for patterning of skeletal elements proxi-

mal to the autopodium, these results suggest that the primary effect of

Shh and Fgf8 on the AP pattern in the regenerating limb is not to act as
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morphogens to assign positional identity, but to promote blastema cell

proliferation. Consistent with this idea, the effect of Shh on AP axial

structure proximal to the autopodium in the chick andmouse limb bud

seems to be primarily on cell number, since knockout experiments do

not eliminate stylopodial and zeugopodial pattern (Leitingtung et al.,

2002). Studies on regenerating newt limbs in which Shh signaling was

inhibited by cyclopamine indicated that AP patterning is dependent

on cell proliferation to expand the blastema (Singh, Doyle, Weaver,

Koyano-Nakagawa, & Garry, 2012). A major unanswered question is

how neural and AEC activity is integrated with the requirement for

positional disparity to stimulate mitosis and link cell proliferation to

distalization, a subject that will be taken up in the section on pattern

formation.

5 PATTERN FORMATION IN THE

BLASTEMA

Pattern formation in a regenerating limb is the process of restoring a

complete three-dimensional normal neighbor map of positional iden-

tities from the progeny of cells derived from the level of amputation

(Mittenthal, 1981). Cells differentiate in accordance with their new

positional specifications to restore the original structure of the limb.

The mechanisms of pattern formation in regeneration are still largely

a mystery, but we have gained insights via studies of gene expres-

sion associated with the different stages of regeneration, and grafting

experiments inwhich the spatial relationships of limb and blastema tis-

sues are altered.

5.1 Genes associatedwith pattern specification

The axial patterns of regenerating tissues are set up during blastema

formation and growth, and are associated with the expression of a

number of genes that are also expressed during limb bud development.

Several homeobox genes encoding transcription factors are expressed

in growing blastemas derived from the proximal stylopodium

(Gardiner & Bryant, 1996; Gardiner, Blumberg, Komine, & Bryant,

1995; Geraudie & Ferretti, 1998). Forelimb identity is associated

with the tbx5 gene and hindlimb identity with the tbx4 gene (Simon

et al., 1997). The expression pattern of Hoxa gene combinations (Hoxa

codes) is considered to indicate the order of specification of the new

positional identities representing the PD axis of the limb. Hoxa-9,

Hoxa11, and Hoxa-13 are expressed serially in proximal to distal tem-

poral and spatial order in the mesenchyme of the blastema (Roensch,

Tazaki, Chara, & Tanaka, 2013).Hoxa9 is expressed first throughout the

blastema,Hoxa11 next in the prospective zeugopodial region, andHoxa

13 last in the prospective autopodial region.Meis 1 and 2 are two other

genes expressed preferentially in the prospective stylopodial region.

These genes are upregulated in autopodial blastemas proximalized

by RA, while Hoxa13 is downregulated, and autopodial blastemas are

also proximalized by overexpression of Meis 2 (Mercader, Tanaka,

& Torres, 2005). These observations implicate Hoxa9/Meis 1/2 in

specfying the PD pattern of the stylopodium, Hoxa9/11/Meis2 the

zeugopodium and Hoxa9/13 the autopodium. Hoxd-8, -10 and -11 are

associated with AP patterning in limb buds, and are also expressed in

the regeneration blastema (Torok, Gardiner, Shubin, & Bryant, 1998).

Hoxd-10 expression is upregulated by RA, suggesting that it might play

a role in maintaining posterior positional identity.

5.2 Transverse axial reversal experiments

andmodels of pattern formation

5.2.1 AP or DV reversal

Reversal of either the AP or DV axis evokes a maximum of two super-

numerary limbs where graft tissue confronts host tissue on the ante-

rior and posterior (AP reversal) sides of the limb, or the dorsal and ven-

tral sides (DV reversal). Supernumeraries form most frequently after

AP reversal and are mirror imaged to the primary regenerate devel-

oped from the graft (i.e., they have host limb handedness). Supernu-

meraries form less frequently after DV reversal of early or medium

bud blastemas or limb bud tips, but at high frequency after DV reversal

of palette stage blastemas (Bryant & Iten, 1976; Iten & Bryant, 1975;

Maden, 1980a; Maden & Turner, 1978; Tank, 1978; Thoms & Fallon,

1980;Wallace &Watson 1979).

Grafts between differently marked (ploidy, pigmentation)

blastemas and limb stumps have shown that host and graft can

make equal or variable cellular contributions to the supernumerary

(Muneoka & Bryant, 1984; Stocum, 1982; Thoms & Fallon, 1980).

There is probably some mixing across the boundary of the two con-

tributions, since regenerates derived from surgically constructed

asymmetric limbs that are one half triploid revealed triploid cell

migration for a short distance across the midline (Tank, Connelly, and

Bookstein, 1985).

5.2.2 APDV reversal

The results of reversing the AP and DV axes simultaneously by 180o

inversion of the blastema on its limb stump are more complex. Super-

numeraries can be evoked by as little as 20o rotation, and the fre-

quencyof cases forming them increaseswith the angle of rotationup to

amaximumat180o.Up to three supernumeraries canbe formed simul-

taneously whose loci and handedness are variable (Maden & Turner,

1978; Tank, 1981; Turner, 1981; Wallace, 1978; Wallace & Watson,

1979).

Supernumerary limbs of high complexity also arise after 180o rota-

tionof skin andmuscles, or cross-transplantofmuscles andamputation

through the grafted region (Carlson, 1974, 1975a, b), as well as after

wounding unamputated limbs coupled with nerve deviation, or follow-

ing implants of carcinogens or non-limb tissues. Presumably themech-

anisms underlying the development of these supernumeraries involve

the same kinds of interactions between fibroblasts of differing posi-

tional identities as those operating after blastema axial reversals.

5.2.3 Models of pattern formation

Two prominent models of blastema patterning have been proposed

based on how well they predict the number, location, and handed-

ness of these supernumeraries. These are the polar coordinate model

(Bryant, French, & Bryant, 1981; French, Bryant, & Bryant, 1976)

(Fig. 5A) and the boundarymodel (Meinhardt, 1983a) (Fig. 5B).
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F IGURE 5 Supernumerary formation. (A) Polar coordinate model. Red, stump; yellow, blastema. Left, normal regeneration. Circumferential
fibroblasts interact centripetally (black arrows) to initiate regenerative outgrowth (green arrow). Right, reversal of the blastema AP axis allows
interactions between anterior and posterior halves of stump and graft tissues (DPV/DAV, DAV/DPV) to regenerate two supernumerary limbs with
stump handedness (shorter green arrows); the graft develops (longer green arrow) with the handedness of origin. (B) Boundary model. Left, nor-
mal regeneration. Yellow circle, stump; blue circle, blastema. Interaction between cells at a posteriorly located intersection between AP and DV
boundaries triggers the production of a morphogen (star) that initiates regeneration. Right, Reversal of the blastema AP axis creates supernumer-
ary loci of morphogen production (yellow circles) on the anterior and posterior sides of the limb. The primary limb (longer green arrow) has graft
handedness and the two supernumerary limbs (shorter green arrows) have stump handedness

The polar coordinate model is an abstract model that assigns

dermal fibroblasts angular and radial coordinates representing their

position. The angular value represents their position on the circum-

ference (often illustrated as a series of “clock face” numbers) and

the radial value represents their position on the PD axis. Following

amputation and histolysis, blastema cells having the value of their PD

level of origin migrate centripetally from different positions on the

limb circumference (Gardiner,Muneoka, &Bryant, 1986) anduse short

range interactions to intercalate a complete cross-section of APDV

identities which adopt the next distal PD value. Beryllium treatment of

amputated limbs induces pattern abnormalities by interferingwith the

migration and interaction of blastema cells derived from different cir-

cumferential positions on the skin (Cook & Seifert, 2016). Successive

rounds of migration and intercalation after amputation restore the

normal APDV and PD nearest neighbor map. Confrontation of cells at

APorDV junctions after axial reversal evokes short arc intercalation of

a supernumerary set of circumferential values that drive the formation

of an accessory blastema (Bryant et al., 1981; French et al., 1976). The

model correctly predicts the number, location, and handedness of the

supernumerary limbs formed after AP or DV reversal of the blastema.

The boundary model (Meinhardt, 1983a) postulates four structural

domains differing in positional identity within the cross-section of the

amputation surface. Large anterodorsal and anteroventral domains

confront smaller posterodorsal and posteroventral domains. The DV

boundary evenly divides dorsal and ventral, whereas the AP bound-

ary is located more posteriorly. Where these boundaries intersect,

interactions take place that induce the expression of a diffusable mor-

phogen(s). Itmight be presumed that this is Shh andFgf8 but, as argued

earlier, these signals more probably mediate mitosis and distalization,

with a direct patterning effect of Shh only on the autopodium. Possible

mechanisms for generation of the APDV pattern and distalization are

discussed later.

The boundary model makes exactly the same predictions as the

polar coordinate model with regard to supernumeraries generated by

AP or DV axial reversal, because reversal of either the AP or DV axis

creates new sets of intersecting AP and DV boundaries. Following

reversal of the blastema AP axis, two zones of intersecting boundaries

are established on anterior and posterior sides of the limb in addition

to the original (primary) set; supernumeraries can now arise from both

locations via mitosis and distalization.

After APDV axial reversal, the polar coordinatemodel predicts that

two anatomically normal supernumeraries will arise, one posterodor-

sally and one anteroventrally; one of these will have stump handed-

ness and the other graft handedness (Bryant & Iten, 1976). These loca-

tions are dictated by the fact that they are the only ones at which

APDV positional identities can intercalate a complete transverse

pattern. However, three other structural classes are also produced:

mirror imaged (double dorsal or double ventral), part normal/part
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F IGURE 6 Regeneration of anterior and posterior half and double half stylopodia and zeugopodia of axolotl forelimbs. Stylopodium and zeu-
gopodium, blue; carpals, red; digits, green. (A) Half limbs. Posterior and anterior stylopodial halves exhibit non-equivalent regeneration, with pos-
terior halves regeneratingmuchmore than anterior halves, whereas regeneration of posterior and anterior half zeugopodia is more equivalent. (B)
Double half limbs. A similar non-equivalence is exhibited by double anterior stylopodia and zeugopodia

mirror imaged, and part normal/part inverted (mixed-handed) limbs

(Maden, 1980a; Maden & Mustafa, 1982a; Papageorgiou & Holder,

1983). These classes arenotpredictableby thepolar coordinatemodel,

but the boundary model could correctly predict most of them (Maden,

1983).

5.3 Regeneration of half and double half limbs

The results of amputating half (Fig. 6A) and double half (Fig. 6B)

limb constructs have revealed non-equivalencies in regenerative

potential between limb halves that give insights into their rel-

ative contributions to the blastema.and their interactions during

regeneration.

5.3.1 Half limbs

The creation of half stylopodia by irradiation or surgical deletion has

shown that the posterior half of the stylopodium has the potential to

regenerate a whole limb, whereas the anterior half is able to regener-

ate an anterior half zeugopodium. The posterior halfmost often regen-

erates all of the digits, whereas only the anterior-most digit is regen-

erated by the anterior half (Stocum, 1978; Wigmore & Holder, 1985,

1986). Dorsal and ventral half stylopodia regenerate with the normal

AP pattern and number of digits, but are deficient in ventral and dor-

sal muscle, respectively (Maden, 1979a, b; Wigmore & Holder, 1986).

Posterior half and anterior half zeugopodia of forelimbs each regener-

ate their half of the zeugopodium plus half the digits (Goss, 1957a, b;

Stinson, 1963, 1964a, b, c). Dorsal and ventral half forelimb zeugopo-

dia regenerate limbs normal in the AP axis, but deficient in ventral and

dorsal muscle, respectively (Wigmore, 1986).

5.3.2 Double half limbs

Double anterior or posterior half zeugopodia are made by splitting

the left and right limb between the two zeugopodial skeletal ele-

ments and exchanging the posterior and anterior halves. Double ante-

rior, posterior, dorsal and ventral stylopodia, as well as double dor-

sal and ventral zeugopodia, are made by grafting together the skin

and muscle from the same halves of right and left limbs, because

splitting skeletal elements in the AP and DV planes of the sty-

lopodium and DV plane of the zeugopodium is not practical. The pres-

ence of asymmetric skeletal elements in the construct does not mat-

ter, however, since the skeletal elements are derived from dermal

fibroblasts.

Amputated double anterior stylopodia regenerate only a symmet-

rical tapered cone of cartilage, whereas double posterior stylopo-

dia regenerate double posterior limbs with a symmetrical distal sty-

lopodium, two ulnae or fibulae and six (forelimb) to eight (hindlimb)

digits, with some fusion of structure in the midline (Bryant, 1976;

Bryant & Baca, 1978; Holder, Tank, & Bryant, 1980; Krasner & Bryant,

1980; Stocum, 1978; Tank, 1979). Double dorsal and double ventral

stylopodia regenerate double dorsal and double ventral limbs, respec-

tively, including symmetricalmuscle patterns (Burton,Holder, & Jesani,

1986; Ludolph, Cameron, & Stocum, 1990). Double anterior zeugopo-

dia regenerate two radii or tibias that converge distally, one to two

carpals or tarsals and a single symmetrical digit, in contrast to double

posterior zeugopodiawhich regenerate a double ulna or fibula and two

symmetrical sets of posterior digits (Bryant&Baca, 1978;Holder et al.,

1980; Krasner & Bryant, 1980; Stocum, 1978).

Thepolar coordinatemodel explains thedifferences in regeneration

of digit number between anterior versus posterior half stylopodia and
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between double anterior and double posterior stylopodia by assigning

more circumferential positional identities to the posterior half of the

limb. As a result of fewer identities, successive rounds of circumferen-

tial interactions in anterior half or double anterior stylopodia quickly

converge to a uniform anterior identity, halting distalization at a sty-

lopodial level (Bryant et al., 1981). This would be akin to the Lheureux

experiment providing irradiated limbs with only anterior skin in their

circumference so that any positional difference is insufficient to main-

tain regeneration. Since fewer PD structures have to be regenerated in

double anterior zeugopodia, a single symmetrical digit can be regener-

ated under these circumstances.

The boundary model explains the regeneration of only a single digit

by the anterior half and the pattern convergence of double anterior

stylopodia and zeugopodia by the lack of a posterior AP boundary.

This boundary would be present in posterior half and double poste-

rior limbs. The fact that there is regenerationof anterior half stylopodia

and zeugopodia, and double half anterior zeugopodia, might be due to

an autonomous regenerative capacity of anterior limb tissue. Evidence

for this possibility is that exogenous Fgf8 can evoke single digit forma-

tion fromanterior limb tissue in the Lheureuxmodel (Nacuet al., 2016).

The regeneration of dorsal and ventral half limbs and double dorsal

and ventral limbs is explained by the boundary model as well, since

these constructs would contain the posteriorly located AP boundary.

There is no convergence of positional identity in the DV axis, or, if

there is, it has no effect on distalization, suggesting that a DV bound-

ary either does not exist or is unimportant to either AP or DV pattern-

ing. DV patterning might also be achieved by a mechanism different

from that of AP patterning; the results of experiments with the Xeno-

pus limb bud indicate that asymmetric expression of DV homeobox

genes, particularly Lmx, is instrumental in patterning theDV axis of the

blastema (Matsuda, Yokoyama, Endo, Tamura, & Ide, 2001; Shimokawa,

Yasutaka, Kominami, & Shinohara, 2013).

Interestingly, thehealing timeallowedbetween creatingdouble half

stylopodia and amputation is a major factor in their ability to regen-

erate. Double anterior stylopodia fail to regenerate regardless of the

length of time elapsed between making the construct and amputa-

tion. Double posterior stylopodia, however, lose regenerative capac-

ity in proportion to healing time. Double posterior hindlimb stylopo-

dia of small (60−80mm) axolotl and Ambystoma tigrinum larvae healed

for 10−14 days regenerated an average of 2.13 fibulae, 9.25 tarsals,

and 6.63 toes, whereas after a 32-day healing period they regenerated

an average of 1.33 fibulae, 5.33 tarsals, and 3.00 toes (Stocum, 1978).

Therewas no effect of healing time on either double anterior or double

posterior zeugopodia. Krasner and Bryant (1980) also did not detect

anyeffect of healing timeondoubleposterior zeugopodiaof adult newt

limbs. In a more detailed study of the effect of healing time on some-

what larger axolotl larvae, regenerative capacity of double posterior

stylopodia decreased rapidly to near zero from 5 to 30 days of healing

time (Tank & Holder, 1978), whereas amputating the constructs at the

same time they were made resulted in the regeneration of symmetri-

cal double posterior limbs (Holder et al., 1980). Secondary and tertiary

amputations of these regenerates resulted in expanded digit numbers.

So far, there has been no satisfactory explanation as to why healing

time or age has these effects.

5.4 Skin fibroblasts play themajor role

in regenerate patterning

Goss (1957b) showed that anterior or posterior half zeugopodia regen-

erated half limbs, but regenerated complete limbs after removal of

one half of the internal limb tissues while retaining a full circumfer-

ence of skin. Wigmore and Holder (1986) replaced half the limb skin

of the stylopodium or zeugopodium with head skin, which does not

support limb regeneration. Stylopodia with their posterior half skin

replaced with head skin behaved like anterior half limbs, regenerat-

ing a high proportion of single anterior skeletal elements. Replacement

of anterior, dorsal, and ventral half skin of stylopodia with head skin

resulted in only minor defects in skeletal pattern, but there were ven-

tral muscle deficiencies after replacement of dorsal and ventral half

skin. No defects were observed after replacement of any zeugopodial

half circumference of limb skin with head skin. Maden and Mustafa

(1982b) performed a series of experiments in which the skin wasmade

symmetrical with respect to the internal tissues of the limb. The fre-

quencyof symmetrical regenerates in stylopodial and zeugopodial con-

structs with symmetrical skin on normal internal tissues was highest

with double posterior skin (49%), followed by double dorsal skin (28%),

double anterior skin (18%), and least (7%) with double ventral skin.

These results suggest that posterior and dorsal skin fibroblasts are

responsible for most of the regeneration potential of the limb (Bryant,

Gardiner, & Muneoka, 1987; Holder, 1989). Theoretically, since

the regenerate cartilage is derived by transdifferentiation of der-

mal fibroblasts, the cartilage in these double dorsal and ventral

regenerates should be symmetrical as well.

5.5 Retinoid-treated normal, half, and double half

limbs

5.5.1 Retinoid treatment of normal amputated limbs

Retinoids are able to reprogram the positional identity of blastema

cells, as first discovered in the 1970s by Niazi and colleagues in regen-

erating toad tadpole limbs (see Niazi, 1996, for a review). Retinol

palmitate mixed into the water caused the formation of multiple

regeneratesproximalized in thePDaxis. Twoothermethodsof retinoid

delivery have also been used: implanting a matrix containing the

retinoid at the base of the developing blastema (Keeble & Maden,

1989) and intraperitoneal injection of the retinoid into the body cav-

ity (Thoms & Stocum, 1984). In urodeles, retinoids do not cause mul-

tiple limb formation, but when administered during blastema forma-

tion do proximalize the blastema cells so that a blastema derived from

the distal zeugopodium will serially duplicate more proximal struc-

tures from that level in a dose-dependent manner (Maden, 1982a;

Niazi, Pescetelli, & Stocum, 1985; Thoms & Stocum, 1984) (Fig. 7A).

The effect is local to cells at the amputation level. Distal migration of

cells from proximal levels of the limb was ruled out by the fact that

serial duplication of proximal structures is observed in regenerates

derived from RA-treated PD reversed limbs (Wallace &Maden, 1984).

Retinoids work by entering cells and binding to a cellular retinoic

acid binding protein (CRABP) (Keeble & Maden, 1989; McCormick,

Shubeita, & Stocum, 1988), which translocates them to the nucleus
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F IGURE 7 RA-treated amputated normal limbs, anterior half, dorsal half, double anterior half and double dorsal half limbs with retinoic acid.
(A) Normal limb. Left to right, increasing dose of RA after amputation through the distal radius/ulna. r = radius, u = ulna, h = humerus; g = girdle.
line = level of amputation. Color photo shows RA-induced serial PD duplication of hind limb segments after amputation through the distal zeu-
gopodium (Z). G, S, Z indicate the duplicated girdle, stylopodium, and zeugopodium/autopodium. (B) Regeneration from RA-treated anterior half
zeugopodia grafted to the orbit. AP/DV complete, proximalized limbs were regenerated. (C) Regeneration of mirror-image limb from RA-treated
double anterior zeugopodia. A proximalized supernumerary limb (S) arosewhere tissue of the grafted anterior halfmet posterior tissue. (D) Section
through a regenerated RA-treated dorsal half zeugopodium at the level of the distal metacarpals. RA proximalizes these regenerates and ventral-
izes positional identity, as shown by the normal pattern of extensor muscles on the dorsal side (d) and flexor muscles on the ventral side (v). (E)
RA-treated double dorsal half zeugopodium. One half was fore limb, the other half was hind limb. A fore limb (FL) was regenerated by the fore-
limb half and a hind limb (HL) by the hindlimb half. Numbers indicate digits. (F) Cross-section through another such specimen showing that both
the forelimb and hind limb regenerated normal DV muscle patterns. After Thoms and Stocum (1984), Kim and Stocum (1986a), and Ludolph et al.
(1990)

where they bind to and activate retinoic acid receptors (RARs). These

receptors belong to the steroid hormone/thyroid hormone nuclear

binding superfamily. In turn, the RARs bind to retinoic acid response

elements in the regulatory regions of target genes to alter transcrip-

tional activity (Allenby et al., 1993; DiMasi et al., 2015).

Using retinoid-impregnated silastin blocks implantedunder the skin

at the base of the developing blastema, Keeble and Maden (1989)

surveyed the effectiveness of several natural and synthetic (derived

from RA) retinoids to proximalize blastema cells. Their general find-

ing was that alterations of the polar end group of RA to produce

esters or the alcohol or aldehyde forms of RA abolish the ability

to proximalize positional identity, whereas alterations of the ring or

side chain to produce the derivatives TTNPB and arotinoid greatly

enhance this ability. TTNPB was 100×more effective than RA at pro-

ducing serial PD duplications (Keeble & Maden, 1989) and arotinoid

delivered intraperitoneally was 50× more effective (Kim & Stocum,

1986c). These retinoids are also more toxic, however, and thus RA

has become the tool of choice to reprogram positional identity. There

was no consistent effect of RA, TTNPB, or arotinoid on AP or DV pat-

tern except for occasional extra spikes of cartilage although, in one

case of a regenerating hindlimb treated with arotinoid by intraperi-

toneal injection, two PD-duplicated limbs mirror imaged in the DV

axis were regenerated (Kim & Stocum, 1986c). Administration of RA

at later stages of regeneration results in abnormalities or inhibition of

regeneration (Niazi, 1996; Niazi, Pescetelli, & Stocum, 1985). Interest-

ingly, although paedomorphic axolotls are induced to metamorphose

by injecting them with thyroxine, animals co-injected with thyroxine

and RA do not metamorphose and their amputated zeugopodia are

more strongly proximalized than by an equivalent dose of RA, suggest-

ing that RA and thyroxine exert their effects through similar and per-

haps competitive pathways (Crawford &Vincente, 1998).

The fact that RA can proximalize positional identities of blastema

cells argues that it might be an important component of the molecular

mechanism that patterns the blastema. This idea is supported by

several lines of evidence. First, RA is present in posterior–anterior and

distal to proximal gradients within the blastema, which is what might

be expected given that RA proximalizes distal blastema cells (Scadding

& Maden, 1994) and simultaneously posteriorizes them (see later).

Second, CRABP levels are significantly higher in the blastemas of

RA-treated limbs (Keeble & Maden, 1986). Third, the inhibitor of

RA synthesis, disulfiram, has detrimental effects on formation of

the wound epidermis and inhibits limb regeneration when admin-

istered at very early stages of limb regeneration (Lee, Ju, & Kim,

2012). Fourth, RA-induced proximalization activates a transgenic

RA reporter gene in the fibroblast contribution to the blastema

(Monaghan & Maden, 2012), exactly what is predicted from the

evidence that the positional identities of fibroblasts are the basis for

the rule of distal transformation (Nacu et al., 2013). Fifth, five RA

receptor isoforms (RARs) have been detected in the blastema: 𝛼1, 2,

𝛿1a, b and 𝛿2 (Maden, 1997, 1998). The functions of three of these

isoforms have been determined by constructing chimeric RARs with

ligand binding domains substituted with the ligand binding domain

of a thyroid hormone (TH) receptor. The chimeric receptors and a

retinoic acid response element–reporter gene construct were then
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cotransfected into cultured blastema cells, activating target genes.

In this way, it was shown that the 𝛼1 receptor mediates RA-induced

growth inhibition, the 𝛿1 receptor mediates changes in the secretory

properties of the epidermis (Ragsdale, Hill, Gates, & Brockes, 1992;

Hill, Ragsdale, & Brockes, 1993; Schilthuis, Gann, & Brockes, 1993)

and the 𝛿2 receptor is responsible for proximalization of positional

identity (Pecorino, Entwhistle, & Brockes, 1996). Sixth, inhibition

of the 𝛿2 receptor at medium bud−late bud stages of axolotl limb

regeneration aborts regeneration, whereas other RAR antagonists

have no effect (Del-Rincon & Scadding, 2002). Seventh, transcriptomic

analysis indicates that RA upregulates proximal Hoxa and Meis gene

expression as well as 𝛿1 receptor transcripts and silences distal genes

in regenerating axolotl limbs, whereas treatment of early blastemas

with a selective agonist that activates the 𝛿2 receptor results in

proximalization and serial duplication of limb structure (Nguyen et al.,

2017).

The effects of RA on positional identity in the AP and DV axes were

revealed when zeugopodial halves were amputated and treated with

RA at the same dose that causes maximum proximalization of pattern

in normal limbs. Distally amputated control anterior and dorsal half

zeugopodia regenerated as half limbs. By contrast, the blastemas of

RA-treatedanterior anddorsal half zeugopodia completed the comple-

mentary posterior and ventral half patterns, respectively, while simul-

taneously duplicating stump structures in the PD axis (Fig. 7B, C) (Kim

& Stocum, 1986a; Ludolph et al., 1990; Stocum & Thoms, 1984). The

regenerates of RA-treated anterior or ventral half zeugopodia are thus

identical to those of amputated normal zeugopodia treated with RA.

Even more strikingly, distally amputated double anterior and dou-

ble dorsal zeugopodia treated with RA at a dose that proximalizes the

normal limb to the level of the girdle produced two mirror-imaged

regenerates with normal transverse pattern and duplicated in the PD

axis (Fig. 7D), whereas RA-treated posterior and ventral half limbs

and double posterior and double ventral limbs failed to regenerate

(Kim & Stocum, 1986a; Ludolph et al., 1990). These results showed

that RA not only proximalizes positional identity of blastema cells in

amputated normal limbs, it simultaneously posteriorizes and ventral-

izes positional identity. Furthermore, ventralization by RA has been

shown in the Lheureux model by the formation of a supernumerary

limb after grafting RA-treated dorsal skin to a dorsal wound with

a deviated nerve (Satoh & Makanae, 2014). In half or double half

limbs treated with RA, the results are explained by posteriorized and

ventralized blastema cells coming into contact with adjacent anterior

or dorsal stump cells that are unaffected by RA, leading to the forma-

tion of what are essentially two “supernumerary” limbs, as would be

predicted by both the polar coordinate and the boundary model. The

fact that amputated normal limbs proximalized to the level of the girdle

arise from the anterodorsal quadrant of the distal zeugopodial stump

is consistent with this conclusion, because this is the only location at

which cells with A, P, D, and V positional identities and an AP bound-

ary are available to interact. SinceRA simultaneously posteriorizes and

ventralizes positional identity, wemay speculate that these effects are

alsomediated by the 𝛿1 receptor.

RA-induced proximalization and posteriorization of positional iden-

tity after amputation through the distal end of double anterior zeu-

gopodia is dose-dependent, as indicated by the increasing degree of

AP/PD duplication with higher RA dose per gram of body weight

(Monkmeyer, Ludolph, Cameron, & Stocum, 1992). Control double

anterior regenerates formed an average of two digits. The lowest dose

of RA used (20 𝜇g) resulted in two mirror-image autopodia with a

total average digit number of 4.5 while duplicating only the distal end

of the zeugopodium, whereas 100−150 𝜇g evoked two mirror-image

limbs with seven to eight digits and serially duplicated to the gir-

dle, with gradual increases at intermediate doses. The regeneration of

double posterior limbs treated with progressively higher doses of RA

was inhibited. Presumably, similar results would be obtainedwith dou-

ble dorsal and ventral limbs, although this has not been verified.

The histological features of blastema development in RA-treated

normal and double anterior and double posterior limbs are of interest

(Ju & Kim, 1994; Kim & Stocum, 1986b; Stocum & Crawford, 1987). In

normal limbs, an initial blastema cell accumulation is formed but then

disappears, followed by an extended period of histolysis proximally

compared to untreated controls. Expression of the lysosomal protease

cathepsin D and of trypsin and chymotrypsin-like activity is enhanced

(Ju&Kim, 1998; Lee&Kim, 1996), butMMP-9 is downregulated (Yang

et al., 1999). The effect of RA on other proteases has not been inves-

tigated. Fgf8 is expressed in distal limb tissues over a time period that

coincides with the period of histolysis (Han &Kim, 2002).

Subsequently, a blastema emerges that consists of a low-density

population of blastema cells adjacent to the zeugopodial cartilages and

a distal high-density population that forms under an AEC pointing pos-

teriorly to the PD axis (Fig. 8A). The low-density cell population bulges

out on the anterior side of the limb and gives rise to the girdle. The

high-density population gives rise to the free limb, which angles poste-

riorly across the longitudinal axis of the limbas it grows (Kim&Stocum,

1986b). The blastema assumes the shape, proportions, and growth

characteristics of a blastema derived from the stylopodium (Holder &

Reynolds, 1984). Similar histological changes have been confirmed and

changes to the skin revealed by additional electron microscope obser-

vationsmade of regenerating limbs of axolotls treated by immersion in

solutions of retinol palmitate (Scadding, 1990).

The increased density of the distal part of the blastema in RA-

treated limbs compared to controls is suggestive of changes in the

ECM related to blastema cell adhesivity. As indicated earlier, RA

administered to axolotls in an affinophoresis assay abolishes the sort-

ing behavior of wrist and elbow forelimb blastemas grafted to the

blastema-stump junction of a hindlimb regenerating from the mid-

femur level, and intercalary regeneration is abolished after grafting

an RA-treated wrist blastema to a mid-stylopodial hindlimb stump

(Crawford& Stocum, 1988b). Very littlework has been done to explore

such changes, except for the finding of Maden and Keeble (1987) of

increased levels of fibronectin in the blastemas of retinoid-treated

limbs.

After amputation through a double anterior distal zeugopodium,

double blastemas consisting of proximal low-density and distal high-

density blastema cells formed over each of the zeugopodial cartilage

elements after a prolonged period of dedifferentiation, each with its

own AEC (Fig. 8B). These blastemas grew with stylopodial blastema

characteristics but, in contrast to RA-treated normal limbs, they grew
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straight out of the limb stump and formed limbs mirror imaged in the

APaxis. Interestingly, between the twin blastemas a small area of base-

ment membrane was reconstituted, but not under the blastema AEC,

suggesting differences inMMPexpression between these two regions.

RA-treated double posterior limbs did not form a blastema, similar

to the results of grafting full-thickness skin over limb stumps (Chew

& Cameron, 1983; Mescher, 1976; Tassava & Garling, 1979) or pro-

viding only skin from one quadrant of the limb to provide blastema

cells (Lheureux, 1975). A basement membrane and thick mat of

connective tissuewas quickly formed under thewound epidermis (Kim

& Stocum, 1986b) (Fig. 8C). This result suggests that positional dispar-

ity is a distinct requirement forMMPproduction by thewound epider-

mis and macrophages to prevent re-formation of the basement mem-

brane, but the cellular andmolecularmechanismbywhich thisworks is

unknown.

In the three or more decades since experiments on half and double

half limbs were carried out, no further work on them has been done.

Themolecular biology of limb regeneration has advanced rapidly, how-

ever, and it would be instructive to repeat these experiments assessing

the expression of ECM molecules, proteases, signaling molecules, and

blastema cell molecular markers. For example, what does the expres-

sion pattern of proteases Shh, Fgf8 and Hoxa and d genes look like in

the blastemas of regenerating double half limbs treated with RA?

5.6 Mechanisms of distalization

5.6.1 Distalization after simple amputation

There are several models of distalization after simple amputation

through the upper stylopodium (Fig. 9). The positions of blastema

cells in the polar coordinate model are given by angular and radial

coordinates in which the angular coordinate identifies position on the

limb circumference and the radial coordinate position on the PD axis

(Bryant et al., 1981; French et al., 1976). Distalization requires the

interaction of blastema cellswith differing angular coordinatesmigrat-

ing centripetally from the circumference across the amputation sur-

face to intercalate a complete cross-section of angular identities that

adopt the next positional value in the PD sequence (Fig. 9A). Rep-

etition of this process restores the complete normal neighbor map.

After amputation through the stylopodium, each repetition would

specify stylopodial PD values until the elbow is reached, whereupon

there would be a split into two circles of identities for the radius

and ulna that would continue the process until further splits took

place into circles that represent autopodial elements. It is impor-

tant to understand that the radial values in the planar depiction of

the model (upper part of Fig. 9A) represent the successive PD posi-

tional identities that are regenerated by these interactions, not a lit-

eral map of the identities on the amputation surface. The interactions

between migrating cells after amputation would couple mitosis with

distalization.

Meinhardt (1983b) proposed a “bootstrap” model to restore the

PD axis in which distalization is driven by the production of an AEC

morphogen (Fig. 9B). Higher concentrations of the morphogen spec-

ify more distal positional identities. The blastema cells produce an

AECmaintenance factor (AECMF) that controls production of theAEC

F IGURE 9 Models of distalization. (A) Polar coordinate model. Top,
planar representation. The concentric circles (radial values) labeled
A−E represent the PD positional identities generated by successive
reiterations of centripetal migration and interaction. Numbers repre-
sent angular values. Bottom, the radial values telescoped out as each
of the radial values is realized. (B) “Bootstrap” model. Red line, mor-
phogen levels fromproximal to distal. Green line, production of anAEC
factor that increases morphogen levels in a proximal to distal direc-
tion. AB, accumulation blastema;MB,mediumbud; LB, late bud; D, dig-
its. (C) Regeneration of the segment of amputation (distal stylopodium,
red), driven by a high level of RA (red arrow) that drops off distally to
interactwith amitotic timingmechanism to specify remaining PDposi-
tional identities. (D) Intercalary averaging mechanism. Missing posi-
tional identities represented as A−E. The first step is intercalation
of the intermediate positional identity; successive intercalations com-
plete the PD sequence. (A) After French et al. (1976) and Bryant et al.
(1981). (D) AfterMaden (1977)

morphogen. The concentration of morphogen is lowest at the earli-

est stages of regeneration andwill specify themost proximal structure

to be regenerated. Once specified, these cells now ramp up their pro-

duction of AECMF, resulting in production of a higher concentration

of morphogen by the AEC that specifies the next more distal struc-

ture, and so on. Progressively more distal PD positional identities are

thus serially “bootstrapped” into existence by stepwise increases in

AECMF and AEC morphogen. Combined with the polar coordinate

model, bootstrapping gives a physical mechanism for assignation of

progressivelymore distal positional identities. Nerves are not involved

in establishingPDaxial patterning, since aneurogenic limbsof reversed

PDpolarity regenerate distally in the sameway as reversed innervated

limbs (Wallace, 1980).

Another mechanism of PD pattern generation (Fig. 9C) postu-

lates that RA specifies the stylopodium (assuming amputation at the

proximal stylopodial level). A factor(s) contributed by the AEC pro-

vides an environment within which an autonomous timing mechanism

specifies the positional identities of the zeugopodiumand autopodium.

There is evidence that RA specifies the stylopodium of the chick

limb bud, whereas a timing mechanism, similar to the progress zone

model developed by Summerbell, Lewis, and Wolpert (1973), speci-

fies the zeugopodium and autopodium (Rosello-Diez & Torres, 2011;

Saiz-Lopez et al., 2015). Such a mechanism would explain why the

stylopodium is able to regenerate after grafting a mature hand to
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the mid-stylopodium of axolot limbs, whereas more distal structures

fail to be intercalated (Bryant & Iten, 1977; Pescitelli & Stocum,

1981), and why the stylopodium is not regenerated when undiffer-

entiated blastemas derived from the distal stylopodium are grafted

to the dorsal fin (Stocum, 1968a) or when supernumerary limbs

are evoked from the stylopodium in the Lheureux model (Makanae,

Mitogawa, & Satoh, 2014b). Also explained would be why BMP2

or 7 can stimulate adult mouse digits amputated through the sec-

ond phalange to complete that phalange but not regenerate the

distal-most phalange, and stimulate neonatal mouse forelimbs ampu-

tated through the mid-zeugopodium to regenerate the zeugopodium

but not the autopodium (Ide, 2012; Masake & Ide, 2007; Yu, Han,

Yan, Lee, & Muneoka, 2012; Yu et al., 2010). Clearly, there is much

more to learn about blastema patterning from investigation of these

phenomena.

These three models view the specification of PD positional iden-

tities after simple amputation as taking place serially, in proximal to

distal order. This view fits the spatial and temporal pattern of expres-

sion during blastema growth of Hoxa9, 11 and 13 (Ohgo et al., 2010;

Roensch et al., 2013; Tamura, Ohgo, & Yokoyama, 2010), which are

thought to specify PD pattern in the limb bud (Izpisua Belmonte, Ede,

Tickle, & Duboule, 1992; Yakushiji, Suzuki et al., 2009; Yokoyuchi,

Sasaki, & Kuroiwa, 1991).

By contrast, Maden (1977) proposed a non-serial PD specification

model after simple amputation based on the intercalation of positional

identities between proximal and distal boundary values (Fig. 9D). The

proximal boundary is the fibroblast positional identity of the amputa-

tion level. The distal boundary might be conferred on initial fibroblast-

derived blastema cells by virtue of their contact with the AEC (Maden,

1977; Nye, Cameron, Chernoff, & Stocum, 2003). Confrontation of the

two boundaries initiates an averaging cascade of intercalation. The

first averaging event leads to intercalation of the positional identity

halfway between the autopodium and the level of amputation. There

are now three positional identities, and progressive mitosis and inter-

calary averaging continue to fill in the nearest neighbor map. There

is evidence from mapping experiments that compartments represent-

ing the different limb segments are already present in the very early

chick limb bud (Dudley et al., 2002; Stark & Searls, 1973) and in the

urodele limb regeneration blastema (Echeverri & Tanaka, 2005). The

problem is how to reconcile the proximal to distal sequence of expres-

sion of the Hoxa9−13 genes. The assumption would have to be made

that serial expression of these genes does not adequately reflect the

actual patterningmechanism itself, raising the speculation that expres-

sion of these transcription factors could be the result rather than the

cause of the patterningmechanism.

5.6.2 Distalization during intercalary regeneration

Autografting a distally derived blastema to a more proximal limb

stump results in a delay in the growth and development of the grafted

blastema, probably due to the time required for the tissues at the

proximal limb level to undergo histolysis and contribute additional

blastema cells, and to sufficiently re-innervate the blastema. The

grafted blastema then differentiates an autopodium according to its

origin, and the cells contributed from the proximal host differentiate

F IGURE 10 (A) Normal wrist blastema homografted from a dark
axolotl to the double anterior stylopodium of a white animal. The
graft regeneratedwith three forelimb digits (P1−P3) and evoked three
supernumerary digits (S1−S3). A symmetrical double femur and tibia
was intercalated from the host. Arrow, knee joint. (B) Normal wrist
blastema of a white axolotl autografted to the ipsilateral double pos-
terior stylopodium of the hindlimb. The graft formed four forelimb
digits (P1−P4) and evoked five supernumerary digits (S1−S5). Pri-
mary and supernumerary sets of basipodial elements were regener-
ated. T5, tarsal 5. Arrow, symmetrical fibulae intercalated from host
stump. (C) Double anterior wrist blastema homografted from a dark
axolotl to the double anterior stylopodium of a white axolotl. The graft
formed two carpals (arrows) and a single digit. A symmetrical distal
femur (F) and tibia (T) were intercalated from the host stump. After
Stocum (1980b, 1981)

into the missing intermediate structures (Iten & Bryant, 1975; Maden,

1980b; Pescitelli & Stocum, 1980; Stocum, 1975). Intercalary dele-

tions were the result when unirradiated distal blastemas were grafted

to irradiated proximal stumps (Maden, 1980b). Proximal blastemas

grafted distally developed according to origin, giving serially dupli-

cated limbs (Iten & Bryant, 1975; Stocum & Melton, 1977), although

Maden (1980b) found that 20% of cases showed intercalary regenera-

tion from the graft that might have been of reversed polarity.

Normal distal zeugopodial blastemas of axolotls grafted to a dou-

ble anterior stylopodium evoke intercalary regeneration of a symmet-

rical distal stylopodium plus a single symmetrical element formed by

the midline fusion of two anterior zeugopodial elements (Fig. 10A).

Normal distal blastemas grafted to double posterior stylopodia more

often evoke intercalation of a symmetrical distal stylopodium plus sep-

arated double posterior zeugopodial elements (Fig. 10B). In both cases,

the graft develops as a normal autopodium while evoking supernu-

merary digits where anterior tissue confronts posterior tissue. A dou-

ble anterior zeugopodial blastema grafted to a double anterior sty-

lopodium (Fig. 10C) develops with the converged pattern of a single

digit, and an intermediate symmetrical distal stylopodium and anterior

zeugopodial element is intercalated between the two (Stocum, 1980b).

Collectively, these results suggest that each half of a double ante-

rior stylopodium contributes to half of a symmetrical PD-intercalated

stylopodial and zeugopodial skeletal element, and that no interaction

of anterior tissue with posterior tissue is required for blastema cell

proliferation/distalization during intercalary regeneration. In contrast

to what happens after simple amputation of a double anterior sty-

lopodium, the intermediate blastema cells ignore their similarity in

anterior positional identity and respond only to the discontinuity in
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PD identities between graft and host levels. Thus the mechanism of

PD outgrowth and patterning seems to be different in double ante-

rior stylopodia regenerating after simple amputation as opposed to

intercalation and, by extension, between the regeneration of nor-

mal limbs after simple amputation versus intercalation when distal

blastemas are grafted proximally. AP and proximal−distal positional
identity seem tobeuncoupledduring intercalary regeneration. Thedif-

ference might reflect the geometry within which each form of regen-

eration takes place, a hyperbolic cone for “normal” regeneration that

directs circumferential cells centripetally to interact versus an elliptic

cylinder requiring only intercalation of missing PD positional identi-

ties. Such geometrical influences on limb regeneration have not been

explored.We cannot rule out, however, that there needs to be aDVdif-

ferential for distalization to take place. This possibility might be tested

by constructing stylopodia and zeugopodia that are double dorsal or

double ventral, as well as double anterior, to see the effect on regener-

ation after simple amputation or after grafting double dorsal or double

ventral blastemas to double dorsal and ventral limb stumps.

Meinhardt (1983b) explained the results of grafting a normal zeu-

gopodial blastema to a normal or a double anterior stylopodium in

terms of the boundary/bootstrap model, but this model cannot explain

the intercalary regeneration that occurs after grafting a double ante-

rior zeugopodial blastema to a double anterior stylopodium because

there is no AP boundary in such constructs. The averaging model of

Maden (1977), however, can account for intercalary regeneration in all

these constructs because, in this model, the basal positional identity of

the graft can act as a distal boundary confronting a proximal boundary

represented by proximal host level blastema cells.

5.7 Amultiplemechanismmodel of pattern

formation

The foregoing models partially explain various aspects and observa-

tions on pattern formation in limb regeneration that reflect Lewis

Held's (1992) apt description of patterning as the “Gordian knot of

developmental biology.” We would like to have a unified model that

accounts for all our observations on limb regeneration. It may be,

however, that the urodele limb has multiple mechanisms of replac-

ing structural loss and that one or another of these mechanisms pre-

dominates according to the type of tissue rearrangement experienced.

Thus, elements of all the models described may be in play depending

on the experimental circumstances andwhen combinedwould provide

a framework for blastema patterning that explains most of the experi-

mental observations.

This idea first supposes that the blastema is an anatomical mosaic

of cellular contributions from each limb quadrant (Stocum&Cameron,

2011, for a review). As outlined above, experiments on half and dou-

ble half limbs have revealed differential contributions of limb halves to

the blastema. Maden (1982b), Maden and Mustafa (1982a), and Tank

(1981) demonstrated that the mixed-handedness supernumeraries

evoked after APDVblastema rotation can be explained asmosaics that

reflect the relative numbers of cells contributed by graft and stump tis-

sues at the site of supernumerary formation and the polarities of these

tissues with respect to one another. Maden and Mustafa (1984) ana-

lyzed the cellular contributions of graft and stump to the four classes of

supernumeraries evoked by grafting APDV inverted triploid blastemas

to diploid limb stumps. Each class of supernumerarywas composedof a

different percentage of graft and host cells, indicating the relative con-

tribution from each.

Not all the results were explainable bymosaic cellular contribution,

however. Amputated constructs of mixed-handed axolotl zeugopodia

(half normal, half inverted in the AP axis) regenerated not just the

expected mixed-handed limbs, but the same classes of anatomical

patterns as after APDV inversion (Holder & Weekes, 1984; Muneoka

et al., 1986a). Using triploid/diploid halves to make the constructs

revealed a directionally biased intercalation as well as cell mixing

(Muneoka et al., 1986b), which was also observed after limb bud

tip inversions by Thoms and Fallon (1980). These results suggest

a model in which both mosaic contributions to the blastema and

intercalation to fill in gaps are at work. We must also consider the

ability of blastema cells to sort out according to position as a factor in

the final anatomy of regenerates. Wrist and elbow blastemas grafted

to the stump/blastema junction of a hindlimb regenerating from the

mid-femur level do not develop according to origin at this location, or

intercalate a set of supernumerary intermediate limb structures, but

rather sort to their comparable position on the hindlimb regenerate

where they develop according to origin (Crawford & Stocum, 1988a).

These considerations suggest a flexibility in the choice of mechanisms

used to re-establish a normal neighbormap.

We might gain further insights by systematically mapping the con-

tributions of the different quadrants of the limb cross-section to

the regenerates formed after APDV blastema rotation, double half

limb regeneration, and intercalary regeneration, using GFP-marked

blastema or stump tissues, examining gene expression during inter-

calary regeneration, and systematically analyzing themolecular differ-

ences in positional identities.

6 BLASTEMA PATTERNING:

AUTONOMOUS OR INDUCED?

The development of many embryonic tissues/organs and the

homeostasis and regeneration of adult tissues is driven by self-

organizational mechanisms (Vogg, Wenger, & Galliot, 2016, for a

review). This self-organizational feature has enabled the creation of

organoids (mini-organs) from embryonic cells and iPSCs to investigate

the development of cancer, to screen drugs for toxicity and therapeu-

tic value, and to replace damaged or missing tissues (Clevers, 2016;

Tsuji, 2017). The early limb regeneration blastema can be viewed as

an in vivo organoid that gives rise to exactly those limb parts that

were amputated. A major question argued over the course of the

past century, however, is whether the blastema is self-organizing,

possessing all the information required to generate the pattern of the

regenerate, or does it have a range of developmental plasticity, with

the pattern imposed by signals from adjacent differentiated tissues?

Put another way, is the early blastema a blank slate with regard to

its developmental potency, or is its development restricted to its
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prospective significance? While the positional identity of blastema

cells can be manipulated by RA, the question of how the pattern of the

manipulated cells is organized remains the same.

Studies conducted from the 1920s to the 1940s reported that

young limb blastemas grafted ectopically failed to develop, whereas

older blastemas and young blastemaswith stump tissue included in the

graft were able to develop normally. Furthermore, early tail blastemas

transplanted to limb stumps and vice versa were reported to develop

according to host rather than donor origin, whereas older blastemas

or early blastemas with stump tissue always developed according to

donor origin. The polarity of regenerates formed by axially reversed

early blastemas conformed to that of the host limb stump, whereas

older blastemas formed regenerates that maintained their original

polarity. These results suggested that the early blastema had no devel-

opmental capacity (was “nullipotent”) and that appendage type, posi-

tion of origin, and axial polarity were determined by signals from adja-

cent stump tissue (Stocum, 1984, for a review).

Other investigators, however, pointed out that blastemas grafted

ectopically with or without stump tissue might not survive, but stump

tissuue would allow re-formation of the blastema and that, in the

absence of graft markers, the possibility could not be ruled out that

conversion of one appendage type to another was due to a failure

of the graft to survive and its replacement by host cells (Polezhaev,

1937). Early limb and tail blastemas grafted to lentectomized eyes

were reported to develop as lenses (Schotte & Hummel, 1939), but

these results were later shown to be an artifact of regeneration from

host tissues (Stone, 1966). Early tail blastemas grafted to the develop-

ing embryonic ear region failed to formanotic vesicle (Emerson, 1940),

but eye cups or otic vesicles grafted into blastemas were reported to

induce lens or precartilage otic capsules from blastema cells. Again,

however, the lack of markers in these experiments made it impossible

to tell whether these structures were derived from graft or host cells.

These kinds of experiments bear repeating using today's transgenic

markers. Intriguingly, newt heart cardiomyocytes, which have the abil-

ity to dedifferentiate and regenerate injured heart tissue (Nag, Healy,

& Cheng, 1979; Oberpriller & Oberpriller, 1974), dedifferentiated and

transdifferentiated to skeletal muscle and chondrocytes when trans-

planted into the limb regeneration blastema (Laube, Heister, Scholz,

Borchardt, & Braun, 2006), suggesting that the blastema environment

can exert a powerful influence on cell phenotype that extends beyond

limb cells.

Other experiments have suggested that transplanted early

blastemas can self-organize according to origin if they receive ade-

quate vascularization and innervation. Faber (1960) showed that

stylopodial-level medium bud axolotl blastemas marked with carbon

particles in the prospective stylopodium and zeugopodium and grafted

to the back failed to form proximal structures unless accompanied by

stump tissues, but were capable of forming digits. He concluded that

cells of the early blastema were intrinsically determined as autopodial

structures, whereas the patterning of more proximal elements was

determined by stump tissues. However, the carbon particles in this

experiment were translocated into the back tissue, suggesting that

prospective stylopodial and zeugopodial cells did not survive. Undif-

ferentiated medium bud limb blastemas of Ambystoma maculatum

larvaewere capable of differentiation in vitro and of complete PD self-

organization from their level of origin after grafting them ectopically

to a wound bed on the dorsal fin (Fig. 11A) (Stocum, 1968a, b).

Iten and Bryant (1975) reported that the handedness of regener-

ates formed after grafting distal early bud blastemas of adult newt

forelimbs to the stylopodium with simultaneous reversal of the AP

axis resulted in intercalary regeneration of intermediate PD struc-

ture, but with an AP digital pattern that either conformed to the

host or more often had both host and graft (“intermediate”) handed-

ness. Later stage blastemas developed with the handedness of origin.

The formation of digits with intermediate handedness suggests that

graft/host AP interactions resulting in supernumerary digit formation

took place at the level of the autopodium as PD positional identities

were filled in to that level. By contrast, blastemas grafted from a prox-

imal to distal level most often conformed to their host level and devel-

oped only autopodial structures, suggesting an inductive activity of the

stump. In both cases, histological examination of blastemas over the

first few days after grafting suggested substantial survival of blastema

cells. Stocum (1975) performed distal to proximal and proximal to dis-

tal grafts labeled with [3H]-thymidine in A. maculatum larvae. Distal

to proximal grafts resulted in normal limbs in which the autopodium

was formed from the graft and intermediate structures were interca-

lated by cells from the host. Proximal to distal grafts appeared to con-

form to the host level and form only autopodium, but a later study

in which the blastema was more accurately removed from its stump

showed that the grafted blastema developed according to origin, form-

ing serially duplicated structures (Stocum & Melton, 1977) (Fig. 11B).

Intercalation does not take place after proximal to distal grafting,

because the polarity of the gap is opposite to the polarity of the stump

and graft. Grafted blastema mesenchyme forced to dedifferentiate

when re-covered by wound epidermis, as when several mesenchymes

are massed and grafted to the back (De Both, 1970; Polezhaev, 1937),

or when proximal halves of stylopodial forelimb blastemas are grafted

to the ankle stump of the hindlimb (Stocum & Melton, 1977), devel-

oped according to origin. The mass of cells in these experiments is

greater than that of an accumulation blastema and thus cell interac-

tions may be a factor in whether or not the positional identity of indi-

vidual blastema cells can be expressed (Stocum, 1984), although it

should be noted that small clusters of prospective autopodial blastema

cells failed to become incorporated into stylopodial tissue when trans-

planted into the prospective stylopodium of the blastema and instead

sorted into the autopodial region (Echeverri & Tanaka, 2005). Pellets

of posterior blastema cells cultured in vitro can induce supernumerary

structures after implanting them to the anterior side of a blastema, but

lose the capacity to do so after a week in culture (Groell, Gardiner, &

Bryant, 1993).

Still other evidence for the early blastema as a self-organizing sys-

tem is that regenerate structure is not changed after grafting nor-

mal blastemas to double half limb stumps or vice versa (Fig 11C−E).
Furthermore, undifferentiated blastemas derived from forelimbs do

not form hindlimb structures when grafted to hindlimb stumps and

vice versa (Holder & Tank, 1979; Stocum, 1980a, b, 1981). Self-

organization is also consistent with the results of experiments on

the early chick limb bud by Rosello-Diez and Torres (2011). They



184 STOCUM

F IGURE 11 Autonomous development of the blastema. (A) Medium bud blastemal mesenchyme after 21 days of hanging drop culture. The
blastema underwent abortive morphogenesis. Arrows point to dark shadows within the cell mass that reflect the development of a primitive car-
tilage. (B) Medium bud forelimb stylopodial blastema autografted to dorsal fin. (C) Proximal half of a palette stage fore limb stylopodial blastema
autografted to theankle level of thehind limb. Thegraft dedifferentiatedanddevelopedas a fore limbaccording to its level of origin. T=host tarsals;
H = humerus; RU = radius/ulna; C = carpals; D = four digits. (D) Normal fore limb stylopodial blastema homografted to the same level of a double
posterior hind limb stylopodium. Arrow = original graft-host junction. The primary regenerate is forelimb (digits 1−4 on the left) with forelimb
basipodial elements and radius/ulna (u). A supernumerary hindlimb regeneratedwith tibia and fibula (f) and digits 1−5. (E)Medium bud stylopodial
blastema homografted from normal limb of a dartk axolotl to the same stylopodial level of the double posterior hind limb of a white axolotl. Large
arrow= graft/host junction. The graft developed as a normal forelimb. The graft-derived tissues suffered chronic immunorejection with dilation of
blood vessels and hemostasis (small arrows) that sharply demarcated graft from host tissues. (F) Double anterior hind limb stylopodial blastema
homografted distally to a double anterior hind limb zeugopodium. The blastemadeveloped according to its double anterior stylopodial origin, form-
ing a tapered cone of cartilage (arrow). After Stocum (1968a,b), Stocum andMelton (1977), Stocum (1980a), and Stocum (1981)

showed that 100 𝜇m thick stage 18 distal wing tips grafted to the

level of the stage 21 prospective stylopodium were not induced to

become stylopodium, but instead developed into autopodium whilst

evoking intercalary regeneration of a zeugopodium from stylopodial

mesenchyme.

Nevertheless, other experiments have led to different conclusions.

Distal blastemas fromaxolotl limbs transgenic forGFP grafted to prox-

imal limb stumps were reported to contribute to muscle and Schwann

cell sheath proximal to their level of origin, leading to the conclusion

that the early blastema is labile and is induced to form proximal struc-

turesby stump tissues in its new location (McCusker&Gardiner, 2013),

as Faber (1960) had proposed. This conclusion is unwarranted, how-

ever, since Roensch et al. (2013) and Maden, Avila, Roy, and Seifert

(2015) demonstrated that non-fibroblastic cells do not carry positional

identity and can abrogate the rule of distal transformation, whereas

blastema cells derived from fibroblasts inherit level-specific positional

identity that ensures development of the blastema according to its

level of origin and triggers intercalary regeneration of intermediate

structures. McCusker and Gardiner (2013) also reported that the cells

of early bud forelimb blastemas grafted to hindlimb stumps were

induced to express higher levels of hindlimb-specific Tbx4 and early

bud hindlimb blastemas grafted to forelimb stumps were induced to

express higher levels of forelimb-specific Tbx5, implying that blastemal

plasticity extends to the conversion of forelimb blastemas to hindlimbs

and vice versa. Hindlimb and forelimb blastemas do use similar posi-

tional information systems (Crawford & Stocum, 1988a, b), but con-

verting one to the other should result in regenerates that each express

the other's characteristic limb morphology and musculoskeletal struc-

ture. Such evidence has not been reported. Furthermore, the stabil-

ity of the limb stump−blastema epigenetic code (Hayashi et al., 2015)

argues against such a switch.

7 LINKING BLASTEMA GROWTH WITH

PATTERNING

It is clear that blastema growth and distalization and patterning are

coupled in some way. The mitotic index of the blastema during the

maximum growth phase (medium bud through late bud) does not

change until the start of redifferentiaton in either stylopodial or wrist

blastemas, but the period of maximum growth is longer in stylopo-

dial blastemas because there is more pattern to replace (Stocum,

1980c). Mitosis is inhibited in denervated medium bud blastemas, but

these blastemas can nevertheless regulate to produce a miniature
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regenerate complete in the PD axis (Powell, 1969; Singer & Craven,

1948). This result indicates that very fewmitotic divisions are required

to set up the regenerate pattern, a conclusion backed up by the

blastemamapping experiments of Echeverri and Tanaka (2005).

As to the molecular mechanism of patterning and morphogene-

sis, little is known. Bryant and Gardiner (2016) have advanced the

hypothesis that the length of the G0/G1 portion of the cell cycle deter-

mines the size of the translatable transcripts that can be made by cells

(”transcriptional gating”). The length of G0/G1 is different in different

regions of developing or regenerating tissue, thus setting up a grid

of different-sized transcripts and proteins that represent the pattern.

Some of these transcripts and proteins play key roles in transcrip-

tional and proteomic networks that define positional identities, regu-

late cell division, and regulate cell differentiation. The role of growth

factors, whether diffusable or tethered to the ECM, is to regulate in a

concentration-dependent way the length of the G0/G1 portion of the

cell cycle. Bryant and Gardiner give several examples of spatial and

temporal change in G0/G1 that is correlated with patterning, the most

pertinent of which is the mouse limb bud, in which diferent regions of

mesenchyme have variable lengths of G0/G1, and the inhibition of pro-

liferation by RA during the time it takes to reprogram AP, DV, and PD

positional identity, which possibly could involve a change in length of

G0/G1.

These ideas have yet to be tested in regenerating limbs, but might

be tested by performing single cell transcriptional profiling on small

cell clusters from different parts of the blastema. They receive poten-

tial support from the regenerating rays of amputated zebrafish fins,

which form blastemas at the tip of each ray. Each blastema is com-

posed of several distal to proximal domains: a non-proliferating distal

blastema, and a proximal proliferating blastema surrounded by pre-

committed osteoblasts that differentiate as the blastema grows. The

Wnt/𝛽-catenin signaling pathway is necessary for fin ray regenera-

tion. Wnt signaling in the distal blastema of the ray has been found to

set up organizing centers in the proximal blastema and epidermis that

control epidermal patterning via Fgf and BMP signaling, and blastema

proliferation by RA and hedgehog signals (Wehner et al., 2014).

Whether there is amaster organizer such as aWnt/𝛽-catenin signaling

region is unknown.

Another factor that deserves to be investigated with regard to

growth and morphogenesis of the blastema is the potential role

of convergent extension by mediolateral cell intercalation, a cell

adhesion−traction mechanism that in the gastrula and neurula elon-

gates the notochord and neural plate and tube (Keller et al., 2000).

In addition to ECM deposition, convergent extension is likely to be

operating during chondrocyte condensation in the limb regenera-

tion blastema to elongate the skeletal elements of the emerging

regenerate.

8 PROSPECTUS

The grand challenge of appendage regeneration is to achieve the

regeneration of a human limb through what has been called “regener-

ative engineering” (Laurencin & Nair, 2016). Research on urodele limb

regeneration will continue to inform this challenge, especially through

comparative studies between urodele and regeneration-deficient anu-

ran limbs (Rao et al., 2014) and between position-specific differ-

ences in the regenerative ability of mammalian appendages (Simkin,

Sammarco, & Dawson, 2015). Why amputated urodele appendages

regenerate and amputated anuran andmammalian appendages regen-

erate hypomorphically or not at all has been a long-standing evolu-

tionary question. Jazwinska and Sallin (2016) have proposed that the

selective factor involved is the degree of functional demand placed on

the appendages, this being higher in mammals and reflected in more

complex structure and thus lower regenerative potential. The same

structure/function/regeneration correlation extends to the urodele

and zebrafish heart versus the mammalian heart. Furthermore, com-

parative studies suggest that differences in regenerative capacity and

mechanism among species or different developmental stages are influ-

enced by fundamental traits such as body size, aging, and growth pat-

tern (Seifert et al., 2012), making it important to consider experimen-

tal results with reference to these traits, as has been shown for muscle

contribution to the blastema (Sandoval-Guzman et al., 2014).

Research on mammalian appendage regeneration will focus on

understanding the roles of oxygen concentration, reactive oxygen

species, manipulation of ECM degradation, BMP and Wnt signaling

and the source of the cells that form the blastema in the amputated

mouse digit. Several translational ideas have been proposed (Quijano,

Lynch, Allan, Badylak, & Ahsan, 2015). First is that in-depth under-

standing of the soluble factors involved in digit tip regeneration and

their regulation can lead to the formulation of a molecular cocktail

that initiates a regenerative cascade. The cocktail could be delivered

by a bioreactor such as the Biodome, a thimble-shaped device that can

control pH, hydration, oxygenation, and electrical stimulation (Golding,

Guay, Herrera-Rincon, Levin, & Kaplan, 2016; Hechavarria, Dewilde,

Braunhut, Levin, & Kaplan, 2010). One can even imagine making a

tissue-engineered limb construct that is parabiosed to the normal limb

or other region of the body to become vascularized and develop to

maturity.

An artificial blastema could be made by providing position-specific

human iPSC mesenchymal derivatives that either self-organize into

bone, cartilage, and muscle at the amputation plane or are guided

in the formation of these tissues by vascularized scaffolds. Alter-

natively, dedifferentiation of position-specific limb mesodermal cells

could be induced in vitro to make a “natural blastema.” Aged human

bone marrow mesenchymal stem cells subjected to specific three-

dimensional culture environments were reported to undergo dedif-

ferentiation and autonomously form aggregates of cells resembling

blastemas (Pennock et al., 2015). Dedifferentiation was associated

with autonomously controlled autophagy that promoted cytoplasmic

remodeling, mitochondrial regression, and a bioenergetic shift from

oxidative phosphorylation to anaerobic metabolism. This bioenergetic

shift has been previously observed in proteomic studies of regener-

ating urodele and anuran limbs (Rao et al., 2009, 2014). The role of

metabolism in regeneration-competent versus regeneration-deficient

limbs has been largely neglected since publication of the histochemi-

cal studies of Schmidt (1968) on newt limb regeneration. Bioinformatic

analysis of functional molecular associations will also be a source of
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insight into the regulation of regeneration (Jhamb et al., 2011; King &

Yin, 2016).

Another emerging idea is that, during development, organ and

appendage fields set up a bioelectric code of ion channels/pumps and

gap junctions that defines the pattern of the tissue and maps to the

epigenetic code and pattern of gene activity associated with their

development and regeneration. For tail and limb regeneration the bio-

electric code is a memory system that reproduces the original code

and thus the original transcription program and anatomical structure

(Tseng & Levin, 2013). In a series of papers, Levin and colleagues

have described the bioelectric code and provided extensive evidence

for its existence and function. In addition, they have provided many

examples of manipulation of the code that result in the rearrange-

ment of large-scale pattern (Levin, 2011, 2013;Mustard& Levin, 2014;

Pezzulo & Levin, 2015). For example, a number of cell membrane chan-

nels associated with eye formation in Xenopus embryos induced eye

formation in thegut, tail, or lateral platemesodermwhenmisexpressed

in these regions. Furthermore, the induction ofH+ efflux/Na+ influx by

a monensin-containing cocktail initiated the whole cascade of events

leading to tail regeneration during a regeneration-refractory period of

the tail bud during Xenopus development. Monensin is a polyether pro-

tein transfer inhibitor isolated from Streptomyces cinnsmonensis. The

same cocktail was able to induce regeneration from stage 57 Xenopus

tadpole limbs (Tseng & Levin, 2013). These regenerates formed digits

with claws by 45 days after amputation through the mid-tibia/fibula,

although amore proximal structurewas not regenerated, similar to the

results reported by Yokoyama et al. (2001) using Fgf10 to stimulate

stage 57 Xenopus limb regeneration.

The quest for regenerating a mammalian limb rests on the convic-

tion thatmammals retain latent ancestral genetic circuits for regenera-

tion andwe need only knowhow to activate them to regenerate a limb.

This idea, however, has been challenged in an interesting way. Evolu-

tionary surveys for Prod1, the receptor that integrates proliferation

and patterning in regenerating urodele limbs, have found that Prod1

is unique to urodeles (Brockes & Gates, 2014; Garza-Garcia, Driscoll,

& Brockes, 2010; Geng, Gates, Kumar, & Brockes, 2015), suggesting

that local selective forces have left only urodeles with the capacity for

perfect limb regeneration. Therefore we must entertain the possibil-

ity that the genes involved in regeneration of anuran limb buds are

insufficient for regeneration once the limb has differentiated, making

it necessary to confer regenerative power on these and mammalian

appendages by genetic engineering. For this, we might use the gene

editing power of CRISPR/Cas9 to first regenerate anuran limbs as a

proof of principle. Gene sequences key to urodele limb regeneration

such as Prod1 plus others that might be lacking could first be intro-

duced in vitro into the genome of anuran limb fibroblasts derived from

the desired PD level of the limb. These edited fibroblasts could then

be grafted in a fibrin clot (see Lin, Chen, & Slack, 2013) to the wound

surface of recipient limbs and amputated at the same level fromwhich

the fibroblasts were derived. If these cells successfully support regen-

eration, the same could then be donewithmouse digit/limb fibroblasts

and, if successful there, with human limb fibroblasts.

An often-asked question is how long it will take before we can

regenerate a human limb. The answer is that we do not know, although

we can envision that there will be a series of steps starting with regen-

eration of a digit. Some believe success is just around the corner. Oth-

ers think we will never be able to regenerate such a large, complex

structure as a limb. Such absolutes have been pronounced many times

before and have been proven wrong. The beauty of basic science is

that it can generate unexpected major advances over a short time

frame; the production of iPSCs and the evolution of CRISPR/Cas com-

binations are two recent examples. The goal of human limb regenera-

tion will rely on a convergence of ideas and research skills from many

different scientific disciplines. In this, regeneration biologists will be

racing bioengineers who are designing and building ever more sophis-

ticated prosthetic limbs capable of neural interfaces (Carmena et al.,

2013;Collinger et al., 2013; Lebedev&Nicolelis, 2006; Pedrocchi et al.,

2013). Perhaps there will be a convergence of these two approaches

to design a hybrid cyborg replacement appendage.Whatever happens,

the regenerating urodele limb will continue to be an important source

of insights into howwemight regenerate human appendages.

ACKNOWLEDGMENT

I thankDr Jo Ann Cameron for helpful critiques of an earlier version of

themanuscript.

CONFLICT OF INTEREST

None

ORCID

David L. Stocum http://orcid.org/0000-0002-8523-744X

REFERENCES

Adams, D. S., Masi, A., & Levin, M. (2007). H+ pump-dependent changes in

membrane voltage are an early mechanism necessary and sufficient to

induce Xenopus tail regeneration.Development, 134, 1323–1335.

Albert, P., & Boilly, B. (1988). Effect of transferrin on amphibian limb regen-

eration: a blastema cell culture study. Roux's Archives for Developmental
Biology, 197, 193–196.

Albert, P., Boilly, B., Courty, J., & Barritault, D. (1987). Stimulation in cell cul-

ture of mesenchymal cells of newt limb blastemas by EDGFI or II (basic

or acidic FGF). Cell Differentiation, 21, 63–68.

Allenby, G., Bicquel, M. T., Saunders, M., Kazmer, S., Speck, J., Rosenberger,

M. et al. (1993). Retinoic acid receptors and retinoid X receptors:

interactions with endogenous retinoic acids. Proceedings of the National
Academy of Sciences USA, 90, 30–34.

Anastasia, L., Sampaolesi, M., Papini, N., Oleari, D., Lamorte, G., Tringali,

C.,…Venerando, B. (2006). Reversine-treated fibroblasts acquire myo-

genic competence in vitro and in regenerating skeletal muscle. Cell
Death and Differentiation, 13, 2042–2051.

Anton, H. J. (1965). The origin of blastema cells and protein synthesis dur-

ing forelimb regeneration in Triturus. In V. Kiortsis & H. A. L. Tram-

pusch (Eds.), Regeneration in Animals (pp. 377–395). Amsterdam: North-

Holland.

Ashahina, K., Obara, M., & Yoshizato, K. (1999). Expression of genes of type

I and type II collagen in the formation and development of the blastema

of regenerating newt limb.Developmental Dynamics, 216, 59–71.

Athippozhy, A., Lehrberg, J., Monaghan, J. R., Gardiner, D. M., & Voss, S. R.

(2014). Characterization of in vitro transcriptional responses of dorsal

http://orcid.org/0000-0002-8523-744X
http://orcid.org/0000-0002-8523-744X


STOCUM 187

root ganglia cultured in the presence and absenceof blastema cells from

regenerating salamander limbs. Regeneration, 1, 1–10.

Baker, D. J., Childs, B. G., Durik, M., Wijera, M. E., Sieben, C. J., Zhong,

J., … Deursen, J. M. (2016). Naturally occurring p16Ink4a-positive cells

shorten healthy life span.Nature, 530, 184–189.

Balinsky, B. I. (1935). Selbstdifferenzierung des Extremetatenmesoderms

im Interplant. Zoologische Jahrbuch (Allgemeine Zoologie uber Physiche der
Tiere), 54, 327–348.

Bantle, J. A., &Tassava, R.A. (1974). Theneurotrophic influenceonRNApre-

cursor incorporation into polysomes of regenerating adult newt fore-

limbs. Journal of Experimental Zoology, 19, 101–114.

Bischler, V., & Guyenot, E. (1925). Regeneration des pattes de Triton après

extirpation du squelette des ceintures ou du stylopode. Comptes Rendus
Seance Societe Biologie, 92, 678–680.

Bodemer, C. W. (1962). Distribution of ribonucleic acid in the urodele limb

as determined by autoradiographic localization of uridine-H3. Anatomi-
cal Record, 142, 147–148.

Bodemer, C. W., & Everett, N. B. (1959). Loclization of newly synthesized

proteins in regenerating newt limbs as determined by radioautographic

localization of injected methionine-S35. Developmental Biology, 1,
327–342.

Boilly, B., Cavanaugh, K. P., Hondermarck, H., Bryant, S. V., & Bradshaw, R. A.

(1991). Acidic fibroblast growth factor is present in regenerating limb

blastemas of axolotls and binds specifically to blastema tissues. Devel-
opmental Biology, 145, 302–310.

Bosurgi, L., Cao, Y. G., Calbeza-Cabrerizo, M., Tucci, A., Hughes, L. D., Kong,

Y., … Rothlin, C. V. (2017). Macrophage function in tissue repair and

remodeling requires IL-4 or IL-13 with apoptotic cells. Science, 356,
1072–1076.

Brockes, J. P. (1984). Mitogenic growth factors and nerve dependence of

limb regeneration. Science, 235, 1280–1287.

Brockes, J. P. (2015). Variation in salamanders: an essay on genomes, devel-

opment, and evolution. In A. Kumar & A. Simon (Eds.), Salamanders
in Regeneration Research: Methods and Protocols (pp. 3–15). New York:

Springer.

Brockes, J. P., & Gates, P. B. (2014). Mechanisms underlying vertebrate limb

regeneration: lessons from the salamander. Biochemical Society Transac-
tions, 42, 625–630.

Brockes, J. P., & Kintner, C. R. (1986). Glial growth factor and nerve-

dependent proliferation in the regeneration blastema of urodele

amphibians. Cell, 45, 301–306.

Brockes, J. P., & Kumar, A. (2008). Comparative aspects of animal regenera-

tion. Annual Review of Cell and Developmental Biology, 24, 525–549.

Bryant, D. M., Johnson, K., DiTommaso, T., Tickle, T., Couger, M. B., Payzin-

Dogru, D., … Whited, J. L. (2017). A tissue-mapped axolotl de novo

transcriptome enables identification of limb regeneration factors. Cell
Reports, 18, 762–776.

Bryant, S. V. (1976). Regenerative failure of double half limbs inNotophthal-
mus viridescens.Nature, 263, 676–679.

Bryant, S. V., & Baca, B. A. (1978). Regenerative ability of double-half and

half upper arms in the newt, Notopthalmus viridescens. Journal of Experi-
mental Zoology, 204, 307–324.

Bryant, S. V., &Gardiner,D.M. (2016). The relationship betweengrowth and

pattern formation. Regeneration, 3, 103–122.

Bryant, S. V., & Iten, L. E. (1976). Supernumerary limbs in amphibians: exper-

imental production in Notophthalmus viridescens and a new interpreta-

tion of their formation.Developmental Biology, 50, 212–234.

Bryant, S. V., & Iten, L. E. (1977). Intercalary and supernumerary regenera-

tion in regenerating themature limbs ofNotophthalmus viridescens. Jour-
nal of Experimental Zoology, 202, 1–16.

Bryant, S. V., French, V., & Bryant, P. J. (1981). Distal regeneration and sym-

metry. Science, 212, 993–1002.

Bryant, S. V., Fyfe, D., & Singer, M. (1971). The effects of denervation on the

ultrastructure of young limb regenerates in the newt Triturus. Develop-
mental Biology, 24, 577–595.

Bryant, S. V., Gardiner, D. M., &Muneoka, K. (1987). Limb development and

regeneration. American Zoologist, 27, 675–696.

Burton, R., Holder, N., & Jesani, P. (1986). The regeneration of double dorsal

and double ventral limbs in the axolotl. Journal of Embryology and Experi-
mental Morphology, 94, 29–46.

Butler, E. G. (1955). Regeneration of the urodele limb after reversal of its

proximo-distal axis. Journal of Morphology, 96, 265–282.

Butler, E. G., & O'Brien, J. P. (1942). Effects of localized X-irradiation

on regeneration of the urodele limb. Anatomical Record, 84,
407–413.

Butler, E. G., & Schotte, O. E. (1941). Histological alterations in denervared

non-regenerating limbs of urodele larvae. Journal of Experimental Zool-
ogy, 88, 307–341.

Cadinouche, M. Z. A., Liversage, R. A., Muller, W., & Tsifildis, C. (1999).

Molecular cloning of the Notophthalmus viridescens Radical Fringe cDNA
and characterization of its expression during forelimb development

and and adult forelimb regeneration. Developmental Dynamics, 214,
259–268.

Calve, A., Odelberg, S. J., & Simon, H-G. (2010). A transitional extracellular

matrix instructs cell behavior during muscle regeneration. Developmen-
tal Biology, 344, 259–271.

Cameron, J. A., & Fallon, J. F. (1977). Evidence for polarizing zone in the limb

buds of Xenopus laevis.Developmental Biology, 55, 320–330.

Cameron, J. A., Hilgers, A. R., & Hinterberger, T. J. (1986). Evidence that

reserve cells are a source of regenerated adult newt muscle in vitro.
Nature, 321, 607–610.

Campbell, L. J., Suarez-Castillo, E. C., Ortiz-Zuazaga, H., Knapp, D., Tanaka,

E. M., & Crews, C. M. (2011). Gene expression profile of the regenera-

tion epithelium during axolotl limb regeneration.Developmental Dynam-
ics, 240, 1826–1840.

Carlson, B. M. (1969). Inhibition of limb regeneration in the axolotl after

treatment of the skin with actinomycin D. Anatomical Record, 163,
389–402.

Carlson, B. M. (1974). Morphogenetic interactions between rotated skin

cuffs and underlying stump tissues in regenerating axolotl forelimbs.

Developmental Biology, 39, 263–285.

Carlson, B. M. (1975a). The effects of rotation and positional change of

stump tissues upon morphogenesis of the regenerating axolotl limb.

Developmental Biology, 47, 269–291.

Carlson, B. M. (1975b). Multiple regeneration from axolotl limb stumps

bearing cross-transplanted minced muscle regenerates. Developmental
Biology, 45, 203–208.

Carlson, B. M. (2007). Principles of Regenerative Biology. San Diego: Else-

vier/Academic Press.

Carlson,M. R. J., Bryant, S. V., & Gardiner, D.M. (1998). Expression ofMsx-2
during development, regeneration, and wound healing in axolotl limbs.

Journal of Experimental Zoology, 282, 715–723.

Carmena, J. M., Lebedev, M. A., Crist, R. E., O'Doherty, J. E., San-

tucci, D. M., Dimitrov, D. F., … Nicolelis, M. A. (2013). Learn-

ing to control a brain−machine interface for reaching and

grasping by primates. Public Library of Science Biology, 1, E42.

https://doi.org/10.1371/journal.pbio.0000042 (2003)

Castilla,M., & Tassava, R. A. (1992). Extraction of theWE3 antigen and com-

parison of reactivities of mAbs WE3 and WE4 in adult newt regener-

ate epithelium and body tissue. In C. H. Taban & B. Boilly (Eds.), Keys for

https://doi.org/10.1371/journal.pbio.0000042 \0502003\051


188 STOCUM

Regeneration: Monographs in Developmental Biology (pp. 116–130). Basel:
Karger.

Chapron, C. (1974). Mise en evidence du role, dans la regeneration des

Amphibiens, d'une glycoproteine secrete par la cape apicale: étude

cytochimique et autoradiographique enmicroscopie electronique. Jour-
nal of Embryology and Experimental Morphology, 32, 133–145.

Chen, S., Zhang,Q.,Wu, X., Schultz, P. G., &Ding, S. (2004). Dedifferentiation

of lineage-committed cells by a small molecule. Journal of the American
Chemical Society, 126, 410–411.

Chew, K., & Cameron, J. A. (1983). Increase in mitotic activity of regener-

ating axolotl limbs by growth factor-impregnated implants. Journal of
Experimental Zoology, 226, 325–329.

Childs, B. G., Baker, D. J., Wijshake, T., Conover, C. A., Campisi, J., & van

Deursen, J. M. (2016). Senescent intimal foam cells are deleterious at

all stages of atherosclerosis. Science, 354, 472–477.

Choo, A. Z. F., Logan, D. M., & Rathbone, M. P. (1978). Nerve trophic effects:

an in vitro assay of factors involved in regulation of protein synthesis

in regenerating amphibian limbs. Journal of Experimental Zoology, 206,
347–354.

Christen, B., & Slack, J. M.W. (1997). FGF-8 is associated with anteroposte-
rior patterning and limb regeneration inXenopus.Developmental Biology,
192, 455–466.

Christen, B., Robles, V., Raya, M., Paramonov, I., & Izpisua Belmonte, J. C.

(2010). Regeneration and reprogramming compared. BioMedical Central
Biology, 8, 5.

Christensen, R. N., & Tassava, R. A. (2000). Apical epithelial capmorphology

and fibronectin gene expression in regenerating axolotl limbs. Develop-
mental Dynamics, 217, 216–224.

Christensen, R. N., Weinstein, M., & Tassava, R. A. (2001). Fibroblast

growth factors in regenerating limbs of Ambystoma: cloning and semi-

quantitativeRT-PCRexpression studies. Journal of Experimental Zoology,
290, 529–540.

Christensen, R. N., Weinstein, M., & Tassava, R. A. (2002). Expression of

fibroblast growth factors 4, 8, and 10 in limbs, flanks, and blastemas of

Ambystoma.Developmental Dynamics, 223, 193–203.

Clevers, H. (2016). Modeling development and disease with organoids. Cell,
165, 1586–1597.

Collinger, J. L., Wodlinger, B., Downey, J. E., Wang, W., Tyler-Kabara, E.

C., Weber, D. J., … Schwartz, A. B. (2013). High-performance neu-

roprosthetic control by an individual with tetraplegia. Lancet, 381,
557–564.

Cook, A. B., & Seifert, A. W. (2016). Beryllium nitrate inhibits fibrob-

last migration to disrupt epimorphic regeneration . Development, 143,
3491–3505.

Crawford, K., & Stocum, D. L. (1988a). Retinoic acid coordinately proxi-

malizes regenerate pattern and blastema differential affinity in axolotl

limbs.Development, 102, 687–698.

Crawford, K., & Stocum, D. L. (1988b). Retinoic acid proximalizes level-

specific properties responsible for intercalary regeneration in axolotl

limbs.Development, 104, 703–712.

Crawford, K., & Vincente, D. M. (1998). Retinoic acid and thyroid

hormone may function through similar and competitive path-

ways in regenerating axolotls. Journal of Experimental Zoology, 282,
724–738.

Crews, L., Gates, P. B., Brown, R., Joliot, A., Foley, C., & Brockes, J. P. (1995).

Expression and activity of the newtMsx-1 gene in relation to limb regen-

eration. Proceedings of the Royal Society of London B, 259, 161–171.

Dahn, R. D., & Fallon, J. F. (2000). Interdigital regulation of digit identity

andhomeotic transformationbymodulatedBMPsignaling. Science,289,
438–441.

Davies, A. M. (2000). Neurotrophins: neurotrophic modulation of neurite

growth. Current Biology, 10, R198–R200.

Dearlove, G. D., & Dresden, M. (1976). Regenerative abnormalities in

Notophthalmus viridescens induced by repeated amputations. Journal of
Experimental Zoology, 196, 251–262.

Dearlove, G. E., & Stocum, D. L. (1974). Denervation-induced changes

in soluble protein content during forelimb regeneration in the adult

newt Notophthalmus viridescens. Journal of Experimental Zoology, 190,
317–328.

De Both, N. J. (1970). The developmental potencies of the regeneration

blastema of the axolotl limb.WilhelmRoux's Archiv fur Entwicklungsmech-
anische der Organismen, 165, 2452–2276.

Deck, J. D. (1955). The innervation of urodele limbs of reversed proximo-

distal polarity in larval and metamorphosing urodeles. Journal of Experi-
mental Zoology, 96, 301–331.

Deck, J. D., & Riley, H. W. (1958). Regenerates on hindlimbs with reverse

proximal−distal polarity in larval andmetamorphosing urodeles. Journal
of Experimental Zoology, 138, 493–504.

Del-Rincon, S. V., & Scadding, S. R. (2002). Retinoid antagonists inhibit nor-

mal patterning during limb regeneration in the axolotl, Ambystomamex-
icanum. Journal of Experimental Zoology, 292, 435–443.

Dent, J. N. (1954). A study of regenerates emanating from limb trans-

plants with reversed proximo-distal polarity in the adult newt. Anatomi-
cal Record, 118, 841–856.

Dent, J. N. (1962). Limb regeneration in larvae and metamorphosing indi-

viduals of the South African clawed toad. Journal of Morphology, 110,
61–77.

Di Masi, A., Leboffe, L., DeMarinis, E., Pagano, F., Cicconi, L., Rochette-Egly,

C.,… Nervi, C. (2015). Retinoic acid receptors: from molecular mecha-

nisms to cancer therapy.Molecular Aspects of Medicine, 41, 1–115.

Dinsmore, C. E. (1991). Lazzaro Spallazani: Concepts of generation and

regeneration. In C. E. Dinsmore (Ed.), A History of Regeneration Research
(pp. 67–90). Cambridge UK: Cambridge University Press.

Dinsmore, C. E. (1998). Conceptual foundations of metamorphosis and

regeneration:from historical links to common mechanisms. Wound
Repair and Regeneration, 6, 291–301.

Donaldson, D. J., & Mason, J. M. (1977). Inhibition of epidermal cell migra-

tion by concanavalinA in skinwounds of the adult newt. Journal of Exper-
imental Zoology, 200, 55–64.

Donaldson, D. J., Mahan, J. T., Yang, H., & Crossin, K. L. (1991). Tenascin

localization in skin wounds of the adult newtNotophthalmus viridescens.
Anatomical Record, 230, 451–459.

Dresden, M. (1969). Denervation effects on newt limb regeneration: DNA,

RNA, and protein synthesis.Developmental Biology, 19, 311–320.

Dresden, M., & Gross, J. (1970). The collagenolytic enzyme of the regen-

erating limb of the newt Triturus viridescens. Developmental Biology, 22,
129–137.

Dresden,M., &Moses, R. E. (1973).Denervation effects onnewt limb regen-

eration: DNA polymerase activity in vitro. Developmental Biology, 34,
346–350.

Drossopoulou, G., Lewis, K. E., Sanz-Ezquerro, J. J., Nikbakht, N., McMahon,

A. P., Hofmann, C., & Tickle, C. (2000). A model for anteroposterior pat-

terning of the vertebrate limb based on sequential long and short range

Shh signaling and BMP signaling.Development, 127, 1377–1348.

Duckmanton, A., Kumar, A., Chang, Y-T., & Brockes, J. (2005). A single

cell analysis of myogenic dedifferentiation induced by small molecules.

Chemistry and Biology, 12, 1117–1126.

Dudley, A. T., Ros, M. A., & Tabin, C. J. (2002). A re-examination of proxi-

modistal patterning during vertebrate limb development. Nature, 418,
539–544.



STOCUM 189

Echeverri, K., & Tanaka, E. M. (2005). Proximodistal patterning during limb

regeneration.Developmental Biology, 279, 391–401.

Egar, M. W. (1993). Affinophoresis as a test of axolotl accessory limbs. In J.

F. Fallon, P. F. Goetinck, R. O. Kelley, & D. L. Stocum (Eds.), Limb Develop-
ment and Regeneration, Part B (pp. 203–211). New York:Wiley-Liss.

Eldridge, A. G., Loktev, A. V., Hansen, D. V., Verschuren, E. W., Teimann, J. D.

R., & Jackson, P. K. (2006). The evi5 oncogene regulates cyclin accumula-

tion by stabilizing the anaphase-promoting complex inhibitor emi1.Cell,
124, 367–380.

Emerson, H. S. (1940). Embryonic induction in regenerating tissue of Rana
pipiens and Rana clamitans larvae. Journal of Experimental Zoology, 83,
191–222.

Eming, S. A., Wynn, T. A., & Martin, P. (2017). Inflammation and metabolism

in tissue repair and regeneration. Science, 356, 1026–1030.

Endo, T., Bryant, S. V., &Gardiner, D.M. (2004). A stepwisemodel system for

limb regeneration.Developmental Biology, 270, 135–145.

Endo, T., Yokoyama, H., Tamura, K., & Ide, H. (1997). Shh expression in

developing and regenerating limb buds of Xenopus laevis.Developmental
Dynamics, 209, 227–232.

Estrada, C. M., Park, C. D., Castilla, M., & Tassava, R. A. (1993). Monoclonal

antibody WE6 identifies an antigen that is up regulated in the wound

epithelium of news and frogs. In J. F. Fallon, P. F. Goetinck, R. O. Kelley, &

D. L. Stocum (Eds.), Limb Development and Regeneration Part B (pp. 271–

282). NewYork:Wiley-Liss.

Faber, J. (1960). An experimental analysis of regional organization in the

regenerating forelimb of the axolotl (Ambystoma mexicanum). Archiv
Biologie, 71, 1–67.

Fallon, J. F., &Crosby,G.M. (1975). The relationshipof the zoneof polarizing

activity to supernumerary limb formation (twinning) in the chick limb

bud.Developmental Biology, 42, 24–34.

Farkas, J. E., Freitas, P. D., Bryant, D. M., Whited, J. L., & Monaghan, J. R.

(2016). Neuregulin-1 signaling is essential for nerve-dependent axolotl

limb regeneration.Development, 143, 2724–2731.

Fekete, D. M., & Brockes, J. P. (1987). A monoclonal antibody detects a dif-

ference in the cellular compositionof developingand regenerating limbs

of newts.Development, 99, 589–602.

Fekete, D. M., & Brockes, J. P. (1988). Evidence that the nerve controls

molecular density of progenitor cells for limb regeneration. Develop-
ment, 103, 567–573.

Ferretti, P., & Brockes, J. P. (1988). Culture of newt cells from different tis-

sues and their expression of a regeneration-associated antigen. Journal
of Experimental Zoology, 247, 77–91.

Ferretti, P., & Brockes, J. P. (1990). The monoclonal antibody 22/18 rec-

ognizes a conformational change in an intermediate filament of the

newtNotophthalmus viridescens during limb regeneration.Cell and Tissue
Research, 259, 483–493.

Ferretti, P., & Brockes, J. P. (1991). Cell origin and identity in limb regenera-

tion and development.Glia, 4, 214–224.

Ferretti, P., Brockes, J. P., & Brown, R. (1991). A newt type II keratin

restricted to normal and regenerating limbs and tail is sensitive to

retinoic acid.Development, 111, 497–507.

Ferretti, P., Fekete, D. M., Patterson, M., & Lane, E. B. (1989). Transient

expression of simple epithelial keratins by mesenchymal cells of regen-

erating newt limb.Developmental Biology, 133, 415–424.

Filoni, S., Bernardini, S., & Cannata, S. M. (1991). The influence of denerva-

tion on grafted hindlimb regeneration of larval Xenopus laevis. Journal of
Experimental Zoology Part A, 260, 210–219.

Franco, C., Soares, R., Pires, E., Koci, K., Almeida, A. M., Santos, R., & Coelho,

A. V. (2013). Understanding regeneration through proteomics. Pro-
teomics, 13, 1–24.

French, V., Bryant, P. J., & Bryant, S. V. (1976). Pattern regulation in epimor-

phic fields. Science, 193, 969–981.

Fröbisch, N. B., Bickelmann, C., & Witzmann, F. (2014). Early evolu-

tion of limb regeneration in tetrapods: evidence from a 300-million-

year-old amphibian. Proceedings of the Royal Society of London B, 281,
20141550. http://doi.org/10.1098/rspb.2014.1550

Gardiner, D.M., & Bryant, S. V. (1996).Molecularmechanisms in the control

of limb regeneration: the role of homeobox genes. International Journal
of Developmental Biology, 40, 797–805.

Gardiner, D. M., & Bryant, S. V. (2002). The molecular basis of amphibian

limb regeneration: integrating the old with the new. Seminars in Cell and
Developmental Biology, 13, 345–352.

Gardiner, D. M., Blumberg, B., Komine, Y., & Bryant, S. V. (1995). Regulation

of HoxA expression in developing and regenerating axolotl limbs. Devel-
opment, 121, 1731–1741.

Gardiner,D.M.,Muneoka, K., &Bryant, S. V. (1986). Themigration of dermal

cells during blastema formation in axolotls. Developmental Biology, 118,
488–493.

Garza-Garcia, A., Driscoll, P. C., &Brockes, J. P. (2010). Evidence for the local

evolution of mechanisms underlying limb regeneration in salamanders.

Integrative and Comparative Biology, 50, 528–535.

Geng, J., Gates, P. B., Kumar, A., & Brockes, J. P. (2015). Identification of the

orphan gene Prod1 in basal and other salamander families. EcoDevo,6, 9.

Géraudie, J., & Ferretti, P. (1998). Gene expression during amphib-

ian limb regeneration. International Review of Cytology, 180,
1–50.

Ghosh, S., Roy, S., Seguin, C., Bryant, S. V., & Gardiner, D.M. (2008). Analysis

of the expression and function ofWnt-5a andWnt-5b in developing and

regenerating axolotl limbs. Development Growth and Differentiation, 50,
289–297.

Gilbert, S. F., & Barresi, M. J. F. (2016). Developmental Biology 11th Sunder-
landMA: Sinauer Associates.

Globus,M., & Alles, P. (1990). A search for immunoreactive substance P and

other neural peptides in the limb regenerate of the newtNotophthalmus
viridescens. Journal of Experimental Zoology, 254, 165–176.

Globus, M., Smith, M. J., & Vethamany-Globus, S. (1991). Evidence support-

ing a mitogenic role for substance P in amphibian limb regeneration.

Involvement of the inisotol phospholipid pathway.Annals of theNewYork
Academy of Science, 632, 396–399.

Globus, M., Vethamany-Globus, S., & Lee, Y. C. I. (1980). Effect of apical epi-

dermal cap onmitotic cycle and cartilage differentiation in regeneration

blastemata in the newt, Notophthalmus viridescens. Developmental Biol-
ogy, 75, 358–372.

Godwin, J. W., & Brockes, J. P. (2006). Regeneration, tissue injury and the

immune response. Journal of Anatomy, 209, 423–432.

Godwin, J. W., & Rosenthal, N. A. (2014). Scar-free wound healing and

regeneration in amphibians: immunological influences on regenerative

success.Differentiation, 87, 66–75.

Godwin, W., Pinto, A. R., & Rosenthal, N. A. (2013). Macrophages are

required for adult salamander limb regeneration. Proceedings of the
National Academy of Sciences USA, 110, 9415–9420.

Goldhamer, D. J., & Tassava, R. A. (1987). An analysis of proliferative activity

in innervated and denervated forelimb regenerates of the newtNotoph-
thalmus viridescens.Development, 100, 619–628.

Goldhamer,D. J., Tomlinson, B. L., &Tassava, R. A. (1989). Adevelopmentally

regulated epithelial antigen of the newt limb regenerate is also present

in avarietyof secretory/transport cell types.Developmental Biology,135,
392–404.

Golding, A., Guay, J., Herrera-Rincon, C., Levin, M., & Kaplan, D. L.

(2016). A tunable silk hydrogel device for studying limb regeneration

http://doi.org/10.1098/rspb.2014.1550


190 STOCUM

in adult Xenopus laevis. Public Library of Science One, Retrieved from

https://doi.org/10.1371/journal.pone.0155618

Gordon, H., & Brockes, J. P. (1988). Appearance and regulation of an antigen

associated with limb regeneration in Notophthalmus viridescens, Journal
of Experimental Zoology, 247, 232–243.

Gorsic, M., Majdic, G., & Kornel, R. (2008). Identification of differen-

tially expressed genes in 4-day axolotl limb blastema by suppres-

sion subtractive hybridization. Journal of Physiological Biochemistry, 64,
37–50.

Goss, R. J. (1956a). Regenerative inhibition following limb amputation

and immediate insertion into the body cavity. Anatomical Record, 126,
15–27.

Goss, R. J. (1956b). The regenerative responses of amputated limbs to

delayed insertion into thebody cavity.Anatomical Record,126, 283–297.

Goss, R. J. (1957a). The relation of skin to defect regulation in regenerating

half limbs. Journal of Morphology, 100, 547–564.

Goss, R. J. (1957b). The effect of partial irradiation on themorphogenesis of

limb regenerates. Journal of Morphology, 101, 131–148.

Goss, R. J. (1969). Principles of Regeneration. New York: Academic Press.

Griffin, K. J. P., Fekete, D. M., & Carlson, B. M. (1987). A monoclonal anti-

body stains myogenic cells in regenerating newt muscle. Development,
101, 267–277.

Grillo, R. S. (1971). Changes in mitotic activity during limb regeneration in

Triturus.Oncology, 25, 347–355.

Groell, A. L., Gardiner, D. M., & Bryant, S. V. (1993). Stability of positional

identity of axolotl blastema cells in vitro. Roux's Archives of Developmen-
tal Biology, 202, 170–175.

Guimond, J. C., Levesque, M., Michaud, P. L., Berdugo, J., Finnson, K.,

Philip, A., & Roy, S. (2010). BMP-2 functions independently of Shh

signaling and triggers cell condensation and apoptosis in regener-

ating axolotl limbs. BioMed Central Developmental Biology, 10, 15.

https://doi.org/10.1186/1471-213X-10-15

Gulati, A. K., Zakewski, A. A., & Reddi, A. H. (1983). Immunofluorescent

study of the distribution of fibronectin and laminin during limb regen-

eration in the adult newt.Developmental Biology, 96, 355–365.

Han, M-J., & Kim, W-S. (2002). Effect of retinoic acid on Fgf-8 expression in
regenerating urodele amphibian limbs. Korean Journal of Biological Sci-
ence, 6, 301–304.

Han, M-J., An, J-Y., & Kim, W-S. (2001). Expression patterns of Fgf-8 dur-

ing development and limb regeneration of the axolotl. Developmental
Dynamics, 220, 40–48.

Harfe, B. D., Scherz, P. J., Nissim, S., Tian H., McMahon, A. P., & Tabin, C. J.

(2004). Evidence for an expansion-based temporal Shh gradient in spec-

ifying vertebrate digit identities. Cell, 118, 517–528.

Harty, M., Neff, A. W., King, M. W., & Mescher, A. L. (2003). Regeneration

or scarring: an immunologic perspective. Developmental Dynamics, 226,
268–279.

Hay, E. D. (1958). The fine structure of blastema cells and differentiating

cartilage cells in regenerating limbs ofAmblystoma larvae. Journal of Bio-
physical and Biochemical Cytology, 4, 583–592.

Hay, E. D. (1959). Electron microscopic observations of muscle dediffer-

entiation in regenerating Amblystoma limbs. Developmental Biology, 1,
555–585.

Hay, E. D., & Fischman, D. A. (1961). Origin of the blastema in the regener-

ating newt Triturus viridescens. An autoradiographic study using tritiated
thymidine to follow cell proliferation andmigration.Developmental Biol-
ogy, 3, 26–59.

Hayashi, S., Kawaguchi, A., Uchiyami, I., Kawasumi-Kita, A., Kobayashi, T.,

Nishide, H.,… Yokoyama, H. (2015). Epigenetic modification maintains

intrinsic limb-cell identity in Xenopus limb bud regeneration. Develop-
mental Biology, 406, 271–282.

Heber-Katz, E., Zhang, Y., Bedelbaeva, K., Song, F., Chen, X., & Stocum,

D. L. (2013). Cell cycle regulation and regeneration. New Perspectives
in Regeneration. Current Topics in Microbiology and Immunology, 367,
253–277.

Hechavarria, D., Dewilde, A., Braunhut, S., Levin, M., & Kaplan, D. L.

(2010). BioDome regenerative sleeve for biochemical and biophysical

stimulation of tissue regeneration. Medical Engineering and Physics, 32,
1065–1073.

Held, L. I. Jr. (1992). Models for Embryonic Periodicity. Karger, Basel.

Hill, D. S., Ragsdale, C.W., & Brockes, J. P. (1993). Isoform-specific immuno-

logical detection of newt retinoic acid receptor 𝛿1 in normal and regen-

erating limbs.Development, 117, 937–945.

Holder, N. (1989). Organization of connective tissue patterns by dermal

fibroblasts in the regenerating axolotl limb.Development,105, 585–593.

Holder, N., & Reynolds, S. (1984). Morphogenesis of the amphibian limb

blastema: the relationship between pattern and form. Journal of Embry-
ology and Experimental Morphology, 79, 165–181.

Holder, N., & Tank, P. W. (1979). Morphogenetic interactions occurring

between blastemas and stumps after exchanging blastemas between

normal and double-half forelimbs in the axolotl Ambystoma mexicanum.
Developmental Biology, 74, 302–314.

Holder, N., &Weekes, C. (1984). Regeneration of surgically created mixed-

handed axolotl forelimbs: pattern formation in the dorsal-ventral axis.

Journal of Embryology and Experimental Morphology, 82, 217–239.

Holder, N., Tank, P. W., & Bryant, S. V. (1980). Regeneration of symmetrical

forelimbs in the axolotl Ambystoma mexicanum. Developmental Biology,
74, 302–314.

Holman, E. C., Campbell, L. J., Hines, J., & Crews, C. M. (2012). Microarray

analysis of microRNA expression during axolotl limb regeneration. Pub-
lic Library of Science One, 7(9), e41804.

Ide, H. (2012). Bone pattern formation in mouse limbs after amputation at

the forearm level.Developmental Dynamics, 241, 435–441.

Ide, H., Wada, N., & Uchiyama, K. (1994). Sorting out of cells from differ-

ent parts and stages of the chick limb bud. Developmental Biology, 162,
71–76.

Ide, H., Yokoyama, H., Endo, T., Omi, M., Tamura, K., &Wada, N. (1998). Pat-

tern formation in dissociated limb budmesenchyme in vitro and in vivo.

Wound Repair and Regeneration, 6, 398–402.

Imokawa, Y., & Yoshizato, K. (1997). Expression of Sonic hedgehog gene

in regenerating newt limb blastemas recapitulates that in develop-

ing limb buds. Proceedings of the National Academy of Sciences USA, 94,
9159–9164.

Imokawa, Y., Simon, A., & Brockes, J. P. (2004). A critical role for thrombin in

vertebrate lens regeneration. Philosophical Transactions of the Royal Soci-
ety B, 369, 765–776.

Iten, L. E., & Bryant, S. V. (1975). The interaction between the blastema

and stump in the establishment of the anterior−posterior and

proximal−distal organization of the limb regenerate. Developmen-
tal Biology, 44, 119–147.

Izpisua Belmonte, J. C., Ede, D. A., Tickle, C., & Duboule, D. (1992). The mis-

expression of posterior Hox-4 genes in talpid (ta3) mutant wings cor-

relates with the absence of anteroposterior polarity. Development, 114,
959–963.

Jazwinska, A., & Sallin, P. (2016). Regeneration versus scarring in vertebrate

appendages and heart. Journal of Pathology, 238, 233–246.

Jenkins, L. S., Duerstock, B. S., & Borgens, R. B. (1996). Reduction of the cur-

rent of injury leaving the amputation inhibits limb regeneration in the

red spotted newt.Developmental Biology, 178, 251–262.

https://doi.org/10.1371/journal.pone.0155618
https://doi.org/10.1186/1471-213X-10-15


STOCUM 191

Jhamb, D., Rao, N., Milner, D. J., Song, F., Cameron, J. A., Stocum, D. L., &

Palakal, M. J. (2011). Network based transcription factor analysis of

regenerating axolotl limbs. BioMed Central Bioinformatics, 12, 80.

Ju, B-G., & Kim, W-S. (1994). Pattern duplication by retinoic acid treat-

ment in the regenerating limbs of Korean salamander larvae, Hynobius
leechii correlates well with the extent of dedifferentiation. Developmen-
tal Dynamics, 199, 253–267.

Ju, B-G., & Kim, W-S. (1998). Upregulation of cathepsin D expression in

the dedifferentiating salamander limb regenerate and enhancement

of its expression by retinoic acid. Wound Repair and Regeneration, 6,
S349–S358.

Jung, D-W., &Williams, D. R. (2011). Novel chemically defined approach to

produce multipotent cells from terminally differentiated tissue syncy-

tia. American Chemical Socirty Chemical Biology, 6, 553–562.

Kawakami, Y., Esteban, C. R., Matsui, T., Rodriguez-Leon, J., Kato, S.,

& Izpisua-Belmonte, J. C. (2004). Sp8 and Sp9, two closely related

buttonhead-like transcription factors, regulate FDgf8 expression and

limb outgrowth in vertebrate embryos.Development, 131, 4763–4774.

Keeble, S., &Maden, M. (1986). Retinoic acid-binding protein in the axolotl:

distribution inmature tissues and timeof appearanceduring limb regen-

eration.Developmental Biology, 117, 435–441.

Keeble, S., & Maden, M. (1989). The relationship among retinoid structure,

affinity for retinoic acid-binding protein, and ability to respecify pattern

in the regenerating axolotl limb.Developmental Biology, 132, 26–34

Keenan, S. R., &Beck,C.W. (2016). Xenopus limbbudmorphogenesis.Devel-
opmental Dynamics, 245, 233–243.

Keller, R., Davidson, L., Edlund, A., Elul, T., Ezin, M., Shook, P., & Skoglund,

P. (2000). Mechanisms of convergence and extension by cell interca-

lation. Philosopical Transactions of the Royal Society of London B, 355,
897–922.

Kelly, D. J., & Tassava, R. A. (1973). Cell division and ribonucleic

acid synthesis during the initiation of limb regeneration in larval

axolotls (Ambystoma mexicanum). Journal of Experimental Zoology, 185,
45–54.

Kestler, H. A., & Kuhl, M. (2008). From individual Wnt pathways towards a

Wnt signaling network. Philosophical Transactions of the Royal Society B,
363, 1333–1347.

Kim, W-S., & Stocum, D. L. (1986a). Retinoic acid modifies positional mem-

ory in the anteroposterior axis of regenerating axolotl limbs. Develop-
mental Biology, 114, 170–179.

Kim, W-S., & Stocum, D. L. (1986b). Effects of retinoic acid on regenerat-

ing normal and double half limbs of axolotls. Histological studies. Roux's
Archives of Developmental Biology, 195, 243–251.

Kim, W-S., & Stocum, D. L. (1986c). Effects of retinoids on regenerating

limbs: comparison of retinoic acid and arotinoid at different amputation

levels. Roux's Archives of Developmental Biology, 195, 455–463.

Kim,W-H., Jung,D-W.,Kim, J., Im, S-H.,Hwang, S. Y., &Williams,D.R. (2012).

Small molecules that recapitulate the early steps of urodele amphibian

limb regeneration and confer multipotency. American Chemical Society
Chemical Biology, 7, 732–743.

King, B. L., & Yin, V. P. (2016). A conserved microRNA regulatory circuit

is differentially controlled during limb/appendage regeneration. Public
Library of Science One, 11, e0157106.

King, M. W., Neff, A. W., & Mescher, A. L. (2009). Proteomics analysis of

regenerating amphibian limbs: changes during the onset of regenera-

tion. International Journal of Developmental Biology, 53, 955–969.

King, M.W., Nguyen, T., Calley, J., Harty, M.W., Muzinich,M. C., Mescher, A.

L.,…Neff, A. W. (2003). Identification of genes expressed during Xeno-
pus laevis limb regeneration by using subtractive hybridization.Develop-
mental Dynamics, 226, 398–409.

Kintner, C. R., & Brockes, J. P. (1984). Monoclonal antibodies identify

blastemal cells derived from dedifferentiating muscle in newt limb

regeneration.Nature, 308, 67–69.

Kintner, C. R., & Brockes, J. P. (1985). Monoclonal antibodies to the cells of

a regenerating limb. Journal of Embryology and Experimental Morphology,
89, 37–55.

Knapp, D., Schulz, H., Rascon, C. A., Volkmer, M., Scholtz, J., Nacu, E., …
Tanaka, E.M. (2013).Comparative transcriptional profilingof theaxolotl

limb identifies a tripartite regeneration-specific gene program. PLoS
ONE 8, e61352.

Koshiba, K., Kuroiwa, A., Yamamoto, H., Tamura, K., & Ide, H. (1998). Expres-

sion ofMax genes in regenerating and developing limbs of axolotl. Jour-
nal of Experimental Zoology, 282, 703–714.

Kragl, M., Knapp, D., Nacu, E., Khattak, S., Maden, M., Epperlein, H. H., &

Tanaka, E. M. (2009). Cells keep a memory of their tissue origin during

axolotl limb regeneration.Nature, 460, 60–65.

Krasner, G.N., &Bryant, S. V. (1980). Distal transformation fromdouble half

forearms in the axolotl Ambystoma mexicanum. Developmental Biology,
74, 315–325.

Kumar, A., & Brockes, J. P. (2007). Molecular basis for the nerve depen-

dence of limb regeneration in an adult vertebrate. Science, 318,
772–777.

Kumar, A., & Brockes, J. P. (2012). Nerve dependence in tissue, organ, and

appendage regeneration.Neuroscience, 35, 691–699.

Kumar, A., Delgado, J-P., Gates, P. B., Neville, G., Forge, A., & Brockes, J. P.

(2011). The aneurogenic limb identifies developmental cell interactions

underlying vertebrate limb regeneration. Proceedings of the National
Academy of Sciences USA, 108, 13588–13593.

Kumar, A., Velloso, C., Imokawa, Y., & Brockes, J. P. (2004). The regenera-

tive plasticity of isolatedurodelemyofibers and its dependenceonMX1.

Public Library of Science Biology, 2, e218.

Lash, J. W. (1955). Studies on wound closure in urodeles. Journal of Experi-
mental Zoology, 128, 13–28.

Laube, F., Heister, M., Scholz, C., Borchardt, T., & Braun, T. (2006). Re-

programmingof newt cardiomyocytes is inducedby tissue regeneration.

Journal of Cell Science, 119, 4719–4729.

Laurencin, C. T., & Nair, L. S. (2016). The quest toward limb regenera-

tion: a regenerative engineering approach. Regenerative Biomaterials, 3,
123–125. https://doi.org/10.1093/rbw002

Law, A. J., Shannon-Weickert, C., Hyde, T. M., Kleinman, J. E., & Harrison, P.

J. (2004). Neuregulin-1 (NRG-1) mRNA and protein in the adult human

brain.Neuroscience, 127, 125–136.

Lebedev, M. A., & Nicolelis, M. A. L. (2006). Brain−machine interfaces: past,

present and future. Trends in Neuroscience, 29, 536–546.

Lebowitz, P., & Singer, M. (1970). Neurotrophic control of protein syn-

thesis in the regenerating limb of the newt Triturus. Nature, 225,
824–827.

Lee, E-H., & Kim, W-S. (1996). Dedifferentiation state specific increase of

trypsin and chymotrypsin-like protease activities during urodele limb

regeneration and their enhancement by retinoic acid treatment. Korean
Journal of Zoology, 39, 65–74.

Lee, E-H., Ju, B-G., & Kim, W-S. (2012). Endogenous retinoic acid mediates

the early events in salamander limb regeneration. Animal Cells and Sys-
tems, 16, 462–468.

Leitingtung, Y., Dahn, R. D., Li, Y., Fallon, J. F., & Chiang, C. (2002). Shh and

Gli3 are dispensable for limb skeleton formation but regulate digit num-

ber and identity.Nature, 418, 979–983.

Lentz, T. L. (1967). Fine structure of nerves in the regenerating limb of the

newt Triturus. American Journal of Anatomy, 121, 647–669.

https://doi.org/10.1093/rbw002


192 STOCUM

Levesque, M., Gatien, S., Finnson, K., Desmeules, S., Villard, E., Pilote,

M., … Roy, S. (2007). Transforming growth factor 𝛽 signaling is essen-

tial for limb regeneration in axolotls. Public Library of Science One, 2,
e1277.

Levin, M. (2011). The wisdom of the body: future techniques and

approaches to morphogenetic fields in regenerative medicine,

developmental biology and cancer. Regenerative Medicine, 6,
667–675.

Levin, M. (2013). Reprogramming cells and tissue patterning via bioelec-

trical pathways: molecular mechanisms and biomedical opportunities.

WIREs Systems Biology andMedicine, 5, 657–676.

Lheureux, E. (1975). Regeneration des membres irradies de Pleurodeles
waltlii Michah. (Urodele). Influence des qualites et orientations des

greffons non irradies. Roux's Archives of Developmental Biology, 176,
303–327.

Lheureux, E. (1977). Importance of limb tissue associations in the devel-

opment of nerve-induced supernumerary limbs in the newt Plurodeles
waltlii Michah. Journal of Embryology and Experimental Morphology, 38,
151–173.

Lin,G.,&Slack, J.M. (2008). Requirement forWntandFGFsignaling inXeno-
pus tadpole tail regeneration.Developmental Biology, 316, 323–335.

Lin, G., Chen, Y., & Slack, J. M. (2013). Imparting regenerative capacity to

limbs by progenitor cell transplantation.Developmental Cell, 24, 41–51.

Locatelli, P. (1929). Der Einfluss des Nervensystems auf die Regeneration.

Wilhelm Roux's Archiv fur Entwicklungsmechanke der Organismen, 114,
686–770.

Looso, M., Preussner, J., Sousounis, K., Bruckskotten, M., Michel, C. S.,

Lignelli, E., … Braun, T. (2013). A de novo assembly of the newt tran-

scriptome combined with proteomic validation identifies new pro-

tein families expressed during tissue regeneration. Genome Biology, 14,
R16.

Loyd, R.M., & Tassava, R. A. (1980). DNA synthesis andmitosis in adult newt

limbs following amputation and insertion into the body cavity. Journal of
Experimental Zoology, 214, 61–69.

Ludolph,D., Cameron, J. A., &Stocum,D. L. (1990). Theeffect of retinoic acid

on positional memory in the dorsoventral axis of regenerating axolotl

limbs.Developmental Biology, 140, 41–52.

Lundkvist, J., & Lendhal, U. (2001). Notch and the birth of glial cells. Trends in
Neuroscience, 9, 492–494.

MacCabe, A. B., Gasseling,M. T., & Saunders, J.W. Jr (1973). Spatiotemporal

distribution of mechanisms that control outgrowth and anteriposterior

polarization of the limb bud in the chick embryo. Mechanisms of Aging
and Development, 2, 1–12.

Maden, M. (1977). The regeneration of positional information in the

amphibian limb. Journal of Theoretical Biology, 69, 735–753.

Maden, M. (1978). Neurotrophic control of the cell cycle during amphibian

limb regeneration. Journal of Embryology and Experimental Morphology,
48, 169–175.

Maden, M. (1979a). Regulation and limb regeneration: the effect of prtial

irradiation. Journal of Embryology and Experimental Morphology, 52,
183–192.

Maden,M. (1979b). The role of irradiated tissue during pattern formaton in

the regenerating limb. Journal of Embryology and Experimental Morphol-
ogy, 50, 235–242.

Maden, M. (1980a). Structure of supernumerary limbs. Nature, 287,
803–805.

Maden, M. (1980b). Intercalary regeneration in the amphibian limb and

the rule of distal transformation. Journal of Embryology and Experimental
Morphology, 56, 201–209.

Maden, M. (1981). Morphallaxis in an epimorphic system: size, growth con-

trol and pattern formation during amphibian limb regeneration. Journal
of Embryology and Experimental Morphology, 65, (suppl), 257–167.

Maden,M. (1982a). Vitamin A and pattern formation in regenerating limbs.

Nature, 295, 672–675.

Maden,M. (1982b). Supernumerary limbs in amphibians.AmericanZoologist,
22, 131–142.

Maden, M. (1983). A test of the predictions of the boundary model regard-

ing supernumerary limb structure. Journal of Embryology and Experimen-
tal Morphology, 76, 147–155.

Maden,M. (1997). Retinoic acid and its receptors in limb regeneration. Sem-
inars in Cell and Developmental Biology, 8, 445–453.

Maden, M. (1998). Retinoids as endogenous components of the regenerat-

ing limb and tail.Wound Repair and Regeneration, 6, 358–365.

Maden, M., & Keeble, S. (1987). The role of cartilage and fibronectin during

respecification of pattern induced in the regenerating amphibian limb

by retinoic acid.Differentiation, 36, 175–184.

Maden, M., & Mustafa, K. (1982a). The structure of 180o supernumerary

limbs and a hypothesis of their formation. Developmental Biology, 93,
257–266.

Maden, M., & Mustafa, K. (1982b). Axial organization of the regenerating

limb: asymmetrical behavior following skin transplantation. Journal of
Embryology and Experimental Morphology, 70, 197–213.

Maden,M., &Mustafa, K. (1984). The cellular contributions of blastema and

stump to 180o supernumerary limbs in the axolotl. Journal of Embryology
and Experimental Morphology, 84, 233–253.

Maden, M., & Turner, R. N. (1978). Supernumerary limbs in the axolotl.

Nature, 273, 232–234.

Maden, M., Avila, D., Roy, M., & Seifert, A. W. (2015). Tissue-specific

reactions to positional discontinuities in the regenerating axolotl limb.

Regeneration, 2, 137–147.

Makanae, A., Mitogawa, K., & Satoh, A. (2014a). Co-operative Bmp-and Fgf-

signaling inputs convert skinwoundhealing to limb formation in urodele

amphibians.Developmental Biology, 396, 57–66.

Makanae, A.,Mitogawa, K., & Satoh, A. (2014b). Implication of two different

regeneration systems in limb regeneration. Regeneration, 1, 1–9.

Maki, N., Suetsugu-Maki, R., Tarui, H., Agata, K., Del-Rio-Tsonis, K., & Tsonis,

P. A. (2009). Expression of stem cell pluripotency factors during regen-

eration in newts.Developmental Dynamics, 238, 1613–1616.

Manson, J., Tassava, R. A., & Nishikawara, M. (1976). Denervation effects

on aspartate carbamyl transferase, thymidine kinase, and uridine kinase

activities in newt regenerates.Developmental Biology, 50, 109–121.

Masake, H., & Ide, H. (2007). Regeneration potency of mouse limbs. Devel-
opment Growth and Differentiation, 49, 89–98.

Mathew, L. K., Sengupta, S., Kawakami, A., Andreasen, E. A., Lohr, C.,

Loynes, C. A., … Tanguay, R. L. (2007). Unraveling tissue regeneration

pathways using chemical genetics. Journal of Biological Chemistry, 282,
35202–35210.

Matsuda, H., Yokoyama, H., Endo, T., Tamura, K., & Ide, H. (2001). An epider-

mal signal regulates Lmx-1 expression and dorsal−ventral pattern dur-

ing Xenopus limb regeneration.Developmental Biology, 229, 351–362.

Mattson, P. (1976). Regeneration. New York: BobbsMerrill.

McCormick, A. M., Shubeita, H. E., & Stocum, D. L. (1988). Cellular retinoic

acid binding protein: detection and quantitation in regenerating axolotl

limbs. Journal of Experimental Zoology, 245, 270–276.

McCullough, W. D., & Tassava, R. A. (1976). Determination of the blastema

cell cycle in regenerating limbs of the arval axolotl Ambystoma mexi-
canum.Ohio Journal of Science, 76, 63–64.



STOCUM 193

McCusker, C. D., & Gardiner, D. M. (2013). Positional information is repro-

grammed in blastema cells of the regenerating limb of the axolotl

(Ambystomamexicanum). Public Library of Science One, 8, e77064.

McCusker, C. D., Diaz-Castillo, C., Sosnik, J., & Gardiner, D. M. (2016).

Cartilage and bone cells do not participate in skeletal regen-

eration in Ambystoma mexicanum limbs. Developmental Biology,
https://doi.org/10.1016/j.ydbio.2016.05.032

McGann, C. J., Odelberg, S. J., & Keating, M. T. (2001). Mammalian myotube

dedifferentiation induced by newt regeneration extract. Proceedings of
the National Academy of Sciences USA, 98, 13699–13704.

Meinhardt, H. (1982). Models of Biological Pattern Formation. London: Aca-
demic Press.

Meinhardt, H. (1983a). A boundary model for pattern formation in ver-

tebrate limbs. Journal of Embryology and Experimental Morphology, 76,
115–137.

Meinhardt,H. (1983b). Abootstrapmodel for theproximodistal pattern for-

mation in vertebrate limbs. Journal of Embryology and Experimental Mor-
phology, 76, 139–146.

Mercader, N., Tanaka, E., & Torres, M. (2005). Proximodistal identity during

vertebrate limb regeneration is regulated by Meis homeodomain pro-

teins.Development, 132, 4131–4142.

Mercer, S. E., Cheng, C-H., Atkinson, D. L., Kromery, J., Guzman, C. E., Kent,

D. T.,… Simon,H.G. (2012).Multi-tissuemicroarray analysis identifies a

molecular signature of regeneration. Public Library of Science One, 7(12),
e52375.

Mescher, A. L. (1976). Effects on adult newt limb regeneration of partial and

complete skin flaps over the amputation surface. Journal of Experimental
Zoology, 195, 117–128.

Mescher, A. L. (2017). Macrophages and fibroblasts during inflammation

and tissue repair in models of organ regeneration. Regeneration, 4,
39–53.

Mescher, A. L., & Kiffmeyer, W. R. (1992). Axonal release of transferrin in

peripheral nerves of axolotls during regeneration. In C. H. Taban & B.

Boilly (Eds.), Keys for Regeneration: Monographs in Developmental Biology
(Vol. 23, pp. 100–109).Basel: Karger.

Mescher, A. L., & Munaim, S. L. (1986). Changes in the extracellular matrix

and glycosaminoglycan synthesis during the initiation of regeneration in

adult newt forelimbs. Anatomical Record, 214, 424–431.

Mescher, A. L., & Neff, A. W. (2006). Limb regeneration in amphib-

ians: immunological considerations. The Scientific World Development &
Embryology, 1(S1), 1–11.

Mescher, A. L., & Tassava, R. A. (1976). Denervation effects onDNA replica-

tion andmitosis during the initiationof limb regeneration in adult newts.

Developmental Biology, 44, 187–197.

Mescher, A. L., Connell, E., Hsu, C., Patel, C., & Overton, B. (1997). Transfer-

rin is necessary and sufficient for the neural effect on growth in amphib-

ian limb regeneration blastemas. Development Growth and Differentia-
tion, 39, 677–684.

Mescher, A. L., Neff, A.W., &King,M.W. (2013).Public Library of ScienceOne,
8(11), e80477.

Mescher, A. L., Neff, A.W., &King,M.W. (2017). Inflammation and immunity

in organ regeneration. Developmental and Comparative Immunology, 66,
98–110.

Mescher, A. L., White, G. W., & Brokaw, J. J. (2000). Apoptosis in regener-

ating and denervated nonregenerating urodele forelimbs.Wound Repair
and Regeneration, 8, 110–116.

Minutti, C.M., Jackson-Jones, L. H., Garcia-Fojeda, B., Knipper, J. A., Suther-

land, T. E., Logan, N., … Allen, J. E. (2017). Local amplifiers of IL-4R𝛼-

mediated macrophage activation promote repair in lung and liver. Sci-
ence, 356, 1076–1080.

Mittenthal, J. E. (1981). The rule of normal neighbors: a hypothe-

sis for morphogenetic pattern regulation. Developmental Biology, 88,
15–26.

Miyazaki, K., Uchiyawa, K., Imokawa, Y., & Yoshizato, K. (1996). Cloning and

characterization of of cDNAs formatrix metalloproteinases of regener-

ating newt limbs.Proceedings of theNational Academy of Sciences USA,93,
6819–6824.

Monaghan, J. R., &Maden,M. (2012). Visualization of retinoic acid signaling

in transgenic axolotls during limb development and regeneration.Devel-
opmental Biology, 368, 63–75.

Monaghan, J. R., Epp, L. G., Putta, S., Page, R. B., Walker, J. A., & Beachy,

C. K. (2009). Microarray and cDNA sequence analysis of transcription

during nerve-dependent limb regeneration. Bio-Medical Central Biology,
7, 1.

Monaghan, J. R., Athippozhy, A., Seifert, A. W., Putta, S., Stromberg, A.,

Maden, M., … Voss, S. R. (2012). Gene expression patterns specific

to the regenerating limb of the Mexican axolotl. Biology Open, 1,
937–948.

Monkmeyer, J., Ludolph, D. C., Cameron, J. A., & Stocum, D. L. (1992).

Retinoic acid-induced change in anteroposterior positional identity in

regenerating axolotl limbs is dose-dependent. Developmental Dynamics,
193, 286–294.

Morais da Silva, S. M., Gates, P. B., & Brockes, J. P. (2002). The newt ortholog

of CD59 is implicated in proximodistal identity during amphibian limb

regeneration.Developmental Cell, 3, 547–555.

Morzlock, F. V., & Stocum, D. L. (1971). Patterns of RNA synthesis in

regenerating limbs of the adult newt Triturus viridescens.Wilhelm Roux's
Archives of Developmental Biology, 24, 106–118.

Morzlock, F. V., & Stocum, D. L. (1972). Neural control of RNA synthesis in

regenerating limbs of the adult newt Triturus viridescens.Wilhelm Roux's
Archives of Developmental Biology, 171, 170–180.

Mosteiro, L., Pantoja, C., Aleazar, N., Marion, R. M., Chondronasiou, D.,

Rovira, M., … Serrano, M. (2016). Tissue damage and senescence pro-

vide critical signals for cellular reprogramming in vivo. Science, 354,
6315. https://doi.org/10.1126/science.aaf4445.

Mount, J. G., Muzylal, M., Allan, S., Althnajan, T., McGonnell, I. M., &

Price, J. S. (2006). Evidence that the canonical Wnt signaling path-

way regulates deer antler regeneration. Developmental Dynamics, 235,
1390–1399.

Mullen, L. M., Bryant, S. V., Torok, M. A., Blumberg, B., & Gardiner, D.

M. (1996). Nerve dependency of regeneration: the role of Distal-less
and FGF signaling in amphibian limb regeneration. Development, 122,
3487–3497.

Muneoka, K., & Bryant, S. V. (1984). Cellular contribution to supernumerary

limbs in the axolotl, Ambystoma mexicanum. Developmental Biology, 105,
166–178.

Muneoka, K., Fox, W. F., & Bryant, S. V. (1986a). Cellular contribution from

dermis and cartilage to the regenerating limb blastema in axolotls.

Developmental Biology, 116, 256–260.

Muneoka, K., Holler-Dinsmore,G.V., &Bryant, S. V. (1986b). Pattern discon-

tinuity, polarity and directional intercalation in axolotl limbs. Journal of
Embryology and Experimental Morphology, 93, 51–72.

Mustard, J., & Levin, M. (2014). Bioelectrical mechanisms for reprogram-

ming growth and form: taming physiological networks for soft body

robotics. Soft Robotics, 1, 169–191.

Nacu, E., & Tanaka, E. M. (2011). Limb regeneration a new development?

Annual Review of Cell and Developmental Biology, 27, 409–440.

Nacu, E., Gromberg, E., Oliveira, C. R., Dreschel, D., & Tanaka, E. M. (2016).

FGF8 and SHH substitute for anterior−posterior tissue interactions to
induce limb regeneration.Nature, 533, 407–410.

https://doi.org/10.1016/j.ydbio.2016.05.032
https://doi.org/10.1126/science.aaf4445


194 STOCUM

Nacu, E., Glausch, M., Le, H. Q., Damanik, F. F., Schuez, M., Knapp, D., …
Tanaka, E. M. (2013). Connective tissue cells but not muscle cells are

involved in establishing the proximo-distal outcome of limb regenera-

tion in the axolotl.Development, 140, 513–518.

Nag, A. C., Healy, C. J., & Cheng, M. (1979). DNA synthesis and mito-

sis in adult amphibian cardiac muscle cells in vitro. Science, 205,
1281–1282.

Namenwirth, M. (1974). The inheritance of cell differentiation during limb

regeneration in the axolotl.Developmental Biology, 41, 42–56.

Nardi, J. B., & Stocum, D. L. (1983). Surface properties of regenerating limb

cells: evidence for gradationalong theproximodistal axis.Differentiation,
25, 27–31.

Needham, A. E. (1952). Regeneration and Wound Healing. (Metheun's Mono-
graphs on Biological Subjects). New York:Wiley.

Nguyen,M., Singhal, P., Pier, J., Shefelbine, S. J., Maden,M., Voss, S.,…Mon-

aghan, J. R. (2017). Retinoic acid receptor regulation of epimorphic and

homeostatic regeneration in the axolotl.Development, 144, 601–611.

Niazi, I. A. (1996). Background to work on retinoids and amphibian limb

regeneration: studies on anuran tadpoles—a retrospect. Journal of Bio-
science, 21, 273–297.

Niazi, I. A., Pescetelli, M. J., & Stocum, D. L. (1985). Stage dependent effects

of retinoic acid on regenerating urodele limbs.WilhelmRoux's Archives of
Developmental Biology, 194, 355–363.

Nohno, T., Koyama, E., Myokai, F., Taniguchi, S., Ohuchi, H., Saito, T., & Noji,

S. (1993). A chicken homeobox gene related to Drosophila paired is pre-
dominantly expressed in the developing limb. Developmental Biology,
158, 254–264.

Nye, H. L. D., Cameron, J. A., Chernoff, E. A. G., & Stocum, D. L. (2003).

Regeneration of the urodele limb: a review. Developmental Dynamics,
226, 280–294.

Oberpriller, J.O., &Oberpriller, J. C. (1974). Responseof the adult newt ven-

tricle to injury. Journal of Experimental Zoology, 187, 249–253.

Odelberg, S. J., Kollhof, A., & Keating, M. (2001). Dedifferentiation of mam-

malianmyotubes induced bymsx-1. Cell, 103, 1099–1109.

Ohgo, S., Itoh, A., Suzuki, M., Satoh, A., Yokoyama, H., & Tamura, K. (2010).

Analysis of hoxa11 and hoxa13 expression during patternless limb

regeneration in Xenopus.Developmental Biology, 338, 148–157.

Olsen, C. L., Barger, P. M., & Tassava, R. A. (1984). Rescue of blocked cells

by reinnervation in denervated forelimb stumps of larval salamanders.

Developmental Biology, 106, 399–405.

Onda, H., & Tassava, R. A. (1991). Expression of the 9G1 antigen

requires nerves and mesenchyme. Journal of Experimental Zoology, 226,
325–329.

Onda, H., Poulin, M. L., Tassava, R. A., & Chiu, I-M. (1991). Characterization

of a newt tenascin cDNAand localizationof tenascinmRNAduringnewt

limb regeneration by in situ hybridization. Developmental Biology, 148,
219–232.Newtmsx-1

Pajcini, K. V., Corbel, S. Y., Sage, J., Pomerantz, J. H., & Blau, H. M. (2010).

Transient inactivation ofRb andARF yields regenerative cells frompost-

mitotic mammalianmuscle. Cell Stem Cell, 7, 198–213.

Papageorgiou, S., & Holder, N. (1983). The structure of supernumerary

limbs formed after 180o blastemal rotation in the newt Triturus cristatus.
Journal of Embryology and Experimental Morphology, 74, 143–158.

Park, I-S., & Kim, W-S. (1999). Modification of gelatinase activity corre-

lates with the dedifferentiation profile of regenerating axolotl limbs.

Molecules and Cells, 9, 119–126.

Pecorino, L. T., Entwistle, A., & Brockes, J. P. (1996). Activation of a single

retinoic acid receptor isoform mediates proximodistal respecification.

Current Biology, 65, 63–69.

Pedrocchi, A., Ferrante, S., Ambrosini, E., Gandolla, M., Casellato, C.,

Schauer, T.,… Ferrigno, G. (2013). MUNDUS project: Multimodal Neu-

roprosthesis for Daily Upper Limb Support. Journal of Neuroengineering
Rehabilitation, 10, 66. https://doi.org/10.1186/1743-0003-10-66

Pennock, R., Bray, E., Pryor, P., James, S., McKeegan, P., Sturmey, R., & Gen-

ever, P. (2015). Human cell differentiation inmesenchymal condensates

through controlled autophagy. Scientific Reports, 5, 13113.

Pescitelli, M. J., & Stocum, D. L. (1980). The origin of skeletal structures dur-

ing intercalary regeneration of larval Ambystoma limbs. Developmental
Biology, 79, 255–275.

Pescitelli, M. J., & Stocum,D. L. (1981). Non-segmental organization of posi-

tional information in regeneratingAmbystoma limbs.Developmental Biol-
ogy, 82, 69–85.

Pezzulo, G., & Levin, M. (2015). Re-membering the body: applications

of computational neuroscience to the top-down control of regen-

eration of limbs and other complex organs. Integrative Biology, 7,
1487–1517.

Phan, A. Q., Lee, J., Oei, M., Flath, C., Hwe, C., Mariano, R., … Gardiner,

D. M. (2015). Position information in axolotl and mouse limb ECM is

mediated via heparin sulfates and FGF during limb regeneration n the

axolotl (Ambystomamexicaum). Regeneration, 2, 182–201.

Pirotte, N., Leynen, N., Artois, T., & Smeets, K. (2015). Do you have the

nerves to regenerate? The importance of neural signaling in the regen-

eration process.Developmental Biology, 409, 4–15.

Polezhaev, L. V. (1937). Uber die Determination des Regenerats einer

Extremitat bein Axolotl. Comptu Rendu Doklady Academy of Science

URSS, 15, 387–390.

Polezhaev, L. V. (1972). Loss and Restoration of Regenerative Capacity.
Jerusalem: Keter Press.

Polezhaev, V., & Faworina, W. N. (1935). Rolle des Epithels in den Anfan-

glichenEntwickslungstadien einerRegenerations anlageder Extremitat

bein Axolotl.Wilhelm Roux’ Archiv fur Entwicklungsmechanik der Organis-
men, 133, 701–727.

Poulin, M. L., & Chiu, I-M. (1995). Re-programming of expression of the

KGFR and bek variants of fibroblast growth factor receptor 2 during

limb regeneration in newts (Notopthalmus viridescens). Developmental
Dynamics, 202, 378–387.

Poulin, M. L., Patrie, K. M., Botelho, M. J., Tassava, R. A., & Chiu, I-M. (1993).

Heterogeneity in expression of fibroblast growth factor receptors dur-

ing limb regeneration in newts (Notophthalmus viridescens).Development,
119, 353–361.

Powell, J. A. (1969). Analysis of histogenesis and regenerative ability of den-

ervated forelimb regenerates of Triturus viridescens. Journal of Experi-
mental Zoology, 170, 125–147.

Quijano, L., Lynch, K.M., Allan, C. H., Badylak, S. F., & Ahsan, T. (2015). Look-

ing ahead to engineering epimorphic regeneration of a human digit or

limb. Tissue Engineering B, 22, 251–262.

Ragsdale, C. W. Jr., Gates, P. B., Hill, D. S., & Brockes, J. P. (1992). Delta

retinoic acid receptor isoform 𝛿1 is distinguished by its exceptional N-

terminal sequence and abundance in the limb regeneration blastema.

Mechanisms of Development, 40, 99–112.

Rao, N., Jhamb, D., Milner, D. J., Li, B., Song, F., Wang, M., … Stocum,

D. L. (2009). Proteomic analysis of blastema formation in regenerating

axolotl limbs. BioMed Central Biology, 7, 83.

Rao, N., Song, F., Jhamb, D., Wang, M., Milner, D. J., Price, N. M.,… Stocum,

D. L. (2014). Proteomic analysis of fibroblastema formation in regen-

erating hind limbs of Xenopus laevis froglets and comparison to axolotl.

BioMed Central Developmental Biology, 14, 32.

Repesh, L. A., & Oberpriller, J. C. (1978). Scanning electron microscopy of

epidermal cell migration in wound healing during limb regeneration in

https://doi.org/10.1186/1743-0003-10-66


STOCUM 195

the adult newt Notophthalmus viridescens. American Journal of Anatomy,
151, 539–556.

Repesh, L. A., &Oberpriller, J. C. (1980).Ultrastructural studies onmigrating

epidermal cells during the wound healing stage of regeneration in the

adult newt Notopthalmus viridescens. American Journal of Anatomy, 159,
187–208.

Repesh, L. A., Furcht, L. T., & Smith, D. (1981). Immunochemical localiza-

tion of fibronectin in limb tissues of the adult newt, Notophthalmus viri-
descens. Journal of Histochemistry and Cytochemistry, 29, 937–945.

Richmond, M. J., & Pollack, E. D. (1983). Regulation of tadpole spinal nerve

growth by the regenerating limb blastema in tissue culture. Journal of
Experimental Zoology, 225, 233–242.

Riddiford, L. M. (1960). Autoradiographic studies of tritiated thymidine

infused into the blastema of the early regenerate in the adult newt, Trit-
urus. Journal of Experimental Zoology, 144, 25–32.

Riddle, R. D., Johnson, R. L., Laufer, E., & Tabin, C. (1993). Sonic hedgehog

mediates the polarizing activity of the ZPA. Cell, 75, 1401–1416.

Roensch, K., Tazaki, A., Chara, O., & Tanaka, E. M. (2013). Progressive speci-

fication rather than intercalation of segments during limb regeneration.

Science, 342, 1375–1379.

Rosania, G. R., Chang, Y-T., Perez,O., Sutherlin,D., Dong,H., Lockhart, D. J., &

Schultz, P. G. (2000). Myoseverin, a microtubule-binding molecule with

novel cellular effects.Nature Biotechnology, 18, 304–308.

Rosello-Diez, A., & Torres, M. (2011). Regulative patterning in limb bud

transplants is induced by distalizing activity of apical ectodermal ridge

signals on host limb cells.Developmental Dynamics, 240, 1203–1211.

Rowe, D. A., & Fallon, J. F. (1982). Normal anterior pattern formation after

barrier placement in the chick leg: further evidence on the action of

polarizing zone. Journal of Embryology and Experimental Morphology, 69,
1–6.

Roy, S., & Gardiner, D.M. (2000). Cyclopamine induces digit loss in regener-

ating axolotl limbs. Journal of Experimental Zoology, 293, 186–190.

Roy, S., Gardiner, D. M., & Bryant, S. V. (2000). Vaccinia as a tool for func-

tional analysis in regenerating limbs: ectopic expression of Shh.Develop-
mental Biology, 218, 199–205.

Saiz-Lopez, P., Chinnaiya, K., Campa, V., Delgado, I., Ros, M. A.,

& Towers, M. (2015). An intrinsic timer specifies distal struc-

tures of the vertebrate limb. Nature Communications, 6, 8108.

https://doi.org/10.1038/ncomms9108

Salpeter, M. M. (1965). Disposition of nerve fibers in the regenerating limb

of the adult newt Triturus. Journal of Morphology, 117, 201–211.

Sandoval-Guzman, T., Wang, H., Khattak, S., Schuez, M., Roensch, K., Nacu,

E., … Simon, A. (2014). Fundamental differences in dedifferentiation

and stem cell recruitment during skeletal regeneration in two salaman-

der species. Cell Stem Cell, 14, 174–187.

Santosh, N., Windsor, L. J., Mahmoudi, B. S., Li, B., Zhang, W., Cher-

noff, E. A., … Song, F. (2011). Matrix metalloproteinase expres-

sion during blastema formation in regeneration-competent versus

regeneration-deficient amphibian limbs. Developmental Dynamics, 240,
1127–1141.

Satoh, A., & Makanae, A. (2014). Conservation of position-specific gene

expression in axolotl limb skin. Zoological Science, 31, 6–13.

Satoh, A., Cummings, G. M. C., Bryant, S. V., & Gardiner, D. M. (2010a). Neu-

rotrophic regulation of fibroblast dedifferentiation during limb skeletal

regeneration in the axolotl (Ambystomamexicanum).Developmental Biol-
ogy, 337, 444–457.

Satoh, A., Cummings, G. M. C., Bryant, S. V., & Gardiner, D. M. (2010b). Reg-

ulation of proximal−distal intercalation during limb regeneration in the

axolotl (Ambystomamexicanum).Differentiation, 52, 785–798.

Satoh, A., Gardiner, D. M., Bryant, S. V., & Endo, T. (2007). Nerve-induced

ectopic limb blastemas in the axolotl are equivalent to amputation-

induced blastemas.Developmental Biology, 312, 231–244.

Satoh, A., Makanae, A., Hirata, A., & Satou, Y. (2011). Blastema induc-

tion in aneurogenic state and Prrx1 regulation by MMPs and FGFs in

Ambystoma mexicanum limb regeneration. Developmental Biology, 355,
263–274.

Satoh, A., Makanae, A., Nishimoto, Y., & Mitogawa, K. (2016). FGF and

BMP derived from dorsal root ganglia regulate blastema induction in

limb regeneration inAmbystomamexicanum.Developmental Biology,417,
114–125.

Saunders, J. W. Jr (1948). The proximo-distal sequence of the origin of the

parts of the chick wing and the role of the ectoderm. Journal of Experi-
mental Zoology, 108, 363–403.

Scadding, S. R. (1990). Histological effects of vitaminAon limb regeneration

in the larval axolotl Ambystoma mexicanum. Canadian Journal of Zoology,
68, 159–167.

Scadding, S. R., & Maden, M. (1994). Retinoic acid gradients during limb

regeneration.Developmental Biology, 162, 608–617.

Schilthuis, J. G., Gann, A. A., & Brockes, J. P. (1993). Chimeric retinoic

acid/thyroid hormone receptors implicate RAR-alpha 1 as mediating

growth inhibition by retinoic acid. European Molecular Biology Organiza-
tion Journal, 12, 3459–3466.

Schmidt, A. J. (1968). Cellular Biology of Vertebrate Regeneration and Repair.
Chicago: University of Chicago Press.

Schotte, O. E. (1926). Nouvelles preuves physiologiques de l'action du sys-

teme nerveux sympathique dans le regeneration. Compte Rendu des
Séances de la Societe de Physique et d'Histoire naturelle de Geneve, 43,
140–143.

Schotte, O. E., & Butler, E. G. (1941). Morphological effects of denervation

and amputation of limbs in urodele larvae. Journal of Experimental Zool-
ogy, 87, 279–321.

Schotte, O. E., & Butler, E. G. (1944). Phases in regeneration of the urodele

limb and their dependence on the nervous system. Journal of Experimen-
tal Zoology, 97, 95–121.

Schotte, O. E., & Harland, M. (1943). Amputation level and regeneration

in limbs of late Rana clamitans tadpoles. Journal of Morphology, 73,
165–180.

Schotte, O. E., & Hummel, K. P. (1939). Lens induction at the expense of

regenerating tissues of amphibians. Journal of Experimental Zoology, 80,
131–166.

Schotte, O. E., Butler, E. G., & Hood, R. T. (1941). Morphological effects of

denervation and amputation on amputated nerveless limbs of urodele

larvae. Proceedings of the Society of Experimentsl Biology andMedicine, 48,
500–503.

Schrag, J. A., & Cameron, J. A. (1983). Regeneration of adult skeletal mus-

cle in vitro. Journal of Embryology and Experimental Morphology, 77,
255–271.

Seifert, A. W., Monaghan, J. R., Smith, M. D., Pasch, B., Stier, A. C., Michon-

neau, F., & Maden, M. (2012). The influence of fundamental traits on

mechanisms controlling appendage regeneration. Biological Reviews, 87,
330–345.

Sessions, S. K., &Bryant, S. V. (1988). Evidence that regenerative ability is an

intrinsic property of limb cells in Xenopus. Journal of Experimental Zool-
ogy, 247, 39–44.

Shimizu-Nishikawa, K. S., Tsuji, S., & Yoshizato, K. (2001). Identification

and characterization of newt rad (ras associated with diabetes), a

gene specifically expressed in regenerating limb muscle. Developmental
Dynamics, 220, 74–86.

https://doi.org/10.1038/ncomms9108


196 STOCUM

Shimokawa, T., Yasutaka, S., Kominami, R., & Shinohara, H. (2013). Lmx-ib
and Wnt-7a expression in axolotl limb during development and regen-

eration.Okajima Folia Anatomica Japan, 89, 119–124.

Sidman, R. L., & Singer,M. (1960). Limb regenerationwithout innervation of

the apical epidermis in the adult newt, Triturus. Journal of Experimental
Zoology, 144, 105–111.

Simkin, J., Gawriluk, T. R., Gensel, J. C., & Seifert, A.W. (2017).Macrophages

are necessary for epimorphic regeneration in African spiny mice. eLife,
6, e24623.

Simkin, J., Sammarco, M., Dawson, L., Schanes, P. P., Yu, L., & Muneoka, K.

(2015). Themammalian blastema: regeneration at our fingertips.Regen-
eration, 2, 93–105.

Simon, H-G., Nelson, C., Goff, D., Laufer, E., Morgan, B. A., & Tabin, C. (1995).

Differential expression of myogenic regulatory genes and Msx-1 dur-

ing dedifferentiation and redifferentiation of regenerating amphibian

limbs.Developmental Dynamics, 202, 1–12.

Simon, H-G., Kittappa, R., Khan, P. A., Tsifildis, C., Liversage, R. A., &

Oppenheimer, S. (1997). A novel family of T-box genes in urodele

amphibian limb development and regeneration: candidate genes

involved in vertebrate forelimb/hindlimb patterning. Development, 124,
1355–1366.

Singer, M. (1942). The nervous system and regeneration of the forelimb

of adult Triturus. I. The role of the sympathetics. Journal of Experimental
Zoology, 90, 377–399.

Singer, M. (1943). The nervous system and regeneration of the forelimb of

adult Triturus. II. The role of the sensory supply. Journal of Experimental
Zoology, 92, 297–315.

Singer, M. (1945). The nervous system and regeneration of the forelimb of

adult Triturus. III. The role of the motor supply, including an anatomical

note on the arrangement of the brachial spinal nerve roots. Journal of
Experimental Zoology, 98, 1–21.

Singer, M. (1946a). The nervous system and regeneration of the forelimb of

adult Triturus. IV. The stimulating action of a regenerated motor supply.

Journal of Experimental Zoology, 101, 221–240.

Singer, M. (1946b). The nervous system and regeneration of the forelimb

of adult Triturus. V. The influence of number of nerve fibers, including a

quantitative study of limb innervation. Journal of Experimental Zoology,
101, 299–338.

Singer, M. (1947a). The nervous system and regeneration of the forelimb

of adult Triturus. VI. A further study of the importance of nerve num-

ber, including quantitativemeasurements of limb innervation. Journal of
Experimental Zoology, 104, 223–250.

Singer, M. (1947b). The nervous system and regeneration of the forelimb

of adult Triturus. VII. The relation between number of nerve fibers

and surface area of amputation. Journal of Experimental Zoology, 104,
251–265.

Singer, M. (1949). The invasion of the epidermis of the regenerating fore-

limb of the urodele Triturus by nerve fibers. Journal of Experimental Zool-
ogy, 113, 198–210.

Singer,M. (1952). The influence of the nerve in regeneration of the amphib-

ian extremity.Quarterly Review of Biology, 27, 169–200.

Singer, M. (1964). The trophic quality of the neuron: some theoretical con-

sideration. Progress in Brain Research, 13, 228–232.

Singer,M. (1965). A theory of the trophic nervous control of amphibian limb

regeneration, including a re-evaluation of quantitative nerve require-

ments. In V. Kiortsis & H. A. L. Trampisch (Eds.), Regeneration in Animals
and Related Problems. (pp. 20–32) Amsterdam, North-Holland.

Singer, M. (1978). On the nature of the neurotrophic phe-

nomenon in urodele limb regeneration. American Zoologist, 18,
829–308.

Singer,M.,&Craven, L. (1948). Thegrowthandmorphogenesis of the regen-

erating forelimbof adultTriturus followingdenervation at various stages
of development. Journal of Experimental Zoology, 108, 279–308.

Singer, M., & Egloff, F. R. L. (1949). The nervous system and regeneration of

the forelimb of adult Trirurus. VII. The effect of limited nerve quantities

on regeneration. Journal of Experimental Zoology, 113, 198–210.

Singer, M., & Ilan, J. (1977). Nerve-dependent regulation of absolute rates

of protein synthesis in newt limb regenerates measurement of methio-

nine specific activity in peptidyl-tRNAof the growing polypeptide chain.

Developmental Biology, 57, 174–187.

Singer, M., & Inoue, S. (1964). The nerve and the epidermal apical cap in

regeneration of the forelimb of adult Triturus. Journal of Experimental
Zoology, 155, 105–116.

Singer, M., &Mutterperl, E. (1963). Nerve fiber requirements for regenera-

tion in forelimb transplants of the newt, Triturus. Developmental Biology,
7, 180–191.

Singer,M., & Salpeter,M.M. (1961). Regeneration in vertebrates:the role of

thewound epithelium. InM.X. Zarrow (Ed.),Growth in Living Systems (pp.
277–311). New York: Basic Books.

Singh, B. N., Doyle, M. J., Weaver, C. V., Koyano-Nakagawa, N., & Garry,

D. J. (2012). Hedgehog and Wnt coordinate signaling in myogenic pro-

genitors and regulate limb regeneration. Developmental Biology, 371,
23–34.

Smith,M. J., &Globus,M. (1989).Multiple interactions in juxtaposedmono-

layer of amphibian neuronal, epidermal, andmesodermal limb blastema

cells. In Vitro Cell and Developmental Biology, 25, 849–856.

Smith, G. N., Toole, B. P., & Gross, J. (1975). Hyaluronidase activity and

glycosaminoglycan synthesis in the amputated newt limb: comparison

of denervated non-regenerating limbs with regenerates. Developmental
Biology, 25, 849–856.

Spallanzani, L. (1768). Prodromo di un opera da imprimersi sopra la
riproduzioni animali. Modena, Giovanni Montanari. English translation,

M.Maty (1769): An Essay on Animal Reproduction. London: Becket and

DeHondt.

Stark, R. J., & Searls, R. L. (1973). A description of chick wing development

and a model of limb morphogenesis. Developmental Biology, 33, 138–
153.

Stearner, S. P. (1946). Pigmentation studies in salamanders, with especial

reference to the changes at metamorphosis. Physiological Zoology, 19,
375–404.

Stebler, R. (1973). Die Morphologie der apikalen Epidermis wahren der

fruhen Extremitatenentwicklung be Anuran. Wilhelm Roux’ Archv fur
Entwicklungsmechanik der Organismen, 172, 131–148.

Steen, T. P. (1968). Stability of chondrocyte differentiation and contribution

of muscle to cartilage during limb regeneration in the axolotl (Siredon
mexicanum). Journal of Experimental Zoology, 167, 49–78.

Steen, T. P., & Thornton, C. S. (1963). Tissue interaction in amputated aneu-

rogenic limbs of Ambystoma larvae. Journal of Experimental Zoology, 154,
207–221.

Steinberg, M. S. (1978). Cell−cell recognition in multicellular assembly: lev-

els of specificity. In A. S. G. Curtis (Ed.),Cell−Cell Recognition (pp. 25–49).
Cambridge: Cambridge University Press.

Steiner, K. (1928). Entwicklungsmechanische untersuchungen uber die

Bedeutung des Ektodermsalen Epithels der Extremitatenknospe von

Amphibienlarven. Wilhelm Roux’ Archiv fur Entwicklungsmechanik der
Organismen, 113, 1–11.

Stevenson, T. J., Vinarsky, V., Atkinson, D. L., Keating, M. T., & Odelberg, S.

J. (2006). Tissue inhibitor of metalloproteinase 1 regulates matrix met-

alloproteinase activity during newt limb regeneration. Developmental
Dynamics, 235, 606–616.



STOCUM 197

Stewart, R., Rascon, C. A., Tian, S., Nie, J., Barry, C., Chu, L-F.…Dewey, C. N.

(2013). Comparative RNA-seq analysis in the unsequenced axolotl: the

oncogene burst highlights early gene expression in the blastema. Public
Library of Science Computational Biology, 9, e1002936.

Stinson, B. D. (1963). The response of x-irradiated limbs of adult

urodeles to normal tissue grafts. I. Effects of autografts of of

sixty-day forearm regenerates. Journal of Experimental Zoology, 153,
37–52.

Stinson, B. D. (1964a). The response of x-irradiated limbs of adult urodeles

to normal tissue grafts. II. Effects of autografts of anterior or posterior

halves of sixty-day forearm regenerates. Journal of Experimental Zoology,
155, 1–23.

Stinson, B. D. (1964b). The response of x-irradiated limbs of adult urodeles

tonormal tissue grafts. II. Comparative effects of autografts of complete

forearm regenerates and longitudinal half regenerates. Journal of Exper-
imental Zoology, 156, 1–18.

Stinson, B. D. (1964c). The response of x-irradiated limbs of adult urodeles

to normal tissue grafts. IV. Comparative effects of autografts and homo-

grafts of complete forearm regenerates. Journal of Experimental Zoology,
157, 159–178.

Stocum, D. L. (1968a). The urodele limb regeneration blastema: a self-

organizing system. I. Differentiation in vitro. Developmental Biology, 18,
441–456.

Stocum, D. L. (1968b). The urodele limb regeneration blastema: a self-

organizing system. II.Morphogenesis and differentiation of autografted

whole and fractional blastemas.Developmental Biology, 18, 457–480.

Stocum, D. L. (1975). Regulation after proximal or distal transposition of

limb regeneration blastemas and determination of the proximal bound-

ary of the regenerate.Developmental Biology, 45, 112–136.

Stocum, D. L. (1978). Regeneration of symmetrical hindlimbs in larval sala-

manders. Science, 200, 790–793.

Stocum, D. L. (1980a). Autonomous development of reciprocally exchanged

regeneration blastemasof normal forelimbs and symmetrical hindlimbs.

Journal of Experimental Zoology, 212, 361–371.

Stocum,D. L. (1980b). Intercalary regeneration of symmetrical thighs in the

axolotl, Ambystomamexicanum. Developmental Biology, 79, 276–295.

Stocum, D. L. (1980c). The relation of mitotic index, cell densityand growth

to pattern regulation in regeneratingAmbystomamaculatum limbs. Jour-
nal of Experimental Zoology, 212, 233–242.

Stocum, D. L. (1981). Distal transformation in regenerating double anterior

axolotl limbs. Journal of Embryology andExperimentalMorphology,65, sup-
plement, 3–18.

Stocum, D. L. (1982). Determination of axial polarity in the urodele regen-

erationblastema. Journal of Embryology and ExperimentalMorphology,71,
193–214.

Stocum, D. L. (1984). The urodele limb regeneration blastema: determina-

tion andorganization of themorphogenetic field.Differentiation,27, 13–
28.

Stocum,D. L. (1995).WoundRepair, Regeneration andArtificial Tissues. Austin,
TX: RG Landes.

Stocum, D. L. (1996). A conceptual framework for analyzing axial pattern-

ing in regenerating urodele limbs. International Journal of Developmental
Biology, 40, 773–784.

Stocum, D. L. (2011). The role of peripheral nerves in urodele limb regener-

ation. European Journal of Neuroscience, 34, 908–916.

Stocum, D. L. (2012). Regenerative Biology and Medicine, 2nd edition. San
Diego: Elsevier/Academic Press.

Stocum, D., & Cameron, J. A. (2011). Looking proximally and distally:

100 years of limb regeneration. Developmental Dynamics, 240, 943–
968.

Stocum, D. L., & Crawford, K. (1987). Use of retinoids to analyze the cellular

basis of positional memory in regenerating axolotl limbs. Biochemistry
and Cell Biology, 65, 750–761.

Stocum, D. L., & Dearlove, G. E. (1972). Epidermal−mesodermal interaction

during morphogenesis of the limb regeneration blastema in larval sala-

manders. Journal of Experimental Zoology, 181, 49–62.

Stocum,D. L., &Melton, D. A. (1977). Self-organizational capacity of distally

transplanted limb regeneration blastemas in larval salamanders. Journal
of Experimental Zoology, 201, 451–472.

Stocum, D. L., & Thoms, S. D. (1984). Retinoic acid-induced pattern comple-

tion in regenerating double anterior limbs of urodeles. Journal of Experi-
mental Zoology, 232, 207–215.

Stoick-Cooper,C. L.,Weidinger,W.G., Riehle,K. J.,Major,M.B., Fausto,N.,&

Moon, R. T. (2007). DistinctWnt signaling pathways have opposing roles

in appendage regeneration.Development, 134, 479–489.

Stone, L. S. (1966). The fate of amphibian regenerating blastema implanted

into lentectomized eye. Journal of Experimental Zoology, 162, 301–310.

Stopper,G. F., &Wagner,G. P. (2005).Of chickenwings and frog legs: a smor-

gasbordof evolutionary variation inmechanismsof tetrapod limbdevel-

opment.Developmental Biology, 288, 21–39.

Straube, W. L., Brockes, J. P., Drechsel, D. N., & Tanaka, E. M. (2004). Plas-

ticity and reprogramming of differentiated cells in amphibian regener-

ation: partial purification of a serum factor that triggers cell cycle re-

entry in differentiatedmuscle cells. Cloning and Stem Cells, 6, 333–344.

Sturdee, A., & Connock, M. (1975). The embryonic limb bud of the urodele:

morphological studies of the apex.Differentiation, 3, 43–49.

Sugiura, T., Wang, H., Barsacchi, R., Simon, A., & Tanaka, E. M. (2016).

MARCKS-like protein is an initiating molecule in axolotl appendage

regeneration.Nature, 531, 237–240.

Summerbell, D., Lewis, J. H., &Wolpert, L. (1973). Positional information in

the chick limb bud.Nature, 244, 492–396.

Suzuki, M., Satoh, A., Ide, H., & Tamura, K. (2007). Transgenic Xenopus
with prx1 limb enhancer reveals crucial contribution of MEK/ERK and

PI3K/AKT pathways in blastema formation during limb regeneration.

Developmental Biology, 304, 675–686.

Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomada, K.,

& Yamanaka, S. (2007). Induction of pluripotent stem cells from adult

human fibroblasts by defined factors. Cell, 132, 861–872.

Tamura, K., Ohgo, S., & Yokoyama, H. (2010). The limb blastema cell: a stem

cell for morphological regeneration. Development Growth and Differenti-
ation, 52, 89–99.

Tamura, K., Yokoyuchi, Y., Kuroiwa, A., & Ide, H. (1997). Retinoic acid

changes the proximodistal developmental competence and affinity of

distal cells in the developing chick limb bud.Developmental Biology, 188,
224–234.

Tanaka, E. M., Gann, F., Gates, P. B., & Brockes, J. P. (1997). Newt myotubes

re-enter the cell cycle by phosphorylation of the retinoblastoma pro-

tein. Journal of Cell Biology, 136, 155–165.

Tanaka, H. V., Ng, N. C. Y., Yu, Z. Y., Casco-Robless, M. M., Maruo, F., Tsonis,

P. A., & Chiba, C. (2016). A developmentally regulated switch from stem

cells to dedifferentiation for limb muscle regeneration in newts. Nature
Communications, 7, 11069. https://doi.org/10.1038/ncomms11069

Tank, P. W. (1978). The occurrence of supernumerary limbs following

blastemal transplantation in the regenerating forelimb of the axolotl,

Ambystomamexicanum. Developmental Biology, 62, 143–161.

Tank, P. W. (1979). Positional information in the forelimbs of the axolotl:

experiments with double half tissues.Developmental Biology, 73, 11–24.

Tank, P. W. (1981). Pattern formation following 180o rotation of regenera-

tion blastemas in the axolotl, Ambystoma mexicanum. Journal of Experi-
mental Zoology, 217, 377–387.

https://doi.org/10.1038/ncomms11069


198 STOCUM

Tank, P. W., & Holder, N. (1978). The effect of healing time on the proxi-

modistal organization of double half forelimb regenerates in theAxolotl.
Developmental Biology, 66, 72–85.

Tank, P.W., &Holder,N. (1982). Pattern regulation in the regenerating limbs

of urodele amphibians.Quarterly Review of Biology, 56, 113–149.

Tank, P. W., Connelly, T. G., & Bookstein, F. L. (1985). Cellular behavior

in the anteroposterior axis in the regenerating forelimb of the axolotl

Ambystomamexicanum.Developmental Biology, 109, 215–223.

Tarin, D., & Sturdee, A. P. (1971). Early limb development of Xeno-
pus laevis. Journal of Embryology and Experimental Morphology, 26,
169–179.

Tassava, R.A., &Acton,R.D. (1989).Distributionof awoundepitheliumanti-

gen in embryonic tissues of newts and salamanders. Ohio Journal of Sci-
ence, 89, 12–125

Tassava, R. A., & Garling, D. J. (1979). Regenerative responses in larval

axolotl limbs with skin grafts over the amputation surface. Journal of
Experimental Zoology, 208, 97–110.

Tassava, R. A., & McCullough, W. D. (1978). Neural control of cell cycle

events in regenerating salamander limbs. American Zoologist, 18, 843–
854.

Tassava, R. A., & Mescher, A. L. (1975). The roles of injury, nerves and the

wound epidermis during the initiation of amphibian limb regeneration.

Differentiation, 4, 23–24.

Tassava, R. A., Bennett, L. L., & Zitnik, G. D. (1974). DNA synthesis without

mitosis in amputated denervated forelimbs of larval axolotls. Journal of
Experimental Zoology, 190, 111–116.

Tassava, R. A., Castilla, M., Arsanto, J. P., & Thouveny, Y. (1993). The wound

epithelium of regenerating limbs of Pleurodeles waltl and Notopthalmus
viridescens: studies with mABs WE3 and WE4, phalloidin, and DNase I.

Journal of Experimental Zoology, 267, 180–187.

Tassava, R. A., Johnson-Wint, B., & Gross, J. (1986). Regenerate epithelium

and skin glands of the adult newt react to the same monoclonal anti-

body. Journal of Experimental Zoology, 239, 229–240.

Thoms, S. D., & Fallon, J. F. (1980). Pattern regulation and the origin of extra

parts following axial misalignments in the urodele limb bud. Journal of
Embryology and Experimental Morphology, 60, 33–55.

Thoms, S. D., & Stocum, D. L. (1984). Retinoic acid-induced pattern dupli-

cation in regenerating urodele limbs. Developmental Biology, 103, 319–
328.

Thornton, C. S. (1938a). The histogenesis ofmuscle in the regenerating fore

limb of larval Amblystoma punctatum. Journal of Morphology, 62, 17–47.

Thornton, C. S. (1938b). The histogenesis of the regenerating fore limb of

larval Amblystoma after exarticulation of the humerus. Journal of Mor-
phology, 62, 219–241.

Thornton, C. S. (1954). The relation of epidermal innervation to limb regen-

eration in Amblystoma larvae. Journal of Experimental Zoology, 127, 577–
601.

Thornton,C. S. (1956). The relationof epidermal innervation to the regener-

ation of limbdeplants inAmblystoma larvae. Journal of Experimental Zool-
ogy, 133, 281–299.

Thornton,C. S. (1957). Theeffect of apical cap removal on limb regeneration

in Amblystoma larvae. Journal of Experimental Zoology, 134, 357–382.

Thornton, C. S. (1958). The inhibition of limb regeneration in urodele lar-

vae by localized irradiation with ultraviolet light. Journal of Experimental
Zoology, 137, 153–179.

Thornton, C. S. (1960a). Influence of an eccentric epidermal cap on limb

regeneration in Amblystoma larvae.Developmental Biology, 2, 551–569.

Thornton, C. S. (1960b). Regeneration of asensory limbs of Amblystoma lar-
vae. Copeia, 4, 371–373.

Thornton, C. S. (1968). Amphibian limb regeneration. Advances in Morpho-
genesis, 7, 205–249.

Thornton, C. S., & Steen, T. P. (1962). Eccentric blastema formation in aneu-

rogenic limbs of Amblystoma larvae following epidermal cap deviation.

Developmental Biology, 5, 328–343.

Thornton, C. S., & Thornton, M. T. (1965). The regeneration of accessory

limb parts following epidermal cap transplantation in urodeles. Experi-
entia, 21, 1–6.

Thornton, C. S., & Thornton, M. T. (1970). Recuperation of regeneration in

denervated limbs of Ambystoma larvae. Journal of Experimental Zoology,
173, 293–301.

Tickle, C. (2006). Developmental cell biology: making digit patterns in

the vertebrate limb. Nature Reviews of Molecular and Cell Biology, 7,
45–53.

Todd, T. J. (1823). On the process of reproduction of the members of the

aquatic salamander. Quarterly Journal of Science, Literature and the Arts,
16, 84–96.

Tomlinson,B. L., Goldhamer,D. J., Barger, P.M.,&Tassava, R.A. (1985). Punc-

tuated cell cycling in the regeneration blastema of urodele amphibians:

an hypothesis.Differentiation, 28, 195–199.

Tonge, D. A., & Leclere, G. (2000). Directed axonal growth towards axolotl

limb blastemas in vitro.Neuroscience, 100, 201–211.

Torok, M. A., Gardiner, D. M., Izpisua Belmonte, J. C., & Bryant, S. V. (1999).

Sonic hedgehog (shh) expression in developing and regenerating axolotl

limbs. Journal of Experimental Zoology, 284, 197–206.

Torok, M. A., Gardiner, D. M., Shubin, N. H., & Bryant, S. V. (1998). Expres-

sion of HoxD genes in developing and regenerating axolotl limbs. Devel-
opmental Biology, 200, 225–233.

Tschumi, P. A. (1957). The growth of hindlimb bud of Xenopus laevis and its

dependence upon the epidermis. Journal of Anatomy, 91, 149–173.

Tseng, A. S., & Levin, M. (2013). Cracking the bioelectric code. Communica-
tive and Integrative Biology, 6, e22595.

Tsonis, P. A. (1996). Limb Regeneration. Cambridge UK: Cambridge Univer-

sity Press.

Tsonis, P. A., Mescher, A. L., & Del-Rio Tsonis, K. (1992). Protein synthesis in

the newt regenerating limb. Biochemical Journal, 281, 665–668.

Tsuji, T. (Ed.) (2017).Organ Regeneration Based onDevelopmental Biology. Sin-
gapore: Springer.

Turner, R. N. (1981). Probability aspects of supernumerary production in

the regenerating limbs of the axolotl, Ambystoma mexicanum. Journal of
Embryology and Experimental Morphology, 65, 119–126.

Vanrapenbush, S., & Lasalle, B. (1989). Effects of denervation on the extra-

cellular collagenmatrix of limb regenerates of the newt Plurodeles waltii.
In V. Kiortsis, S. Koussoulakos, & H. Wallace (Eds.), Recent Trends in
Regeneration Research (pp. 217–227). New York: PlenumPress.

Van Stone, J. M. (1964). The relationship of nerve number to regenerative

capacity in the developing hind limb of Rana sylvatica. Journal of Experi-
mental Zoology, 155, 293–302.

Vascotto, S., Beug, S., Liversage, R. A., & Tsilfildis, C. (2005). Identification

of cDNAs associated with late dedifferentiation in adult newt forelimb

regeneration.Developmental Dynamics, 233, 347–355.

Velloso, C. P., Kumar, A., Tanaka, E. M., & Brockes, J. P. (2000). Genera-

tion of mononucleate cells from post-mitotic myotubes proceeds in the

absence of cell cycle progression.Differentiation, 66, 239–246.

Velloso, C. P., Simon, A., & Brockes, J. P. (2001). Mammalian postmitotic

nuclei reenter the cell cycle after serum stimulation in newt/mouse

hybridmyotubes. Current Biology, 11, 855–858.

Vethamany-Globus, S., Globus, M., & Tomlinson, B. (1978). Neural and

hormonal stimulation of DNA and protein synthesis in cultured



STOCUM 199

regeneration blastemas in the newt Notopthalmus viridescens. Develop-
mental Biology, 65, 183–192.

Vinarsky, V., Atkinson, D. L., Stevenson, T. J., Keating, M. T., & Odelberg, S.

J. (2005). Normal newt limb regeneration requires matrix metallopro-

teinase function.Developmental Biology, 279, 86–98.

Vogg, M. C., Wenger, Y., & Galliot, B. (2016). How somatic adult tissues

develop organizer activity. Current Topics in Developmental Biology, 116,
391–414.

Vorontsova,M. A., & Liosner, L. D. (1960). Asexual Propagation and Regenera-
tion. New York: Pergamon Press.

Voss, S. R., Palumbo, A., Nagarajan, R., Gardiner, D. M., Muneoka, K.,

Stromberg, A. J. Athippozhy, A. T. (2015). Gene expression during the

first 28 days of axolotl limb regeneration: experimental design and

global analysis of gene expression. Regeneration, 2, 120–136

Wada, N. (2011). Spatiotemporal changes in cell adhesiveness during verte-

brate limbmorphogenesis.Developmental Dynamics, 240, 969–978.

Wada, N., Kimura, I., Tanaka, H., Ide, H., & Nohno, T. (1998).

Glycosylphosphatidylinositol-anchored cell surface proteins regu-

late position-specific cell affinity in the limb bud. Developmental Biology,
202, 244–252.

Wallace, H. (1978). Testing the clockface model of amphibian limb regener-

ation. Experientia, 34, 1360–1361.

Wallace, H. (1980). Regeneration of reversed aneurogenic arms of the

axolotl. Journal of Embryolgy and Experimental Morphology, 56, 309–317.

Wallace, H. (1981). Vertebrate Limb Regeneration. New York: JohnWiley.

Wallace, H., & Maden, M. (1984). Local action of vitamin A on amphibian

limb regeneration. Experientia, 40, 985–986.

Wallace, H., &Watson, A. (1979). Duplicated axolotl regenerates. Journal of
Embryology and Experimental Morphology, 49, 243–258.

Wang, L., Marchionni, M. A., & Tassava, R. A. (2000). Cloning and neu-

ronal expression of a type III newt neuregulin and rescue of denervated

nerve-dependent newt limb blastemas by rhGGF2. Journal of Neurobiol-
ogy, 43, 150–158.

Wang, Y., Wang, R., Jiang, S., Zhou, W., Liu, Y., Wang, Y., … Gu, X.

(2011). Gecko CD59 is implicated in proximodistal identity during tail

regeneration. Public Library of Science One, 6(3), e17878. https://doi.
org/10.1371/journal.pone.0017878

Wang, H., Loof, S., Borg, P., Nader, G. A., Blau, H. M., & Simon, A.

(2015). Turning terminally differentiated skeletal muscle cells

into regenerative progenitors. Nature Communications, 6, 7916.

https://doi.org/10.1038/ncomms8916

Wehner, D., Cizelsky, W., Vasudevaro, M. D., Ozhan, G., Haase, C.,

Kagermeier-Schenk, B.,…Weidinger, G. (2014). Wnt/𝛽-catenin signal-

ing defines organizing centers that orchestrate growth and differentia-

tion of the regenerating zebrafish caudal fin. Cell Reports, 6, 467–481.

Weiss, P. (1925). Unabhangigkeit der Extremitaten-regeneration von

dem Skelett (bei Triton cristatus). Wilhelm Roux’ Archiv fur Entwick-
lungsmechanik der Organismen, 104, 359–394.

Wigmore, P. (1986). Regeneration from half lower arms in the axolotl. Jour-
nal of Embryology and Experimental Morphology, 95, 247–260.

Wigmore, P., & Holder, N. (1985). Regeneration from isolated half limbs in

the upper armof the axolotl. Journal of Embryology and ExperimentalMor-
phology, 89, 333–347.

Wigmore, P., &Holder, N. (1986). The effect of replacing different regions of

limb skinwith head skin on regeneration in the axolotl. Journal of Embry-
ology and Experimental Morphology, 98, 237–249.

Woloshin, P., Song, K., Degnin, C., Killary, A. M., Goldhamer, D. J., Sassoon,

D., & Thayer, M. J. (1995). MSX1 inhibits MyoD expression in fibroblast

X 10T1/2 cell hybrids. Cell, 82, 611–620.

Yajima, H., Yonei-Tamura, S.,Watanabe, N., Tamura, K., & Ide, H. (1999). Role

of N-cadherin in the sorting-out of mesenchymal cells and in the posi-

tional identity along the proximodistal axis of the chick limb bud.Devel-
opmental Dynamics, 216, 274–284.

Yakushiji, N., Suzuki, M., Satoh, A., Ide, H., & Tamura, K. (2009). Effects of

activation of hedgehog signaling on patterning, growth, and differentia-

tion in Xenopus froglet limb regeneration.Developmental Dynamics, 238,
1887–1896.

Yakushiji, N., Yokoyama, H., & Tamura, K. (2009). Repatterning in amphibian

limb regeneration: amodel for studyof genetic andepigenetic control of

organ regeneration. Seminars in Cell and Developmental Biology, 20, 565–
574.

Yakushiji, N., Suzuki, M., Satoh, A., Sagai, T., Shiroishi, T., Kobayashi, H.,

… Tamura, K. (2007). Correlation between Shh expression and DNA

methylation status of the limb-specific Shh enhancer region during limb

regeneration in amphibians.Developmental Biology, 312, 171–182.

Yang, E. V., &Bryant, S. V. (1994). Developmental regulation of amatrixmet-

alloproteinase during regeneration of axolotl appendages. Developmen-
tal Biology, 166, 696–703.

Yang, E. V., Gardiner, D. M., & Bryant, S. V. (1999). Expression ofMmp-9 and
related matrix metalloproteinase genes during axolotl limb regenera-

tion.Developmental Dynamics, 216, 2–9.

Yntema, C. L. (1959a). Regeneration of sparsely innervated and aneuro-

genic forelimbs of Ambystoma larvae. Journal of Experimental Zoology,
140, 101–123.

Yntema, C. L. (1959b). Blastema formation in sparsely innervated and aneu-

rogenic forelimbs in Amblystoma larvae. Journal of Experimental Zoology,
142, 423–440.

Yokoyama, H., Ide, H., & Tamura, K. (2001). FGF-10 stimulates limb regener-

ation ability in Xenopus laevis.Developmental Biology, 233, 72–79.

Yokoyama, H., Yonei-Tamura, S., Endo, T., Izpisua Belmonte, J. C., Tamura, K.,

& Ide, H. (2000). Mesenchyme with fgf10 expression is responsible for

regenerative capacity in Xenopus limb buds. Developmental Biology, 219,
18–29.

Yokoyuchi, Y., Sasaki, H., & Kuroiwa, A. (1991). Homeobox gene expression

correlated with the bifurcation process of limb cartilage development.

Nature, 353, 443–445.

Young, H. E., Bailey, C. F., Markwald, R. R., & Dalley, B. K. (1985). Histologi-

cal analysis of limb regeneration in postmetamorphic adult Ambystoma.
Anatomical Record, 213, 193–194.

Young, H. E., Dalley, B., & Markwald, R. R. (1989). Effect of selected dener-

vations on glycoconjugate composition and tissue morphology during

the initiation phase of limb regeneration in adult Ambystoma. Anatomi-
cal Record, 223, 223–230.

Yu, J., Vodyanik, M. A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J. L.,

Tian, S.,…Thomson, J. A. (2007). Induced pluripotent stem cells derived

from human somatic cells. Science, 318, 1917–1920.

Yu, L., Han, M., Yan, M., Lee, J., & Muneoka, K. (2012). BMP2 induces

segment-specific skeletal regeneration from digit and limb amputations

by establishing a new endochondral ossification center. Developmental
Biology, 372, 263–273.

Yu, L., Han, M., Yan, M., Lee, E. C., Lee, J., &Muneoka, K. (2010). BMP signal-

ing induces digit regeneration in neonatal mice.Development, 137, 551–
559.

Yun, M., Davaapil, H., & Brockes, J. P. (2015). Recurrent turnover of senes-

cent cells during regeneration of a complex structure. eLife, 4, e05505.
https://doi.org/10.7554/eLife.05505.

Yun, M. H., Gates, P. B., & Brockes, J. P. (2013). Regulation of p53 is critical

for vertebrate limb regeneration. Proceedings of the National Academy of
Sciences USA, 110, 17392–17397.

https://doi.org/10.1371/journal.pone.0017878
https://doi.org/10.1371/journal.pone.0017878
https://doi.org/10.1038/ncomms8916
https://doi.org/10.7554/eLife.05505


200 STOCUM

Yun, M. H., Gates, P. B., & Brockes, J. P. (2014). Sustained ERK activation

underlies reprogramming in regeneration-competent salamander cells

and distinguishes them from their mammalian counterparts. Stem Cell
Reports, 3, 15–23.

Zhao, C., & Ming, A. (2005). Sp1-like transcription factors are regulators of

embryonic development in vertebrates. Development Growth and Differ-
entiation, 47, 201–211.

Zielens, E. R., Ransom, R. C., Leavitt, T. E., & Longaker, M. T. (2016). The role

of stem cells in limb regeneration.Organogenesis, 12, 16–27.

Zitvogel, L., Kepp, O., & Kroemer, G. (2010). Decoding cell death signals in

inflammation and immunity. Cell, 140, 798–804.

Zwilling, E., & Hansborough, L. A. (1956). Interaction between limb

bud ectoderm and mesoderm in the chick embryo. Experiments

with polydactylous limbs. Journal of Experimental Zoology, 132,
219–240.

How to cite this article: Stocum DL. Mechanisms of

urodele limb regeneration. Regeneration. 2017;4:159–200.

https://doi.org/10.1002/reg2.92

https://doi.org/10.1002/reg2.92

