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Abstract

Cells reliably sense environmental changes despite internal and external fluctuations, but the mechanisms underlying
robustness remain unclear. We analyzed how fluctuations in signaling protein concentrations give rise to cell-to-cell
variability in protein kinase signaling using analytical theory and numerical simulations. We characterized the dose-response
behavior of signaling cascades by calculating the stimulus level at which a pathway responds (‘pathway sensitivity’) and the
maximal activation level upon strong stimulation. Minimal kinase cascades with gradual dose-response behavior show
strong variability, because the pathway sensitivity and the maximal activation level cannot be simultaneously invariant.
Negative feedback regulation resolves this trade-off and coordinately reduces fluctuations in the pathway sensitivity and
maximal activation. Feedbacks acting at different levels in the cascade control different aspects of the dose-response curve,
thereby synergistically reducing the variability. We also investigated more complex, ultrasensitive signaling cascades
capable of switch-like decision making, and found that these can be inherently robust to protein concentration fluctuations.
We describe how the cell-to-cell variability of ultrasensitive signaling systems can be actively regulated, e.g., by altering the
expression of phosphatase(s) or by feedback/feedforward loops. Our calculations reveal that slow transcriptional negative
feedback loops allow for variability suppression while maintaining switch-like decision making. Taken together, we describe
design principles of signaling cascades that promote robustness. Our results may explain why certain signaling cascades like
the yeast pheromone pathway show switch-like decision making with little cell-to-cell variability.
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Introduction

External stimuli typically induce cellular responses by binding to

cell surface receptors. Intracellular signaling networks transduce the

signal, ultimately triggering gene expression responses in the nucleus.

The basic building blocks of eukaryotic signaling networks are protein

kinase cascades (Figure 1A): The signaling proteins in the cascade act

as enzymes (‘‘kinases’’) that catalyze the activation of downstream

kinases by phosphorylation. Information is thus transmitted along the

cascade by consecutive phosphorylation reactions (Figure 1A). The

proto-typical example for such a signaling cascade is the conserved

mitogen-activated protein kinase (MAPK) pathway which consists of

three kinases (Raf, Mek, Erk) [1].

Signaling cascades can transduce information in different ways

[2,3]. The activity of the terminal kinase may quantitatively reflect

the concentration of the extracellular stimulus, and the cascade is

termed to behave gradually (or analog) in this case. Alternatively,

the cascade may act as an ultrasensitive switch that responds in a

digital (‘‘all-or-none’’) manner: low background signals are

strongly dampened and rejected, while amplification and cellular

commitment occur once a threshold stimulus is reached.

Ultrasensitive signaling cascades therefore act as cellular decision

making devices. Theoretical studies revealed that minimal models

of multi-step protein kinase cascades show gradual dose-response

behavior at steady state [4]. Ultrasensitive decision making

requires additional regulation mechanisms which increase the

steepness of the dose-response curve, e.g., strong enzyme

saturation in the (de)phosphorylation reactions (‘‘zero-order

ultrasensitivity’’), multisite phosphorylation, competitive inhibi-

tion, or positive feedback [3,5].

The dose-response curve of a signaling pathway relates the

signaling activity to the amount of extracellular stimulus applied.

The dose-response curve of signaling pathways is typically

sigmoidal in shape and can be quantitatively described by the

so-called Hill equation (y(S)~ymaxSn=(SnzKn
m), with y(S) as the

response to the stimulus S). The half-maximal stimulus (Km)

characterizes the stimulus concentration where the signal reaches

50% of its maximal activation level, and is thus a measure of the

pathway sensitivity towards extracellular stimulation. The maxi-

mal activation level (ymax) describes how strongly the terminal

kinase can be activated upon very strong stimulation, thereby

reflecting amplification or dampening potential of the cascade.

The Hill coefficient n determines how steeply the pathway

responds to external stimulation: the signaling cascade shows

gradual behavior for n&1, while ultrasensitive decision making is

observed for n&1. In the limit of very high n the dose-response

approaches a step-function and the pathway acts as a digital switch

with the threshold stimulus S~Km.

Signaling networks show non-genetic variability, implying that

the signaling activity can differ strongly between cells of a clonal
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population [6,7]. Biological mechanisms underlying signaling

variability include cell density effects [8] and cell-to-cell variability

in signaling protein expression [6,7,9]. In the latter case, the

stochasticity of protein biosynthesis indirectly hampers the

precision of intracellular information transmission. An alternative

source of variability may be the stochastic dynamics of signaling

pathways operating at low molecule numbers [10]. Stochastic

signaling fluctuations are typically fast compared to subsequent

gene expression responses, and therefore should not impinge

significantly on cellular decision-making. The variability of most

signaling systems can therefore be understood by considering them

as deterministic system with fluctuating initial signaling protein

concentrations [6,7,9]. Single-cell measurements reveal that the

level of each signaling protein differs by a factor of three among

the cells of a clonal population [11,12]. Thus, multi-component

signaling systems may show strong variability, suggesting

that regulation mechanisms exist which allow for variability

suppression.

Cell-to-cell variability in the intracellular signaling pathway

activity may be beneficial or deleterious depending on the

biological system. Certain cellular responses such as apoptosis or

differentiation should only be triggered in a subset of the cell

population to maintain tissue homeostasis and to establish different

cell lineages, respectively. The apoptosis and differentiation

thresholds should thus be very different between individual cells

and the system should exhibit strong variability [6,13]. In cancer

therapy, such strong heterogeneity may adversely affect the

population responsiveness to drugs, thereby leading to incomplete

killing of tumor cells [14–16]. Invariance of signaling thresholds is

expected to be important in embryonic development: according to

the so-called ‘‘French-flag model’’, patterning is established by a

single morphogen gradient that specifies multiple cell fates, each

cell type requiring a different threshold morphogen concentration

[17]. For sharp spatial boundaries to be established, signaling

pathways that read of morphogen gradients should exhibit robust

and invariant thresholds at which they respond. Similarly, a

cell-to-cell invariant signaling threshold has been reported for

yeast cells that sense positioning in an extracellular pheromone

gradient [18,19]. Low variability is also required for gradual

signaling pathways which transduce information quantitatively.

Taken together, the question arises how cellular systems are able

to tune the variability of protein kinase signaling to ensure an

appropriate response of the cell population.

In this work, we systematically characterize the cell-to-cell

variability of protein kinase cascades. We focus on the dose-

response behavior of signaling to investigate how synchronously a

cell population responds to a change in a hormonal stimulus. We

discuss how the variability can be actively modulated by parameter

tuning, gene expression noise regulation or additional signaling

mechanisms such as feedforward and feedback loops.

Results

1 Rationale
This work focuses on the cell-to-cell variability of protein kinase

cascades. We study the general features of eukaryotic signaling

pathways, but also try to specifically answer the question why the

yeast pheromone pathway shows switch-like decision making with

little cell-to-cell variability [18,19]. The pheromone pathway

initiates the mating of two haploid yeast cells by triggering various

cellular responses, one of which is the so-called shmoo, a cellular

projection in the direction of the mating partner that primes for

cell fusion [18,20]. Dose-response experiments with exogenously

added pheromones revealed that shmooing occurs at a similar

pheromone concentration for all cells in the population, implying

that the signaling pathway shows little cell-to-cell variability

[18,19,21]: The transition from no shmooing to complete

shmooing of the whole cell population occurred within a 2-fold

range of pheromone concentrations in one study [18], while others

reported that the required pheromone increase is 4-fold [19] or 5-

fold [21]. In this paper, we analyze the dose-response curves of

signaling pathways to understand how a coordinated response of

the whole cell population at a particular stimulus concentration

can be realized. We study simplified models of signaling cascades

with five levels to reflect the main steps of pheromone signaling,

i.e., pheromone binding to a transmembrane receptor, receptor-

mediated G protein activation and signal transduction through a

three-tiered MAPK cascade [22].

We characterize the dose-response behavior at steady state.

Steady state simulations imply that we focus on sustained signaling

upon long-term stimulation and neglect the temporal features of

the signal such as duration or area-under-curve. Steady state

simulations likely provide physiologically relevant insights, because

many cell fate decisions require ongoing signaling pathway activity

over several hours [23]. Fast signaling events such as phosphor-

ylation and dephosphorylation typically occur on a time-scale of

minutes, and are thus expected to reach a (quasi-)steady state

shortly after external stimulation.

Signaling dose-response curves may increase gradually and

reflect the concentration of the extracellular stimulus, or the

signaling pathway may act as an ultrasensitive switch that responds

in a digital (‘‘all-or-none’’) manner (see Introduction). The

shmooing of yeast cells is an all-or-none response [18]. Contra-

dictory evidence exist in whether or not digital decision making

already occurs at the level of MAPK signaling [18,21,24], but the

pathway likely exhibits a certain degree of ultrasensitivity [20]. In

this paper, we employ a bottom-up approach and initially study

minimal signaling models with gradual dose-response curves,

before turning to more complex systems capable of ultrasensitive

signal transduction.

Author Summary

Cells sense their surroundings and respond to soluble
factors in the extracellular space. Extracellular factors
frequently induce heterogeneous responses, thereby
restricting the biological outcome to a fraction of the cell
population. However, the question arises how such cell-to-
cell variability can be controlled, because some cellular
systems show a very homogenous response at a defined
level of an extracellular stimulus. We derived an analytical
framework to systematically characterize the cell-to-cell
variability of intracellular signaling pathways which trans-
duce external signals. We analyzed how heterogeneity
arises from fluctuations in the total concentrations of
signaling proteins because this is the main source of
variability in eukaryotic systems. We find that signaling
pathways can be highly variable or inherently invariant,
depending on the kinetic parameters and the structural
features of the cascade. Our results indicate that the cell-
to-cell variability can be reduced by negative feedback in
the cascade or by signaling crosstalk between parallel
pathways. We precisely define the role of negative
feedback loops in variability suppression, and show that
different aspects of the dose-response curve can be
controlled, depending on the feedback kinetics and site
of action in the cascade. This work constitutes a first step
towards a systematic understanding of cell-to-cell variabil-
ity in signal transduction.

Cell-to-Cell Variability in Kinase Signaling
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Cell-to-cell variability is introduced into the models by assuming

fluctuations in initial signaling protein expression levels. In

contrast to previous studies on variability [25], we neglect the

intrinsic stochasticity of signaling cascades (cf. Introduction), and

analyze deterministic models of kinase signaling using the

framework of ordinary differential equations (ODEs). Experimen-

tal studies suggest that all signaling protein concentrations vary

simultaneously due to noise in protein biosynthesis rates [6,7,9].

Extrinsic noise sources, in particular signaling protein concentra-

tion fluctuations, are thought to be the main source of non-genetic

variability in yeast pheromone signaling [26] and in mammalian

signaling pathways [6,7,27–29]. We applied two complementary

strategies to understand how signaling protein expression noise

gives rise to signaling heterogeneity. First, explicit cell-to-cell

variability simulations were performed. All signaling protein

concentrations were sampled from uncorrelated log-normal

distributions, and the ODE system was solved for each set of

sampled concentrations, yielding distributions in signaling path-

way activity. Secondly, one-dimensional sensitivity analyses

revealed the impact of individual signaling protein concentrations:

Figure 1. Cell-to-cell variability in a minimal model of a gradual kinase cascade. A Schematic representation of a five-step kinase cascade
(S…extracellular stimulus; Xi and X �i …active and inactive kinases, respectively; Pi…phosphatases; ka,i and kd,i…phosphorylation and
dephosphorylation rate constants, respectively). B Cell-to-cell variability simulations confirm strong heterogeneity in the gradual kinase cascade.
Nine signaling protein concentrations (5 kinases, 4 phosphatases) were sampled from log-normal distributions (mX̂X ,i~mP̂P,i~1; coefficient of

variation = s=m~0:35), and the dose-response curve was simulated using Eqs. 3 and 4 for a set of 1000 sampled protein concentrations. Low
phosphatase activities were chosen to model a low activation resistance: ka,i~1, i~1,2 . . . 5,kd,1~1,kd,i~0:1, i~2,3,4,5 (Supplemental Table S1).
The blue and orange areas are enclosed by the dose-response curves which yielded the minimal/maximal Km,5 and Xmax,5 , respectively. Box plots at
the top and right side represent the distributions of Km,5 and Xmax,5 , respectively (normalized by the population medians). These box plots indicate
the median (middle of box), the first and third quartile (box edges), the data points that lie within a distance of 1.5 interquartile ranges from the lower
and higher quartiles (whiskers) and extreme outliers (crosses). C The variabilities of Km,5 and Xmax,5 respond inversely to changes in kinetic parameter
values. Cell-to-cell variability simulations (similar to panel B) were repeated for various activation resistances in the cascade which were tuned by
simultaneously changing the phosphatase rate constants kd,i , i~2,3,4 (x-axis). The variabilities of Km,5 and Xmax,5 were analyzed for each parameter
configuration (y-axis) and expressed as inter-quartile ratios (IQRatio = Q3=Q1 = ratio of the third quartile and the first quartile; related to the width of
the box plots shown in B). High inter-quartile ratios imply high cell-to-cell variability while an IQRatio of 1 corresponds to no variability. Similar results
are obtained when using the coefficient of variation as a measure of variability (Figure S1). D Upstream signaling protein fluctuations determine the
pathway sensitivity (Km,5) while downstream fluctuations control the maximal pathway activation (Xmax,5). Km,5 and Xmax,5 were calculated for each
simulation run in panel B and related to the concentrations of the first and the terminal kinase in the same simulation. Each dot represents a
simulation of a single cell, and the solid lines are linear fits to all points.
doi:10.1371/journal.pcbi.1003357.g001

Cell-to-Cell Variability in Kinase Signaling
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The ODE system was solved for varying levels of each signaling

protein (keeping all other components constant). Signaling protein

concentrations that had a strong impact on signaling pathway

activity could be identified as major determinants of cell-to-cell

variability.

Our results show that generic five-step protein kinase cascades

exhibit much stronger cell-to-cell variability than the yeast

pheromone pathway, unless certain robustness requirements are

fulfilled.

2 Cell-to-cell variability of gradual protein kinase
cascades

2.1 Gradual protein kinase cascades show strong cell-to-

cell variability. Multi-step signaling cascades show a gradual

dose-response behavior if the response of each individual cascade

level is gradual as well [3,30]. A minimal model of a gradual

signaling cascade can be implemented by assuming that enzyme

saturation in the phosphorylation and dephosphorylation reactions

at each level are negligible [4].

The following ordinary differential equation describes the

temporal evolution of the active kinase Xi:

dXi

dt
~va,i{vd,i~ka,iXi{1 (Xtot,i{Xi)|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

X�
i

{kd,iPtot,iXi ð1Þ

Each phosphorylation step is described as a reaction between

the phosphorylated form Xi{1 of kinase i{1 and the non-

phosphorylated form X �i of a downstream kinase i (Figure 1A).

The corresponding phosphorylation rate is given by the term

va,i~ka,iXi{1X �i where ka,i is the second-order rate rate constant

for phosphorylation of the i-th kinase. Similarly, the dephos-

phorylation of the active form Xi is described by the rate

vd,i~kd,iPtot,iXi, with the dephosphorylation rate constant and

total phosphatase concentration designated as kd,i and Ptot,i,

respectively [4]. Equation 1 takes into account that the total

kinase concentration at each level is constant, i.e., Xtot,i~

X �i zXi.

The steady state activity of each cascade level describing the

activity upon long-term stimulation can be calculated by assuming

that the kinase concentrations do not change over time

(dXi=dt~0).

Xi~Xtot,i
Xi{1

Xi{1z ~KKi

, ~KKi~
kd,iPtot,i

ka,i
ð2Þ

This expression relates the activity of the i-th kinase to that of its

upstream activator Xi{1, and therefore characterizes the local

dose-response behavior of the cascade. It has the form of a

Michaelis-Menten equation: Each cascade level may saturate if the

kinase pool is fully phosphorylated (Xi~Xtot,i) and half-maximal

activation occurs when the kinase and phosphatase activities are

equal (Xi{1~ ~KKi).

The cellular response to stimulation is determined by the global

dose-response curve which relates the activity of the terminal

cascade level to the concentration of the extracellular stimulus S.

By iteratively applying Eq. 2 and setting the stimulus to

S~X0~const, one derives for the global dose-response curve of

a five-step cascade (i~1,2, . . . 5)

X5~Xmax,5
S

SzKm,5
: ð3Þ

This Michaelis-Menten-like equation increases gradually for

increasing concentrations of the stimulus S, confirming that the

minimal cascade model shows gradual dose-response behavior.

The parameter Xmax,5 describes the maximal activation level of

the pathway upon strong stimulation. Km,5 equals the stimulus

concentration leading to half-maximal signaling, and thus reflects

the pathway sensitivity to stimulation. Xmax,5 and Km,5 are lumped

parameters that can be defined as

Xmax,5~
Xtot,5

1zK5zK5K4zK5K4K3zK5K4K3K2
ð4Þ

Km,5~K1
K5K4K3K2

1zK5zK5K4zK5K4K3zK5K4K3K2

K1~kd,1=ka,1 is the dissociation constant of receptor-ligand

binding, and the remaining Ki are proportional to the kinase and

phosphatase concentrations in the cascade,

Ki~
~KKi

Xtot,i{1
~

kd,iPtot,i

ka,iXtot,i{1
, i~2, . . . ,5, ð5Þ

To understand the cell-to-cell variability, we need to know how

Xmax,5 and Km,5 depend on the total kinase and phosphatase

concentrations. We initially analyze cell-to-cell variability for the

case of weak stimulation (S%Km,5) where the pathway dose-

response curve in Eq. 3 can be approximated by the following

linear equation:

X5&
Xmax,5

Km,5

S~
Xtot,5

K5K4K3K2K1

S: ð6Þ

The signaling activity upon weak stimulation is thus determined

by the product of five kinase concentrations (Xtot,1, . . . ,Xtot,5)

divided by the product of four phosphatase concentrations

(Ptot,2, . . . ,Ptot,5). This implies that a weakly stimulated cascade

exhibits strong cell-to-cell variability, because the product of

fluctuating species shows much greater variability than either

species alone. The total variance in the signaling output upon

weak stimulation (s2
X ,5) equals the sum over all signaling protein

concentration variances (s2
Xtot,i

for kinases and s2
Ptot,i

for phospha-

tases) (Supplemental Text S1).

s2
X ,5~(

X5

i~1

s2
Xtot,i

z
X5

i~2

s2
Ptot,i

) ð7Þ

Two conclusions can be drawn from this equation concerning

the regulation of variability: (i) the variability cannot be reduced

significantly by lowering the expression noise of certain signaling

proteins; instead, a simultaneous noise reduction of all species

would be required: The cell-to-cell variability can be quantified

using the inter-quartile ratio (IQ ratio) which expresses the

Cell-to-Cell Variability in Kinase Signaling

PLOS Computational Biology | www.ploscompbiol.org 4 December 2013 | Volume 9 | Issue 12 | e1003357



difference of cells with high and low signaling activities by dividing

the third and first quartiles of the distribution (see Methods).

Assuming realistic protein concentration fluctuations in Eq. 6, the

IQ ratio only drops from 4.1 to 3.8 if the noise of 1 out of 9

signaling protein concentrations is eliminated, implying that the

cell-to-cell variability remains essentially unchanged. (ii) the

variability does not depend on the choice of the kinetic parameter

values (Ki). Thus, the weakly stimulated gradual signaling

pathway always shows strong variability. Consistent with the

expectation, we find that lesser variability may be observed upon

strong stimulation (S&Km,5) where X5&Xmax,5 (see below).

The variability principles derived from the analytical model (Eq.

1–7) were confirmed by explicit cell-to-cell variability simulations.

To this end, each of the nine protein concentrations in the cascade

was sampled from a log-normal distribution with a coefficient of

variation that matches the experimentally observed variability of

eukaryotic protein expression [12]. Dose-response simulations

were performed for each set of sampled protein concentrations,

yielding cohorts of dose-response curves representing the cell

population. Such a simulation is shown in Figure 1B, and cells

with the highest and lowest Xmax,5 or Km,5 are highlighted by the

shaded areas. These cell-to-cell variability simulations confirm that

the minimal gradual protein kinase cascade generally shows

pronounced variability, especially at low-level stimulation.

2.2 A trade-off in controlling the variability of maximal

pathway activation and pathway sensitivity. We investigat-

ed how the variabilities of the maximal pathway activation (Xmax,5)

and the pathway sensitivity (Km,5) depend on the kinetic

parameters in the cascade. Xmax,5 and Km,5 are fully described

by the lumped parameters Ki (Eq. 4). Each Ki equals the

phosphatase activity at a cascade level divided by the maximally

possible kinase activity (Eq. 5). Thus, Ki quantifies the tendency of

a cascade level to be fully activated upon strong stimulation and

can be considered as an activation resistance. A strong stimulus

fully activates the pathway kinases only if all resistances are low

(Ki%1).

We tuned the activation resistances (Ki) by simultaneously

changing all phosphatase activities, and performed cell-to-cell

variability simulations (Figure 1C). For low phosphatase activity at

each level (Ki%1), we observe little variance in the maximal

pathway activation, because only the concentration of the terminal

kinase matters (Xmax,5&Xtot,5). At the same time, the pathway

sensitivity is determined by the product of multiple protein

concentrations (Km,5&K5K4K3K2K1), and therefore differs strong-

ly between individual cells. In the opposite regime of high

phosphatase activity at each level (Ki&1), we find that the

pathway sensitivity is completely invariant between cells. This is

because the receptor level saturates before the subsequent cascade

steps, implying that the dose-response curve of the terminal kinase

is aligned to the half-maximal saturation point of receptor-ligand

binding (Km,5&K1). In this regime, the maximal activation level is,

however, determined by all protein concentrations in the cascade

and thus highly variable (Xmax,5&Xtot,5=K5K4K3K2). These

simulations reveal that the variabilities of Km,5 and Xmax,5 are

inversely related. The drop in the variability of Km,5 precisely

matches the parameter range where the variability of Xmax,5

increases (Figure 1C). We show more generally in Supplemental

Text S1 that Km,5 and Xmax,5 are inversely related for any

parameter change in the signaling cascade. Thus, a trade-off exists

in a simple gradual protein kinase cascade: either the pathway

sensitivity or the maximal pathway activation can be made

invariant by changing the kinetic parameter values. However, it is

not possible to make Km,5 and Xmax,5 invariant at the same time.

The signaling variability could be reduced by lowering the

expression noise of individual signaling proteins. We therefore

investigated whether fluctuations in certain signaling protein concen-

trations have particularly strong impact on the variabilities of the

maximal pathway activation (Xmax,5) and the pathway sensitivity

(Km,5). To this end, Xmax,5 and Km,5 were related to the signaling

protein expression levels in single cells (Figure 1D). Cells with a high

expression level of the terminal kinase (Xtot,5) tend to have a higher

maximal pathway output Xmax,5 than cells harboring low levels of the

terminal kinase. No such correlation is observed for the kinase

concentration at the first cascade level (Xtot,1). Thus, the downstream

species tend to exert a stronger control on the maximal pathway output

than the upstream species (see also Supplemental Text S1). In contrast,

the pathway sensitivity is primarily determined by upstream species in

the cascade: Cells tend to respond at lower ligand concentrations the

higher the expression level of the first kinase (Xtot,1) is, and the

concentrations of the downstream species play a lesser role in this

respect (Figure 1D, top row; Supplemental Text S1). Taken together,

we find that the maximal output Xmax,5 and the pathway sensitivity

Km,5 are controlled in a very different way. We show in Supplemental

Text S1 that signaling protein concentrations with strongly control over

Xmax,5 generally have lesser impact on Km,5 (and vice versa). Thus,

while either Xmax,5 or Km,5 can be made invariant by reducing the

expression noise of certain signaling proteins, it is not possible to

achieve invariance for both features at the same time.

The trade-off in the regulation of Km,5 and Xmax,5 has important

ramifications for the control of intracellular signaling: Intracellular

signaling regulators or pharmacological inhibitors acting upstream

in the cascade primarily regulate the pathway sensitivity, whereas

downstream regulators predominantly affect the maximal pathway

activation. The strong and parameter-independent dose-response

variability suggests that the simple gradual model is unable reflect

the invariant dose-response behavior of the yeast pheromone

pathway (see Rationale): all cells of the population respond upon

strong stimulation if the activation resistances are low (Kiv1), but

then the pathway sensitivity fluctuations are high, and the most

sensitive cells respond at a ,100-fold lower stimulus concentration

than the least sensitive cells (Figure 1B).

2.3 Negative feedback regulation allows for the

simultaneous invariance of maximal pathway activation

and pathway sensitivity. Negative feedback regulation reduces

the variability of biological systems [31–33]. In the following, we show

that negative feedback resolves the above-mentioned robustness trade-

off by simultaneously promoting the invariance of maximal pathway

activation (Xmax,5) or pathway sensitivity (Km,5).

In the yeast pheromone pathway, the terminal kinase promotes

the deactivation of the pathway by negatively regulating the G

protein level [22,34], and this negative feedback loop has been

reported to control the pathway sensitivity to stimulation [34]. We

implemented negative feedback in a gradual five-step protein

kinase cascade by assuming that the final kinase (X �5 ) enhances the

activity of the phosphatase at the second level (Figure 2A, solid red

line). Most of the differential equations remain unchanged when

compared to the basic model (Eq. 1), but the ODE for the second

pathway level now reads:

dX2

dt
~ka,2X1(Xtot,2{X2){(1zkfbX n

5 )kd,2Ptot,2X2 ð8Þ

The rate of X2 deactivation is multiplied by the term 1zkfbX n
5

to reflect that the dephosphorylation is enhanced by X5. The

parameter kfb determines how strongly X5 promotes the

deactivation of X2. The exponent n indicates a possible

Cell-to-Cell Variability in Kinase Signaling
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cooperativity of negative feedback regulation (nw1: feedback with

positive cooperativity). For pronounced feedback regulation, i.e.,

kfb&1, the steady state dose-response curve can be approximated

by (Supplemental Text S1):

X5&

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

kfb

Xtot,5

K5K4K3K2

(nz1)

s
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Xmax,5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S

SzK1

(nz1)

r
ð9Þ

In line with previous studies, we find that the kinase cascade

with negative feedback regulation exhibits a shallower dose-

response curve than the feedback-less system, because the stimulus

S enters as the (nz1)-th root only [32,33,35]. The non-

cooperative feedback system requires a ,420-fold increase in

the stimulus level to switch from 10% to 90% of the maximal

activation level, while an 81-fold increase is sufficient in the

corresponding feedback-less cascade (Eq. 3). Negative feedback

therefore extends the gradual mode of quantitative information

Figure 2. Cell-to-cell variability of kinase cascades with negative feedback. A Schematic representation of the five-step cascade with
negative feedback acting upstream (red, solid) or downstream (red, dashed). X5 either activates the phosphatase of the second or the fifth level. B
Cell-to-cell variability simulations confirm that negative feedback eliminates the variability of the pathway sensitivity (concepts similar to Figure 1B).
Strong feedback was assumed and simulations were performed using Eq. 9 (parameters same as in Figure 1B; Supplemental Table S1). Colored box
plots represent the Km,5 and Xmax,5 distribution of the feedback model, while gray box plots show the behavior of the reference feedback-less
cascade (cf. Figure 1B). The inset shows that increasing the feedback cooperativity parameter n (Eq. 8) decreases Xmax,5 variability, measured as
IQRatio (cf. Figure 1C). C–D Negative feedback abrogates the trade-off in Km,5 and Xmax,5 invariance. Cell-to-cell variability simulations (similar to
panel B) were repeated for various parameter configurations for models with upstream feedback (C) or downstream feedback (D): activation
resistances in the cascade were tuned by simultaneously changing the phosphatase rate constants kd,i, i~2,3,4 (x-axis). The variabilities of Km,5 and
Xmax,5 were analyzed using the IQRatio as in Figure 1C, and similar results are obtained using the coefficient of variation (Figure S2). Km,5 was defined
as the stimulus for a half-maximal pathway activation. The behavior of a feedback model with limited feedback strength (kfb~103 ; thick, solid lines)

is compared to a feedback-less model (kfb~0; thin, dashed lines) and to a model with very strong feedback (kfb~1015; thin, solid lines). Simulations
for moderate feedback strength (thick lines) were performed by numerically integrating the ODE systems (Eqs. 8 and 12), while the strong feedback
calculations (thin solid lines) were done using analytical approximations (Eqs. 9 and 13).
doi:10.1371/journal.pcbi.1003357.g002
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transmission to a large stimulus concentration range, and the effect

is more pronounced for cooperative feedback regulation (nw1).

Strong negative feedback reduces the cell-to-cell variability of

the dose-response curve: The half-maximal stimulus of the cascade

is proportional to the half-saturation point of receptor-ligand

binding (K1), and completely independent of fluctuations in the

signaling protein concentrations (cf. Figure 2B)

Km,5~
1

2nz1{1
K1 ð10Þ

This protein concentration insensitivity can be explained as

follows: strong negative feedback shifts the species X2 to X5 to very

low activation levels, implying that the downstream part of the

cascade does not saturate. The dose-response curve of the cascade

thus follows the receptor-ligand binding isotherm, though with a

more gradual shape. Such pathway alignment to the receptor

dose-response curve due to negative feedback has been observed

experimentally in the yeast pheromone signaling cascade [34].

The effects of strong negative feedback on the maximal pathway

activation variability are less pronounced. Assuming log-normally

distributed gene expression noise, the variance of Xmax,5 can be

derived from Eq. 9 and represented as a function of the signaling

protein concentration variances (Supplemental Text S1)

s2
max,5~

1

(nz1)2
(
X5

i~1

s2
Xtot,i

z
X5

i~2

s2
Ptot,i

) ð11Þ

The Xmax,5 variability is determined by the sum of all protein

concentration variances, but is reduced by the feedback term

(nz1)2. This result confirms previous observations showing that

cooperative feedback (nw1) suppresses noise more efficiently than

linear feedback [36].

The Xmax,5 and Km,5 variabilities of the feedback system are

independent of the activation resistances in the cascade and low

compared to a feedback-less cascade (thin solid and thin dashed

lines in Figure 2C). Thus, negative feedback allows for the

simultaneous invariance of the maximal pathway activation and

the pathway sensitivity, thereby resolving the robustness trade-off

of the feedback-less cascade. Moreover, the negative feedback

system shows the same signaling variability for low and high

stimulus levels (Eq. 9), implying that quantitative information

transmission is possible over a very broad stimulus concentration

range. These conclusions continue to hold for an equivalent

negative feedback system, where the terminal kinase X5 inhibits

the activity of X1, thereby controlling the phosphorylation reaction

of X2. This can be seen in the steady state condition dX2=dt~0
(Eq. 8) which can be converted to the kinase inhibition case by

division with the feedback term (1zkfbX n
5 ).

We confirmed our findings concerning negative feedback

regulation for more realistic feedback cascades with limited

feedback strength kfb. Figure 2C shows that the moderate

feedback system shows a simultaneous invariance of maximal

pathway activation (Xmax,5) and the pathway sensitivity (Km,5) over

a finite range of activation resistances in the cascade (thick solid

lines), and the variability tends to be lower than that of a feedback-

less cascade (dashed lines). The strength of the feedback regulation

kfb primarily affects the width of the compromise range where

Xmax,5 and Km,5 are simultaneously invariant: Limited feedback

cannot perform any regulatory function for high activation

resistances (Ki&1), because X5 is barely activated in this regime.

Likewise, moderate feedback cannot efficiently counteract the

strong signaling activity of a cascade with too low activation

resistance (Ki%1).

2.4 Negative feedback loops acting upstream and

downstream in the cascade control different aspects of the

dose-response curve. Signaling cascades are often equipped with

multiple negative feedback loops, some acting close to the receptor

level, while others modulate the terminal cascade levels [23]. We

investigated how the length of a negative feedback emanating from X5

affects the dose-response behavior of the cascade. Consider a cascade

with a short, downstream feedback, where X5 activates its own

phosphatase (Figure 2A, dashed red line). Such downstream feedback

regulation occurs in the yeast pheromone pathway, as Msg5, the

phosphatase acting at the terminal cascade level, is transcriptionally

induced upon stimulation [22,37]. Again, most of the ODEs remain

unchanged when compared to the basic cascade model (Eq. 1), but the

fifth pathway level reads:

dX5

dt
~ka,5X4(Xtot,5{X5){(1zkfbX n

5 )kd,5Ptot,5X5 ð12Þ

The steady state condition of the upstream feedback

(dX5=dt~0) also describes an equivalent negative feedback

system, where the terminal kinase X5 inhibits the activity of its

own activator X4. This can be seen by dividing the steady state

condition with the feedback term (1zkfbX n
5 ). We again approx-

imate the steady state for strong feedback (kfb&1) and obtain

(Supplemental Text S1)

X5&

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

kfb

Xtot,5

K5(1zK4zK4K3zK4K3K2)

(nz1)

s
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Xmax,5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S

SzKm,4

(nz1)

s ð13Þ

The steady state of X5 is proportional to the root of the

Michaelis-Menten equation, and the dose-response curve is thus as

shallow as that of the system with upstream feedback (Eq. 9). In

similarity to Eq. 10, the half-saturation point of Eq. 13 is

proportional to the half-maximal stimulus of X4 (i.e., Km,4).

Downstream feedback thus eliminates the impact of the terminal

level on the pathway sensitivity, but any variability arising between

X1 and X4 is transmitted. Downstream feedback suppresses the

variability of the maximal pathway activation, especially for high

feedback cooperativity n (Eq. 13), and achieves the same or

stronger Xmax,5 invariance when compared to the upstream

feedback system (thin orange lines in Figure 2C and Figure 2D):

this is because the upstream signaling protein concentrations

(parameters K2, K3 and K4) have a lower impact in Eq. 13 than in

Eq. 9 if the phosphatase activities in the cascade are low (Ki%1).
We conclude that only upstream feedback efficiently suppresses

Km,5 fluctuations, while downstream feedback has the stronger

impact on the Xmax,5 variability. For both systems, increasing

feedback cooperativity n selectively suppresses the Xmax,5 fluctu-

ations.

We analyzed the downstream feedback model with limited

feedback strength kfb (thick lines in Figure 2D). Moderate

downstream feedback also resolves the robustness trade-off in

protein kinase signaling by allowing for a simultaneous Xmax,5 and
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Km,5 invariance at intermediate activation resistances. Moderate

downstream feedback reduces Km,5 fluctuations to a much lesser

extent than upstream feedback, while having a slightly more

pronounced effect on the Xmax,5 variability (Figure 2C and

Figure 2D). Taken together, upstream and downstream feedback

loops differentially control the dose-response behavior also at

moderate feedback strengths, although the differences are less

pronounced compared to the case of strong feedback (Figure 2C

and Figure 2D).

Our models predict that upstream negative feedback in the

pheromone pathway may contribute to the invariant shmooing

threshold, while downstream negative feedbacks may primarily

ensure that all cells exhibit a similar maximal activation upon

strong stimulation. One limitation of the negative feedback models

is their shallow dose-response behavior which is inconsistent with

the reported ultrasensitivity of the pheromone pathway [18,20,21].

We turn to ultrasensitive signaling cascades in the following to

study more realistic models of yeast pheromone sensing.

3 Cell-to-cell variability of ultrasensitive signaling
cascades

The term ultrasensitivity describes signaling cascades with steep,

sigmoidal dose-response curves that allow for all-or-none decision

making. Ultrasensitive behavior has been reported for the yeast

pheromone pathway, although the steepness of the dose-response

curve differs between literature reports [18,20,21]. Various

molecular mechanisms establish ultrasensitivity in signaling

cascades, e.g., double phosphorylation or competitive inhibition

[3,38]. In this work, we neglect the mechanistic details underlying

ultrasensitive regulation, and represent ultrasensitivity at one or

more cascade levels by the Hill equation (see below). This

modeling approach allows us to study the propagation of

variability in ultrasensitive signaling cascades.

Two strategies exist to establish a very steep overall dose-

response curve in a signaling cascade: Firstly, the all-or-none

behavior may be primarily established at a single level, while the

rest of the cascade shows gradual behavior (in isolation). Localized

switching at the terminal cascade level has been reported for the

yeast mating pathway [18]. Secondly, switching may be distrib-

uted over multiple steps, i.e., each cascade level exhibits mild

ultrasensitivity in isolation and cascade amplification effects ensure

that the overall dose-response curve is very steep. Such behavior

has been observed for the MAPK cascade in Xenopus oocytes

[39], and is likely to be relevant for other MAPK cascades like the

yeast pheromone pathway. The following discussion of cell-to-cell

variability will initially focus on the second mode of distributed

ultrasensitive decision making, before turning to the case of

focused switching at a single level.

3.1 Ultrasensitive cascades with distributed switching

can be inherently invariant. Multi-step signaling cascades are

capable of strong ultrasensitivity amplification, implying that a

combination of multiple weak switches establishes a very steep

overall dose-response curve. To simplify the mathematical

analysis, we initially analyze a two-step signaling cascade with

ultrasensitivity at each level

X1~Xtot,1
Sn

Snz ~KKn
1

ð14Þ

X2~Xtot,2
X n

1

X n
1 z ~KKn

2

:

The steady state of each cascade level is represented by the Hill

equation, which has a structure analogous to the local dose-response

behavior of a gradual signaling cascade (Eq. 2). The maximal

activation of each cascade level equals the total concentration of the

respective kinase (Xtot,i), and the half-saturation point is determined by

the parameters ~KK1 and ~KK2. ~KKi equals the equivalence point of kinase

and phosphatase activities in ultrasensitive (de)phosphorylation systems,

and is thus determined by the concentration of a phosphatase [5].

Ultrasensitive, sigmoidal dose-response behavior can be observed for

Hill coefficients nw1.

We analyzed the overall dose-response curve relating the

signaling output X2 to the stimulus S, and found that the

ultrasensitive behavior is amplified along the cascade (Supple-

mental Text S1). Assuming a low phosphatase activity at the

second level ( ~KK2%Xtot,1), the threshold where the system switches

from low to high activation is given by

Km,2~ ~KK1

ffiffiffiffiffiffiffiffiffiffiffi
~KK2

Xtot,1

n

s
~K1

ffiffiffiffiffiffi
K2

n
p

: ð15Þ

The activation resistances K1 and K2 are defined in Eq. 5. The

threshold depends in a less-than linear manner on the kinase and

phosphatase concentrations controlling the second level (K2), thus

showing little variability. At the same time, the maximal activation

level depends the concentration of the terminal kinase only

(Xmax,2~Xtot,2) and shows partial invariance as well. The

ultrasensitive system thus shows a less pronounced robustness

trade-off when compared to the gradual system, and can

simultaneously show little variability of Xmax,2 and Km,2.

Numerical simulations were performed for a five-step signaling

cascade, where each level was modeled using a Hill equation with

n = 2 (similar to Eq. 14). The five-step signaling cascade exhibits

very strong ultrasensitivity if low phosphatase activities are

assumed for all cascade levels (Figure 3A; Ki%1). The system

shows little cell-to-cell variability, as all cells respond in a switch-

like manner within a ,3-fold range of stimulus concentrations. As

with the two-step cascade, the threshold in these cell-to-cell

variability simulations is almost exclusively determined by the

upstream signaling species: Km,5 correlates well with the concen-

tration of the first kinase (Xtot,1), but not with signaling protein

concentrations controlling subsequent cascade steps (Figure 3B).

The inherent invariance of the ultrasensitive system can be

understood intuitively by considering an extreme case scenario,

where each cascade level is a very steep switch (n&1): In this case,

all downstream cascade levels simultaneously respond as soon as

the first level is switched on. The system thus behaves like a chain

of dominos, and the threshold of the first level sets the threshold of

the whole cascade. The phenomenon is less pronounced for the

case of moderate switching at each step, so that the downstream

protein concentrations still matter to some extent (Eq. 15).

We conclude that the coordinated switching of the whole yeast

cell population within a ,3-fold range of pheromone concentra-

tions could be explained based on the ultrasensitive model with

distributed switching (Figure 3A). The prediction of local

ultrasensitivity which is then amplified along the cascade could

be tested experimentally by measuring and relating the dose-

response curves of several kinases in the cascade.

3.2 Active variability regulation in ultrasensitive cascades

by gene expression noise control and parameter

tuning. The threshold variability of the ultrasensitive system

strongly depends on the noise of K1, the kinase-phosphatase ratio

at the upstream cascade level (Eq. 15; Figure 3B).The noise of K1
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Figure 3. Cell-to-cell variability of kinase cascades with distributed ultrasensitive switching. A Simulations of a cascade with distributed
ultrasensitive switching and low activation resistance shows a steep response with little variability in Km,5 (defined as the stimulus for a half-maximal
pathway activation). The simulations of the five-step cascade were performed by iteratively applying the Hill equation describing the steady state of
each level (similar to Eq. 14). The concepts and parameter values correspond to Figure 1B, with a Hill coefficient ni~2, i~1,2, . . . 5 (Supplemental
Table S1). Colored box plots represent the Km,5 and Xmax,5 distribution of the ultrasensitive model, while gray box plots show the behavior of the
reference gradual cascade (cf. Figure 1B). B Km,5 is strongly controlled by the first kinase concentration, whereas Xmax,5 primarily responds to
fluctuations in the terminal kinase (concept similar to Figure 1D). C Simulations of a cascade with distributed ultrasensitive switching show that the
threshold variability can be reduced by coregulating the first level kinase (Xtot,1) and second level phosphatase (Ptot,2) concentrations. Correlation was
modeled by introducing a proportional relationship between both concentrations. D–E The variabilities of Km,5 and Xmax,5 were analyzed using the
IQRatio as in Figure 1C, but plotted against changes in the kinetic parameter value for only the second level phosphatase (kd,2). Similar results are
obtained using the coefficient of variation as a measure of variability (Figure S3). The markers 1–3 correspond to the respective dose-response density
plots shown in E. A high density (red) corresponds to a high number of cells showing a particular stimulus-response relationship. Three modes of
variability are visible in E: 1) for low resistance values, the variability in Km,5 is low and all cells are able to respond to stimulation; 2) the variability
increases at intermediate resistance levels, because only a fraction of the cells respond while the remaining cells do not even for high stimulus values;
3) in case of a high activation resistance no cell is able to respond.
doi:10.1371/journal.pcbi.1003357.g003
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could be reduced by correlating the fluctuations of the respective

kinase and phosphatase concentrations. Such correlated fluctua-

tions may be realized in the yeast pheromone pathway, because

the pheromone receptor Ste2 and the antagonizing G protein

deactivator Sst2 are transcriptionally co-regulated by the tran-

scription factor Ste12 [22,37]. In Figure 3C, we simulated the five-

step signaling cascade with moderate switching at each level, and

introduced correlated fluctuations between the first kinase

concentration (Xtot,1) and the antagonizing second phosphatase

concentration (Ptot,2). We find that this system exhibits less

variability when compared to the uncorrelated case, as all cells

respond in a switch-like manner within a ,2-fold range of stimulus

concentrations (compare Figure 3A and Figure 3C). Experimental

work supports that correlated fluctuations in upstream kinase and

phosphatase concentrations reduce the variability of mammalian

MAPK signaling [7]. We propose to simultaneously measure the

expression levels of fluorescently labeled Ste2 and Sst2 in single-

cells to confirm that a similar mechanism promotes the invariance

of yeast shmooing.

Correlated fluctuations in a single kinase-phosphatase pair

would also promote invariance in gradual signaling cascades, but

only to a minor extent, because the remaining seven protein

concentration variabilities still enter the signaling activity upon

weak stimulation in an additive manner (Eqs. 6 and 7): The cell-to-

cell variability of a gradual cascade with realistic protein

concentration fluctuations, quantified as the inter-quartile ratio

(see Methods), only drops from 4.1 to 3.5 if a perfect correlation is

introduced for a single kinase-phosphatase pair. This suggests that

correlations in upstream signaling protein concentrations specif-

ically promote the robustness of ultrasensitive systems.

A way to increase the variability of the ultrasensitive cascade

relative to Figure 3A is kinetic parameter tuning, e.g., by

increasing the activity of certain phosphatases. Figure 3D shows

the variabilities of maximal pathway activation (Xmax,5) and the

pathway sensitivity (Km,5) for varying phosphatase expression at

the second level. Both variabilities clearly increase for increasing

phosphatase expression, and the variance of Km,5 peaks at

intermediate levels. Increasing phosphatase expression introduces

heterogeneity because a fraction of the cell population becomes

completely insensitive to stimulation. This can be seen in

Figure 3E, where the dose-response curve distributions of the cell

population are indicated by density plots for different phosphatase

levels. For instance, at intermediate phosphatase levels, half of the

cells do not respond at all to stimulation, while the remainder

shows essentially complete activation of X5 (Figure 3E, panel 2).

Thus, increasing phosphatase expression introduces heterogeneity,

because the system switches from a strong and synchronous

response of the whole population to a strong response in only a

fraction of cells. The Km,5 variability peaks at intermediate

phosphatase activities, because the stimulus level required for half-

maximal activation is different in responding and non-responding

cells (not shown). At very high phosphatase levels, the population

only consists of non-responders, thus again showing less variability

(Figure 3E, panel 3).

3.3 Ultrasensitive signaling cascades with switching at a

single step show strong variability. Switch-like decision

making may also be established if a single cascade level shows a

very steep dose-response curve. Such a localized switch has been

reported for the yeast mating pathway [18]: The scaffold protein

Ste5 co-localizes members of the MAPK cascade, and its activity is

regulated by a multisite dephosphorylation mechanism, thereby

promoting the switch-like phosphorylation of the terminal MAPK

cascade member Fus3. We mimic this scenario by assuming

that the terminal cascade level X �5 is phosphorylated by X4 in a

switch-like manner, whereas the upstream part of the pathway

(X1{X4) shows gradual behavior. In similarity to Eq. 3 the steady

state of X4 can be written as

X4~Xmax,4
S

SzKm,4
ð16Þ

The switch-like dose-response at the terminal level (X5) may be

represented by the Hill equation :

X5&Xtot,5
X n

4

X n
4 z ~KKn

5

: ð17Þ

The threshold ~KK5 determines the equivalence point of kinase

and phosphatase activities at the fifth level, and is proportional to

the concentration of the phosphatase P5. We performed cell-to-

cell variability simulations of this system assuming a high Hill

coefficient n (Figure 4A), and investigated how the variabilities of

maximal pathway activation and threshold stimulus depend on the

kinetic parameter values (Figure 4B). Increasing phosphatase

expression shifts the system from complete switching of the whole

cell population to incomplete switching of only a fraction of cells,

reminiscent of the cascade with distributed switching (Figure 3E).

Cells only respond to stimulation if the maximal activation level of

X4 is larger than the Hill equation threshold (Xmax,4w
~KK5). The

single-switch system shows strong variability even for low

phosphatase activities in the cascade, because seven signaling

protein concentrations jointly determine the signaling threshold

(Supplemental Text S1). The simulated signaling thresholds vary

over three orders of magnitude as long as all cells of the population

respond strongly to stimulation (Figure 4A), implying that the

single switch system cannot explain the experimentally observed

invariance of the shmooing threshold (see Rationale). We show in

the following that invariance can be realized if the single-switch

model is extended by feedback or feedforward loops.

3.4 Suppression of signaling threshold variability by

basal transcriptional feedback. Negative feedback diminish-

es the variability of signaling cascades, though at the cost of a

reduced steepness of the dose-response curve (Eq. 9). In this

Section, we demonstrate that switching and invariance can be

combined if the time window of variability suppression by negative

feedback can be separated from the time window of switch-like

decision making.

Feedback loops in mammalian signaling commonly involve

transcriptional regulation, and the signaling cascades typically

induce the expression of their own inhibitors [23]. In the yeast

mating pathway phosphatases negative regulators like the G

protein deactivator Sst2 and the phosphatase Msg5 are transcrip-

tionally induced upon stimulation [22,37]. Transcriptional feed-

back requires de novo protein biosynthesis, thereby affecting signal

transduction with a delay. Thus, a time window exists early after

stimulation where the steepness of the dose-response curve is

unaffected by transcriptional feedback. Yet, transcriptional feed-

back may promote robustness of the dose-response curve if it

operates under basal conditions before stimulation as observed for

the yeast mating pathway [34,37,40]: Basal feedback inhibitors are

able to correct for the basal state variability, because their

concentration reflects and tunes the basal signaling activity. This

variability suppression effect can be memorized to the time

window of acute stimulation, as long as the concentration of the

feedback inhibitor remains stable. In the following, it will be shown
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that this memorization of the pre-stimulation state efficiently

suppresses variability upon acute stimulation.

We model basal transcriptional feedback by implementing a

negative feedback loop in the single-switch cascade. The

phosphatase at the second level is transcriptionally induced by

the active terminal kinase X5 (Figure 5A) and also transcribed with

a basal rate (vsyn,const). Additionally, P2 is subject to degradation

(kdeg), giving rise to the following differential equation

dP2

dt
~vsyn,constzksyn,ind X5{kdegP2 ð18Þ

Basal signaling was implemented by assuming a low chronic

level of the stimulus S, and ligand-induced signaling was simulated

by further increasing S. Time scale separation was introduced by

neglecting the induction of P2 by transcriptional feedback early

after stimulation. The concentration of P2 is thus fixed to the basal

level throughout the time window of acute stimulation, i.e.,

dP2

dt
~0: ð19Þ

We performed cell-to-cell variability simulations of this system

assuming a high Hill coefficient n (Figure 5B). The basal

transcriptional feedback model shows a strongly reduced threshold

variability when compared to a feedback-less cascade with the

same kinetic parameters (compare Figure 4A and Figure 5B). The

simulated signaling thresholds lie within a ,3-fold range of

stimulus concentrations (Figure 5B), which is consistent with the

experimentally observed invariance of the shmooing threshold (see

Rationale). Strong variability suppression is possible, because the

basal signaling activity and the pathway threshold are controlled

by the same combination of parameters (Supplemental Text S1):

Transcriptional feedbacks correcting for fluctuations in basal

signaling thereby indirectly correct the threshold variability as

well. The threshold invariance of the basal feedback system is

more pronounced if the dose-response curve of the signaling

pathway is highly switch-like, because cooperativity promotes

robustness in negative feedback circuits.

The invariance due to basal feedback is restricted to a certain

range of activation resistances in the cascade, because increasing

the expression of several phosphatases in the cascade shifts the

system from complete switching of the whole cell population to

heterogeneous switching of only a fraction of cells (Figure 5C). In

Figure 5B and Figure 5C, we assumed that heterogeneity in P2

expression solely arises from fluctuations in the upstream signaling

cascade. However, basal transcriptional feedback can exert a

similar variability suppression if the P2 synthesis rate is also noisy

and sampled from a log-normal distribution (not shown).

Recent experimental evidence supports that Msg5, a basal

transcriptional feedback regulator of the yeast mating pathway,

suppresses the signaling variability upon pheromone stimulation

[26]. We propose to eliminate basal transcriptional feedback by

exchanging the endogenous promoter of the Msg5 gene by a

promoter that is not regulated by the pheromone, and predict a

strong increase in the signaling threshold variability.

3.5 Variability suppression by coherent feedforward

regulation. Signaling networks commonly involve coherent

feedforward loops where an upstream kinase controls a down-

stream target by two parallel pathways. Fus3, the yeast MAPK

that mediates the shmooing response, is controlled by two

pheromone-dependent pathways, both of which are required for

full activation [18]: Fus3 is phosphorylated by the upstream MAP

kinase kinase Ste7, and additionally needs to be released from an

inhibitory site in the scaffold protein Ste5 for activation. The latter

step involves Ste5 multisite dephosphorylation by the phosphatase

Ptc1. It will be shown below that coherent feedforward regulation

of Fus3 may contribute to the invariance of shmooing.

Figure 4. Cell-to-cell variability of cascades with a localized switch at the terminal level. A Simulations show that pronounced variability
for both Km,5 (defined as the stimulus for a half-maximal pathway activation) and Xmax,5. The concepts and parameter values correspond to Figure 1B,
and the simulations were performed by iteratively applying Eqs. 16 and 17 with a Hill coefficient n~5 (Supplemental Table S1). Colored box plots
represent the Km,5 and Xmax,5 distribution of the ultrasensitive model, while gray box plots show the behavior of the reference gradual cascade (cf.
Figure 1B). B The variabilities of a cascade with a localized switch at the terminal level were analyzed using the IQRatio, and the activation resistance
was tuned by varying several phosphatase rate constants (kd,2– kd,4 , thick, solid lines), and compared to a gradual model (thin, dashed lines). In
contrast to a cascade with distributed ultrasensitivity (Figure 3D), homogeneous switching of all cells at a defined stimulus value is not possible even
for low activation resistances. Similar results are obtained using the coefficient of variation as a measure of variability (Figure S4).
doi:10.1371/journal.pcbi.1003357.g004

Cell-to-Cell Variability in Kinase Signaling

PLOS Computational Biology | www.ploscompbiol.org 11 December 2013 | Volume 9 | Issue 12 | e1003357



We model coherent feedforward regulation by extending the

model of the five-step signaling cascade with a switch at the

terminal level (Eqs. 16 and 17). The downstream signaling species

X4 and X5 represent the MAPKK Ste7 and its target Fus3,

respectively. Ptc1 is regulated by pheromone pathway intermedi-

ates upstream of Fus3 [18], but the precise molecular mechanism

is not known. We assume in the model that the Ptc1 activity is

directly activated by the pheromone receptor (X1). and that the

Ptc1 pathway enhances X4–mediated phosphorylation of X5

(Figure 6A). The effective kinase concentration is thus enhanced

by the feedforward term (1zkFFLX1) and the modified steady

state equation for X5 reads

X5~Xtot,5
X n

4 (1zkFFL
:X1)n

X n
4 (1zkFFL

:X1)nz~KKn
5

ð20Þ

The threshold ~KK5 is proportional to the concentration of the

phosphatase P5, and thus subject to fluctuations. The parameter

kFFL determines how strongly the phosphorylation of X5 is

enhanced by feedforward regulation. We assume strong crosstalk

Figure 5. Cell-to-cell variability of cascades with a localized switch at the terminal level and basal transcriptional feedback. A
Schematic representation of the five-step cascade with an ultrasensitive terminal step and basal transcriptional feedback. Assuming fast pathway
dynamics and slow expression dynamics (time-scale separation), the system can be considered to exist in two states: at basal levels of stimulus, X5

induces the expression of the second level phosphatase P2 (Eq. 18). Upon acute stimulation the pathway responds rapidly but the expression kinetics
of the phosphatase are too slow to establish a significant feedback regulation (Eq. 19). B Simulations of a cascade with a localized switch at the
terminal level and basal transcriptional feedback show a reduced variability when compared to the ultrasensitive model without basal transcriptional
feedback shown in Figure 4A. The concepts and parameter values correspond to Figure 1B, and the simulations were performed numerically
integrating the ODE system given by Eqs. 16–19, with a Hill coefficient n~5, a basal stimulus of 10{5 , a basal synthesis rate vsyn,const~10{2 , an X5-

induced synthesis rate constant ksyn,ind~103 , and a degradation rate kdeg~1 (Supplemental Table S1). Colored box plots represent the Km,5 and
Xmax,5 distribution of the basal transcriptional feedback model, while gray box plots show the behavior of the reference gradual cascade (cf.
Figure 1B). C Variabilities of Km,5 (defined as the stimulus for a half-maximal pathway activation) and Xmax,5 were analyzed using the IQRatio, and the
activation resistance was tuned by varying several phosphatase rate constants (kd,2– kd,4 , thick, solid lines). The variability of the gradual model is
shown for comparison (thin, dashed lines). The variant with basal transcriptional feedback is able to strongly reduce the variability in Km,5 for low
activation resistance values when compared to the single-switch model without feedback (cf. Figure 4B). Similar results are obtained using the
coefficient of variation as a measure of variability (Figure S5).
doi:10.1371/journal.pcbi.1003357.g005
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(large kFFL) and neglect saturation in the upstream part of the

cascade (i.e., X1~Xtot,1=K1
:S and X4~Xmax,4=Km,4

:S) to ensure

that both feedforward branches jointly regulate X5 in a stimulus-

dependent manner. The latter assumption is justified if the

activation resistances in the cascade are large (Kiw1, i~2,3,4).

Then, steady state modifies to

X5~Xtot,5
S2n

S2nz
~KK5

kFFL

K1
Xtot,1

Km,4
Xmax,4

� �n ð21Þ

In line with previous reports, we find that coherent feedforward

regulation increases the ultrasensitivity of the dose-response curve,

as the stimulus now enters with the exponent 2n [41]. The

switching threshold

Km,5~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~KK5

kFFL

K1

Xtot,1

Km,4

Xmax,4

s
ð22Þ

contains the variabilities of X1 and X4 (determined by the ratios

K1=Xtot,1 and Km,4=Xmax,4, respectively). The total variability of the

feedforward system is determined by the product of the individual

branch variabilities, but each branch variability enters as a root only.

Feedforward regulation thus reduces the threshold variability com-

pared to the simple cascade if the feedforward branch is a shortcut and

regulated by only a few signaling protein concentrations.

Explicit cell-to-cell variability simulations using Eq. 20 confirm

that the threshold variability of the feedforward pathway

Figure 6. Cell-to-cell variability of cascades with coherent feedforward regulation. A Schematic representation of the five-step cascade
with a coherent feedforward loop: the X4-mediated phosphorylation of X5 is positively regulated by the kinase X1 (see main text). B Simulations of a cascade
with a coherent feedforward loop show reduced variability when compared to the single-switch model without feedforward regulation (Figure 4A). The
concepts and parameter values correspond to Figure 1B, and the simulations were performed by iteratively applying Eqs. 16 and 20, with a Hill coefficient n~5

and kFFL~105 (see Supplemental Table S1). Colored box plots represent the Km,5 and Xmax,5 distribution of the feedforward model, while gray box plots show
the behavior of the reference gradual cascade (cf. Figure 1B). C The variabilities of Km,5 (defined as the stimulus for a half-maximal pathway activation) and
Xmax,5 were analyzed as a function of the activation resistance by varying several phosphatase rate constants (kd,2–kd,4 , thick, solid lines), and compared to a
gradual model (thin dashed lines). Feedforward regulation plays no role at low activation resistances (point 1), but reduces the variability at intermediate
activation resistances (point 2; see main text). High variability arises at high resistances, because not all cells reach the threshold for full X5 activation (point 3).
Similar results are obtained using the coefficient of variation as a measure of variability (Figure S6).
doi:10.1371/journal.pcbi.1003357.g006
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(Figure 6B) is less than that of a simple ultrasensitive cascade with

the same kinetic parameters (Figure 4A). Feedforward regulation

robustly reduces the cell-to-cell variability, because partial

invariance is observed over a broad range of activation resistances

K2–K4 in the upstream cascade (point 2 in Figure 6C). The cell-to-

cell variability increases for low activation resistances (point 1 in

Figure 6C), because X4 is activated at much lower stimulus levels

than X1, which prevents efficient feedforward regulation. For too

high activation resistances, the maximal activation levels of X1 and

X4 are too low to reliably activate X5, and the system shows high

variability due to bimodal splitting into responding and non-

responding cells (point 3 in Figure 6C).

We conclude that joint regulation of Fus3 by Ste7 and Ptc1 may

reduce the cell-to-cell variability of pheromone signaling. Howev-

er, the simulated signaling thresholds still span a ,50-fold range of

stimulus concentrations (Figure 6B), implying that feedforward

regulation requires cooperation with other variability suppression

mechanisms to bring about full robustness. The yeast pheromone

pathway comprises feedforward loops other than the one

comprising Ptc1, as G proteins employ several parallel pathways

to activate the MAPK cascade [22]; it is possible that these

multiple feedforward loops synergize to establish an invariant

shmooing response.

Discussion

A key question in biology is how cellular systems function

robustly in face of internal and external fluctuations. We

comprehensively characterized the determinants of cell-to-cell

variability in protein kinase signaling cascades, and summarized

our main findings in Table 1. Our work extends previous studies

on cell-to-cell variability [6,42,43] and on variability reduction by

negative feedback [9,33,44], bifunctional enzymes [45–47] or

correlated protein concentration fluctuations [7,9,28,48]. We

analyzed the steady state dose-response behavior of signaling

systems, and showed that protein kinase cascades can be highly

variable or inherently invariant, depending on the properties of

individual reaction steps and their kinetic parameters. Our results

may explain why the yeast pheromone pathway shows switch-like

decision making with very little cell-to-cell variability.

In this paper, we made a central simplifying assumption to study

the behavior of protein kinase cascades: it was assumed that the

individual levels of a protein kinase cascade function as isolated

modules. Based on this assumption, we described the local dose-

response behavior of each cascade level by Michaelis-Menten or

Hill equations (Eqs. 3 and 14), and studied their behavior in

tandem to gain insights into the global dose-response behavior of

the five-step cascade. Depending on the protein concentrations

and kinetic parameters in the cascade, the modularity assumption

may be violated, and explicit simulations of all enzyme-substrate

binding and dissociation events in the cascade may be necessary:

strong sequestration of upstream kinases by highly abundant

downstream substrates affects the phosphorylation state of the

upstream kinase, thereby leading to retroactivity in the cascade

[49–51]. Retroactivity results in positive or negative feedback

regulation [49–51], and may therefore increase or decrease the

cell-to-cell variability of protein kinase signaling. Sequestration

effects and retroactivity can give rise to complex dynamic

phenomena such as bistability and oscillations in computational

models of MAPK signaling without explicit feedback regulation

[52–55]. The cell-to-cell variability of such complex protein kinase

signaling systems cannot be understood by analytical approaches,

and thus needs to be analyzed numerically using extensive

parameter sampling strategies [54]. Throughout this paper, we

assumed that the signaling activity at each cascade level scales with

the total kinase concentration (Eqs. 2, 14 and 17). However, a

nonlinear relationship between signaling activity and total protein

concentration is possible for (de)phosphorylation cycles with tight

enzyme-substrate binding and sequestration effects [56,57],

implying that the cell-to-cell variability would be increased or

decreased.

Negative feedback is known to suppress the variability of

biological systems and to reduce the steepness of signaling dose-

response curves [32,33]. Here, we define more precisely the role of

negative feedback in the modulation of signal transduction

variability. Negative feedback simultaneously reduces the variabil-

ity of the maximal pathway activation and the signaling threshold,

thereby resolving the robustness trade-off which we observed in

non-feedback cascades. The topological organization of the

feedback loop determines which dose-response features are

primarily affected by negative feedback: A feedback that acts

upstream in the cascade primarily promotes invariance of the

pathway threshold, while a feedback acting downstream controls

the variability of the maximal pathway activation. We further find

that the time scale of negative feedback regulation may determine

its functional role: Variability suppression in fast, post-translational

loops comes at the cost of a very shallow dose-response curve,

implying that switch-like decision making is not possible. This

trade-off can be circumvented in slow transcriptional feedback

Table 1. Determinants of cell-to-cell variability in gradual and ultrasensitive signal transduction.

Model
Dose-response
behavior

Cell-to-cell
variability Note

Gradual Eq. 1 gradual high variability most pronounced for weak stimulation

Feedback (upstream) Eq. 8 very gradual low feedback primarily reduces pathway sensitivity (Km,5)
fluctuations

Feedback (downstream) Eq. 12 very gradual low feedback primarily reduces maximal pathway activation
(Xmax,5) fluctuations

Distributed ultrasensitivity Eq. 14 switch low-high variability can be regulated by phosphatase expression

Single-step ultrasensitivity Eqs. 16, 17 switch high pathway threshold always highly variable

Single-step ultrasensitivity + basal
transcriptional feedback

Eqs. 16–19 switch low switch-like decision making only for slow feedback possible

Single-step ultrasensitivity + coherent
feedforward loop

Eqs. 16, 20 switch medium total variability is the combination of the individual branch
variabilities

doi:10.1371/journal.pcbi.1003357.t001
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loops because the time windows of variability suppression and

switch-like decision making can be separated. Interestingly, our

simulations reveal that negative feedback acting upstream in

signaling cascade may increase the cell-to-cell variability: For low

phosphatase activities in the cascade (Ki%1), the maximal

activation level of a feedback-less gradual cascade is determined

by the terminal kinase concentration only and shows partial

invariance (dashed orange line in Figure 2C). In contrast, the

maximal activation level of a system with strong feedback is

determined by multiple protein concentrations (Eq. 9), implying

that negative feedback regulation increases the variability (solid

orange line in Figure 2C).

In this paper, we analyzed the steady state behavior of negative

feedback circuits, but did not focus on their dynamical properties

such as sustained oscillations [58]. Interestingly, oscillations have

been observed experimentally for yeast and mammalian MAPK

cascades, and appear to be important for adequate cellular

decision making [59,60]. We performed linear stability analyses to

investigate whether sustained oscillations arise in our simple

models of protein kinase signaling (Supplemental Text S1,

Supplemental Figure S7 and Figure S8). As expected, oscillatory

behavior was not possible in a simple multistep signaling cascade

without negative feedback regulation (Eq. 1). Sustained oscillations

were also not observed when the gradual kinase model was

extended by a downstream negative feedback loop (X5 activates its

own phosphatase; Eq. 12), because oscillations require a negative

feedback with sufficient delay [58]. However, sustained oscillations

can occur within a certain stimulus range in the model with

upstream feedback (Eq. 8), provided that X5 activates the

phosphatase P2 with high cooperativity (n§7). Such high

feedback cooperativity is required to overcome saturation effects

in the kinase cascade which compromise the emergence of

sustained oscillations [58]. Damped oscillations already occur at

lower feedback cooperativities. Our cell-to-cell variability simula-

tions for the upstream feedback system thus represent the steady

state behavior reached without damped oscillations (low n), after

damped oscillations (intermediate n) or the mean activity of a

sustained oscillator (high n).

One way to reduce noise in biological signaling systems is to

correlate the expression fluctuations of antagonizing enzymes

[7,9,28,48], e.g., by co-regulation at the transcriptional and/or

post-transcriptional levels [61,62]. Our results indicate that

efficient variability reduction by a correlated fluctuation of only

two enzyme concentrations can only be achieved in ultrasensitive

signaling pathways (Figure 3C). Gradual signaling systems require

correlated fluctuations in most if not all signaling protein

concentrations. Single-cell studies indicate that protein concentra-

tions in the cell may be globally correlated, possibly due to

fluctuations in RNA polymerase and/or ribosome copy numbers

[12,28]. In our cell-to-cell variability simulations, we made a

conservative assumption and neglected these protein concentra-

tion correlations. It is straightforward to extend our analytical

results to the case of correlated fluctuations in all enzymes.

Interestingly, several growth factor signaling pathways are

organized in so-called synexpression groups, where most positive

and negative regulators of signaling show tight spatio-temporal co-

regulation [62]. Functional organization in synexpression groups

may reflect the need for correlated fluctuations in multiple kinase-

phosphatase pairs to effectively reduce variability. Most synexpres-

sion groups are transcriptionally controlled by the activity of their

own signaling pathway, and thus combine multiple positive and

negative transcriptional feedback loops. We find that signaling

cascades with synexpression of multiple feedback regulators show

little cell-to-cell variability, much like systems with co-expression of

non-feedback regulators (unpublished observation).

Gradual signaling systems transduce information quantitatively

and faithfully report the stimulus concentration in the extracellular

milieu. We therefore assumed that the maximal pathway

activation and the pathway sensitivity of a gradual system should

be invariant. However, recent experimental work revealed that the

absolute signaling activities of a mammalian MAPK cascade

pathway are highly variable, while the stimulus-induced fold-

change in the signal is invariant between cells [11]. Our results

indicate that robust fold-change encoding is possible in a gradual

signaling cascade with low phosphatase activities (Ki&1): In this

scenario, the pathway sensitivity is completely invariant (Eq. 4),

and all cells show the same fold-change in response to a stimulus

increase from one level to another. Future studies are required to

investigate in more detail such alternative modes of robust signal

transmission, especially in more complex models of protein kinase

cascades.

Materials and Methods

All simulations were done in Python. Analytical solutions were

obtained using the open-source python package SymPy (www.

sympy.org). Numerical simulations were performed using the

odeint function of the scipy.integrate package (www.scipy.org).

The details of the model implementation process can be found in

the figure captions and in the Supplemental Protocol S1. The

model parameters are listed in Supplemental Table S1. Source

codes are available upon request.

Cell-to-cell variability was introduced into deterministic ordi-

nary differential equation models of protein kinase signaling by

assuming fluctuations in initial protein concentrations. The total

kinase and phosphatase concentrations (Xtot,1, Xtot,2, Xtot,3, Xtot,4,

Xtot,5, Ptot,2, Ptot,3, Ptot,4, Ptot,5) for each cell were sampled from

independent log-normal distributions with a mean of 0 and a

standard deviation of 0.35. The same kinetic parameter values

were assumed for each cell of the population, and 1000 cells with

different total protein concentrations were simulated for each

model variant. The simulations of all model variants were

performed with the same random number generator seed.

The steady state dose-response behavior of each cell was

characterized by calculating the pathway sensitivity (Km,5) and the

maximal pathway activation upon strong stimulation (Xmax,5).

Km,5 was calculated as the stimulus level leading to half-maximal

pathway activation by finding the zero of the dose-response curve

having a negative offset of Xmin,5{0:5:(Xmax,5{Xmin,5), where

Xmax,5 is the basal activation level in the absence of stimulation.

Various methods were employed to characterize the cell-to-cell

variability of the signaling dose-response curves. In Figures 1B, 2B,

3A, 3C, 4A, 5B, and 6B, we explicitly show simulations of the

dose-response behavior for specific parameter configurations, and

highlighted cells with the highest and lowest Xmax,5 or Km,5 by the

shaded areas (orange and blue, respectively). Since these

population outliers could be subject to randomness, we addition-

ally provide box plots at the top and the right to characterize the

(normalized) Xmax,5 and Km,5 distributions, respectively (see

Figures 1B, 2B, 3A, 3C, 4A, 5B, and 6B). The cell-to-cell

variability for different parameter configurations was character-

ized using the interquartile (IQ) ratio (Figures 1C, 2C, 2D, 3D, 4B,

5C, and 6C), which was calculated as the ratio of the third (Q3)

and first (Q1) quartile using the Python package NumPy (www.

numpy.org). The IQ Ratio is a dimensionless number that reflects

the fold difference between cells with high and low levels, while

excluding (extreme) outliers. To further support our findings, we
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show in the Supplemental Figures S1, S2, S3, S4, S5, S6 that very

similar results are obtained when using the coefficient of variation

(CV = mean/standard deviation) as a measure of variability.

Supporting Information

Figure S1 Cell-to-cell variability of a gradual kinase
cascade quantified using the coefficient of variation.
Concepts similar to Figure 1C, but the variabilities of Km,5 and

Xmax,5 were analyzed using the coefficient of variation (CV = stan-

dard deviation/mean). High CVs imply high cell-to-cell variabil-

ity, while CV~0 corresponds to no variability.

(PDF)

Figure S2 Cell-to-cell variability of gradual kinase
cascades with negative feedback regulation quantified
using the coefficient of variation. The concepts in panels A

and B are similar to Figure 2C and Figure 2D, respectively: The

variabilities of Km,5 and Xmax,5 were analyzed using the coefficient

of variation (CV = standard deviation/mean). The behavior of a

feedback model with limited feedback strength (kfb~103 ; thick,

solid lines) is compared to a feedback-less model (kfb~0; thin,

dashed lines) and to a model with very strong feedback (kfb~1015;

thin, solid lines).

(PDF)

Figure S3 Cell-to-cell variability of ultrasensitive kinase
cascades with distributed switching quantified using the
coefficient of variation. The concepts are similar to Figure 3D,

but the variabilities of Km,5 and Xmax,5 were analyzed using the

coefficient of variation (CV = standard deviation/mean).

(PDF)

Figure S4 Cell-to-cell variability of kinase cascades with
ultrasensitive switching at a single step quantified using
the coefficient of variation. The concepts are similar to

Figure 4B, but the variabilities of Km,5 and Xmax,5 were analyzed

using the coefficient of variation (CV = standard deviation/mean)

and compared to the gradual model (thin, dashed lines).

(PDF)

Figure S5 Cell-to-cell variability of ultrasensitive kinase
cascades with basal transcriptional feedback quantified
using the coefficient of variation. The concepts are similar to

Figure 5C (main text), but the variabilities of Km,5 and Xmax,5 were

analyzed using the coefficient of variation (CV = standard

deviation/mean) and compared to the gradual model (thin,

dashed lines).

(PDF)

Figure S6 Cell-to-cell variability of ultrasensitive kinase
cascades with feedforward regulation quantified using
the coefficient of variation. The concepts are similar to

Figure 6C, but the variabilities of Km,5 and Xmax,5 were analyzed

using the coefficient of variation (CV = standard deviation/mean)

and compared to the gradual model (thin, dashed lines).

(PDF)

Figure S7 Numerical stability analysis of the upstream
feedback cascade with low activation resistances reveals
that high feedback cooperativity is required for sus-
tained oscillations. The eigenvalues of the Jacobi matrix at the

steady state were calculated numerically for different feedback

cooperativities n and stimuli S as described in Supplemental Text

S1. The upper panel shows a classification of the real parts of the

eigenvalues (blue: real parts of all eigenvalues are negative; red:

real part of at least one eigenvalue is zero or positive). The lower

panel indicates whether at least one of the eigenvalues is complex

(red regions) or not (blue regions). Oscillations require that at least

one of the eigenvalues is complex (red regions, lower panel). A

damped oscillator exhibits only negative real parts (blue regions,

upper panel), while at least one real part is zero or positive for

sustained oscillators (red regions, upper panel). Sustained oscilla-

tions require very strong feedback cooperativity, (nw7). All

activation resistances in the cascade were assumed to be low

(Ki~0:1, Eq. 5, main text). The simulations cover the full

dynamic range of the dose-response curves. Parameters:

kfb~1015, ka,i~1, Xtot,i~1 and Ptot,i~1, kd,i~0:1.

(PDF)

Figure S8 Numerical stability analysis of the upstream
feedback cascade with high activation resistances re-
veals that sustained oscillations are not possible even for
very strong feedback cooperativity. The concepts are similar

to Figure S7, but all activation resistances in the cascade were

assumed to be high (Ki~10, Eq. 5, main text). Parameters:

kfb~1015, ka,i~1, Xtot,i~1 and Ptot,i~1, kd,i~10.

(PDF)

Protocol S1 Implementation of model variants.
(PDF)

Table S1 Parameter values used for simulations. The

index i runs over the set ½1,2, . . . 5� if not specified explicitely.

(PDF)

Text S1 Analytical derivations and numerical analysis
of steady state stability.
(PDF)

Acknowledgments

We would like to thank Alvaro Banderas, Alexander Anders and Victor

Sourjik for valuable discussions.

Author Contributions

Conceived and designed the experiments: SL. Performed the experiments:

MJ SL. Analyzed the data: MJ SL. Wrote the paper: MJ SL. Performed

stability analysis of negative feedback systems: SB.

References

1. Pearson G, Robinson F, Gibson TB, Xu BE, Karandikar M, et al. (2001)

Mitogen-activated protein (MAP) kinase pathways: regulation and physiological

functions. Endocr Rev 22: 153–183.

2. Cheong R, Rhee A,Wang CJ, Nemenman I, Levchenko A (2011) Information

transduction capacity of noisy biochemical signaling networks. Science 334:

354–358.

3. Ferrell JE (1996) Tripping the switch fantastic: how a protein kinase cascade can

convert graded inputs into switch-like outputs. Trends Biochem Sci 21: 460–466.

4. Heinrich R, Neel B, Rapoport T (2002) Mathematical models of protein kinase

signal transduction. Molecular Cell 9: 957–970.

5. Goldbeter A, Koshland DE (1981) An amplified sensitivity arising from covalent

modification in biological systems. Proc Natl Acad Sci U S A 78: 6840–6844.

6. Spencer SL, Gaudet S, Albeck JG, Burke JM, Sorger PK (2009) Non-genetic

origins of cell-to-cell variability in TRAIL-induced apoptosis. Nature 459: 428–

432.

7. Feinerman O, Veiga J, Dorfman JR, Germain RN, Altan-Bonnet G (2008)

Variability and robustness in T cell activation from regulated heterogeneity in

protein levels. Science 321: 1081–1084.
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Dissecting genealogy and cell cycle as sources of cell-to-cell variability in MAPK
signaling using high-throughput lineage tracking. Proc Natl Acad Sci U S A 110:

11403–11408.

27. Cotari JW, Voisinne G, Dar OE, Karabacak V, Altan-Bonnet G (2013) Cell-to-
cell variability analysis dissects the plasticity of signaling of common chain

cytokines in T cells. Sci Signal 6: ra17.
28. Gaudet S, Spencer SL, Chen WW, Sorger PK (2012) Exploring the contextual

sensitivity of factors that determine cell-to-cell variability in receptor-mediated
apoptosis. PLoS Comput Biol 8: e1002482.

29. Yuan TL,Wulf G, Burga L, Cantley LC (2011) Cell-to-cell variability in PI3K

protein level regulates PI3K-AKT pathway activity in cell populations. Curr Biol
21: 173–183.

30. Kholodenko BN, Hoek JB,Westerhoff HV, Brown GC (1997) Quantification of
information transfer via cellular signal transduction pathways. FEBS Lett 414:

430–434.

31. Becskei A, Serrano L (2000) Engineering stability in gene networks by
autoregulation. Nature 405: 590–593.

32. Nevozhay D, Adams RM, Murphy KF, Josic K, Balázsi G (2009) Negative
autoregulation linearizes the dose-response and suppresses the heterogeneity of

gene expression. Proc Natl Acad Sci U S A 106: 5123–5128.

33. Paulsen M, Legewie S, Eils R, Karaulanov E, Niehrs C (2011) Negative feedback
in the bone morphogenetic protein 4 (BMP4) synexpression group governs its

dynamic signaling range and canalizes development. Proc Natl Acad Sci U S A
108: 10202–10207.

34. Yu RC, Pesce CG, Colman-Lerner A, Lok L, Pincus D, et al. (2008) Negative
feedback that improves information transmission in yeast signalling. Nature 456:

755–761.

35. Zhang Q, Andersen ME (2007) Dose response relationship in anti-stress gene
regulatory networks. PLoS Comput Biol 3: e24.

36. Sauro HM, Kholodenko BN (2004) Quantitative analysis of signaling networks.

Prog Biophys Mol Biol 86: 5–43.

37. Roberts CJ, Nelson B, Marton MJ, Stoughton R, Meyer MR, et al. (2000)

Signaling and circuitry of multiple MAPK pathways revealed by a matrix of

global gene expression profiles. Science 287: 873–880.

38. Zhang Q, Bhattacharya S, Andersen ME (2013) Ultrasensitive response motifs:

basic amplifiers in molecular signalling networks. Open Biol 3: 130031.

39. Huang CY, Ferrell JE (1996) Ultrasensitivity in the mitogen-activated protein
kinase cascade. Proc Natl Acad Sci U S A 93: 10078–10083.

40. Lang GI, Murray AW, Botstein D (2009) The cost of gene expression underlies a
fitness trade-off in yeast. Proc Natl Acad Sci U S A 106: 5755–5760.

41. Mangan S, Alon U (2003) Structure and function of the feed-forward loop

network motif. Proc Natl Acad Sci U S A 100: 11980–11985.

42. Geva-Zatorsky N, Rosenfeld N, Itzkovitz S, Milo R, Sigal A, et al. (2006)

Oscillations and variability in the p53 system. Mol Syst Biol 2: 2006.0033.

43. Colman-Lerner A, Gordon A, Serra E, Chin T, Resnekov O, et al. (2005)
Regulated cell-to-cell variation in a cell-fate decision system. Nature 437: 699–

706.

44. Barkai N, Leibler S (1997) Robustness in simple biochemical networks. Nature

387: 913–917.

45. Steuer R, Waldherr S, Sourjik V, Kollmann M (2011) Robust signal processing
in living cells. PLoS Comput Biol 7: e1002218.

46. Batchelor E, Goulian M (2003) Robustness and the cycle of phosphorylation and

dephosphorylation in a two-component regulatory system. Proc Natl Acad
Sci U S A 100: 691–696.

47. Shinar G, Milo R, Martı́nez MR, Alon U (2007) Input output robustness in

simple bacterial signaling systems. Proc Natl Acad Sci U S A 104: 19931–19935.

48. Løvdok L, Bentele K, Vladimirov N, Müller A, Pop FS, et al. (2009) Role of

translational coupling in robustness of bacterial chemotaxis pathway. PLoS Biol
7: e1000171.

49. Jesan T, Sarma U, Halder S, Saha B, Sinha S (2013) Branched Motifs Enable

Long-Range Interactions in Signaling Networks through Retrograde Propaga-
tion. PLoS One 8: e64409.

50. Ventura AC, Sepulchre JA, Merajver SD (2008) A hidden feedback in signaling

cascades is revealed. PLoS Comput Biol 4: e1000041.

51. Kim Y, Paroush Z, Nairz K, Hafen E, Jiménez G, et al. (2011) Substrate-
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