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 � Hip

Effect of head size and rotation on taper 
corrosion in a hip simulator

Aims
This study investigates head- neck taper corrosion with varying head size in a novel hip sim-
ulator instrumented to measure corrosion related electrical activity under torsional loads.

Methods
In all, six 28 mm and six 36 mm titanium stem- cobalt chrome head pairs with polyethylene 
sockets were tested in a novel instrumented hip simulator. Samples were tested using sim-
ulated gait data with incremental increasing loads to determine corrosion onset load and 
electrochemical activity. Half of each head size group were then cycled with simulated gait 
and the other half with gait compression only. Damage was measured by area and maximum 
linear wear depth.

Results
Overall, 36 mm heads had lower corrosion onset load (p = 0.009) and change in open cir-
cuit potential (OCP) during simulated gait with (p = 0.006) and without joint movement 
(p = 0.004). Discontinuing gait’s joint movement decreased corrosion currents (p = 0.042); 
however, wear testing showed no significant effect of joint movement on taper damage. In 
addition, 36 mm heads had greater corrosion area (p = 0.050), but no significant difference 
was found for maximum linear wear depth (p = 0.155).

Conclusion
Larger heads are more susceptible to taper corrosion; however, not due to frictional torque 
as hypothesized. An alternative hypothesis of taper flexural rigidity differential is proposed. 
Further studies are necessary to investigate the clinical significance and underlying mecha-
nism of this finding.
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introduction
Larger femoral heads (≥ 36  mm) may be 
preferred in metal- on- polyethylene total hip 
arthroplasty (THA) to reduce the risk of dislo-
cation by increasing the impingement free 
range of motion (ROM) and jump distance 
of the head from the cup.1 However, large 
head size has been implicated in contrib-
uting to head- neck taper corrosion.2 Severe 
taper corrosion led to the market withdrawal 
of many large diameter metal- on- metal THA 
constructs.3 However, retrieval analyses have 
reported mixed results regarding the contri-
bution of head diameter to taper corrosion in 
metal- on- polyethylene prostheses.4- 6 Some 
surgeons have cautioned against femoral 
heads ≥ 36  mm, even in polyethylene 

acetabular liners, until the issue is better 
understood.7

The mechanism underlying the impact 
large heads have on head- neck taper corro-
sion is not well understood. One hypothesis 
is that larger heads provide a greater moment 
arm for forces generated by articular fric-
tion causing greater torque at the taper 
connection (Figure  1). Jauch et al8 showed 
torsion less than that found from friction in 
metal- on- crosslinked polyethylene bearings 
(3.92 Nm vs 9 Nm)9 can initiate taper fretting 
corrosion.

The use of retrieval analyses is challenged 
by a diverse patient population, in terms of 
both physiological and device design param-
eters, towards understanding the impact 
of head size on taper corrosion. A highly 
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Fig. 1

Frictional torque induced by femoral head rotation within an acetabular cup 
(green) during flexion (blue) is proportionate to the moment arm (red) from 
the head’s outer spherical surface to the trunnion’s central axis. The moment 
arm increases with femoral head size as the head’s outer surface moves 
further from the trunnion’s central axis.

Fig. 2

Synergy Stem and CoCr femoral head test samples (Smith & Nephew, UK).

controlled in vitro bench- top study could strengthen the 
body of evidence by investigating head size as the single 
independent variable in a test apparatus approximating 
in- vivo conditions. Yet despite potential contribution 
from torque, the standard taper corrosion test method 
(ASTM F18751)10 requires only uni- axial cyclic compres-
sive loading, without joint movement that would 
generate frictional torque. Therefore, a novel hip simu-
lator instrumented to measure corrosion related electrical 
activity is needed to quantify the effect of clinically rele-
vant frictional torque on taper corrosion.

The aims of this study were to develop a novel instru-
mented hip simulator test apparatus to determine the role 
of rotational joint movements in head- neck taper corro-
sion, and investigate the susceptibility to and severity of 
taper corrosion with increasing head diameter in a metal- 
on- polyethylene articulation. It is hypothesized that the 
samples subject to joint movement will exhibit greater 
taper damage and that this effect will be greater with 
larger femoral head samples.

Methods
Materials. Femoral test samples were implant grade final 
products (Synergy Stem; Smith & Nephew, UK; Figure 2). 
Femoral heads were Co- Cr- Mo alloy (CoCr), with either 
28 mm or 36 mm diameter, and all neutral offset (0 mm) 
to ensure no taper coverage or offset differences. Femoral 
neck samples were prepared from Ti- 6Al- 4V alloy femoral 
stems. Stems were cut 15 mm below the resection lev-
el, and two tapped holes were added to the sectioned 
surface to allow test apparatus connection. Femoral neck 

samples were embedded to the resection level in Ortho- 
Jet BCA acrylic resin (Lang Dental, USA). Modifying the 
stem this way is considered acceptable because in- vivo 
stems are also often biologically fixed by bony ingrowth 
to the resection level, such that the stem’s flexural rigidity 
in the region around the taper connection is equivalent to 
the test samples. Acetabular samples were manufactured 
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Fig. 3

Modified dual station hip simulator (left), instrumented upper module (centre) and schematic (right) illustrating the test sample (grey) and polyethylene 
socket (white) in a saline (blue) filled test chamber (yellow) with flexible cap (dotted line) containing reference electrode (orange) and counter electrode 
(green) connected to the test sample and subject to applied load (red).

from non- crosslinked UHMWPE rod (ASTM F648) with 
a 30° angled top surface to simulate anatomical head 
coverage and a central spherical cavity to mate with the 
28  mm or 36  mm head. Angulation of the acetabular 
sample mimics the orientation and head coverage in- 
vivo. Six samples of each head size were tested to allow 
practical test duration and a minimum of  three samples 
per head size and wear test loading regime.
Apparatus. The test apparatus is a modified BioPuls Dual 
Station ASTM Hip Simulator (Instron, USA), as depicted 
in Figure 3. The hip simulator is connected to a calibrat-
ed bi- axial servohydraulic test frame (MTS, USA) includ-
ing upper and lower modules. The test frame applies 
identical compression to the upper and lower modules. 
The upper module includes a mechanism that translates 
the test frame’s single rotation axis into coordinated 3° 
of freedom flexion- extension, internal- external rotation, 
and abduction- adduction of simulated gait via a series of 
interconnected and offset gears. As a result, under the hip 
simulator’s intended use, the upper module wear tests 
samples under compression and joint movement, where-
as the lower module is for load- soaked control samples 
subject only to compression.

The simulator was modified to allow connection of 
test samples, electronically isolating the samples and 
connecting them to electrical measuring equipment. Test 
samples were connected to the hip simulator via custom 
manufactured sample holders. Samples were isolated by 
excluding all extraneous metal components from the test 
solution. Test samples were contained in a custom manu-
factured test chamber made of high- density polyeth-
ylene, polycarbonate and silicone sealant topped with a 
latex membrane. The polyethylene acetabular liners were 
connected to the test chamber’s base by screws isolated 
by an O- ring and silicone sealant. The femoral sample 
holder was isolated from the rest of the hip simulator via 
a sleeve made of polymer, and only the femoral neck and 
head entered the test chamber. In between tests, the test 

chamber was thoroughly cleaned to prevent third body 
wear.

Test samples were connected to an Ag/AgCl reference 
electrode (Accumet; Fisher Scientific, USA) through a 
Keithley 6514 electrometer (Keithley Instruments, USA) 
to measure the sample’s open circuit potential (OCP). 
Test samples were also connected to a Ti- 6Al- 4V counter 
electrode through a Keithley 6485 picoammeter (Keithley 
Instruments) to measure the corrosion current. The 
counter electrode was manufactured from remnant distal 
tips after sectioning the stem samples.

The apparatus for the lower module mirrors the upper 
module, excluding sample holder modification since 
joint movement was not necessary.

Methods
Prior to testing, samples were ultrasonically cleaned 
using Alconox detergent (Alconox, USA) in accordance 
with the detergent manufacturer’s instructions and visu-
ally inspected for baseline characterization. Samples were 
assembled under wet conditions to generate a challenge 
condition compared to dry assembly.9 The femoral head’s 
bore was filled with phosphate buffered saline (PBS) and 
the femoral neck’s trunnion was pressed into the head 
with a servohydraulic test frame (MTS, USA) applying 
2 kN axial load at a rate of 0.5 kN/s in accordance with 
ISO 7206- 10.10 Assembled components were then placed 
in individual PBS filled sample containers for 72  hours 
to electrochemically stabilize the system before testing. 
During this period the samples’ passive oxide layers 
reach equilibrium within the test environment such that 
minimal electrochemical activity takes place.

All samples were subjected to simulated gait with a 
periodically increasing incremental peak load. Simulated 
gait follows a double peak compressive load pattern per 
ISO 14242- 111 and sinusoidal  19° rotation applied by the 
test frame, which translates to standard deviation   (SD) 
10° flexion/extension, SD 2.5° abduction/adduction, 
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Fig. 4

Simulated gait cycle load and rotation.

and SD 2° internal/external rotation (Figure 4). The peak 
load increments rose from 100  N steps from 100N to 
1,100N, to 200 N steps from 1,100 N to 3,300 N, while 
maintaining a 0.1 minimum to maximum load ratio. 
Cyclic loading was continued at each increment for  three 
minutes, then OCP and corrosion current were measured 
before proceeding to the next load. After measurements 
were taken at 3,300  N compression with joint move-
ment, joint movement was discontinued and OCP and 
corrosion current were measured after  three minutes of 
cyclic compression only.

Corrosion onset load was determined by identifying 
the load where both OCP and corrosion current first 
increased from baseline as determined visually from a 
plot and confirmed via fast fourier transformation of 
current data to identify the load corresponding to a 3 Hz 
cyclic behaviour. This early electrical activity is consid-
ered the corrosion process’s initiation that may lead to 
observable taper damage over time. Corrosion current 
and change in OCP from baseline measured at 3,300 N 
cycling with and without joint movement are also consid-
ered as surrogates for corrosion, with higher values indi-
cating greater corrosion on the basis that each corrosion 
reaction releases a certain number of ions and with more 
corrosion reactions more ions would be measured as 
electrical activity.

After incremental gait loading, half of each group 
(28 mm and 36 mm) was long- term wear cycled in either 
the hip simulator’s upper or lower module. Samples 
cycled in the upper module were subject to full simu-
lated gait, with double peak compression to maximum 
3,300  N and joint movement as described above, at a 
rate of 3 Hz. The cycling frequency is greater than 1 Hz 
typical of simulated gait11 and as recommended by ASTM 
F1875 for taper connection electrochemical characteri-
zation.12 However, the cycling frequency is aligned with 
ASTM F187510 recommendations for long term taper 
connection fretting corrosion testing at frequencies 
below 5 Hz, and an in vitro study by Brown et al13 who 
observed corrosion currents at loading frequencies up to 
10 Hz. The lower module was subject only to identical 
compression loading, without joint movement. Samples 
tested in the lower module were held in the neutral orien-
tation per ISO 14242- 1.11 All samples were cycled for  one 
million cycles.

At the completion of wear cycling, femoral heads 
were disassembled via tensile axial distractive load. Taper 
surfaces were rinsed and gently wiped with non- abrasive 
cloth to remove adherent debris. Material loss from the 
head tapers was measured via ccoordinate measuring 
machine (CMM) by an experienced laboratory following 
a previously validated technique.14 Material loss from the 
stem tapers was not measured because the entirety of the 
trunnion was assembled within the head so no pristine 
surface after testing could be identified. Measurements 
were taken using a Zeiss Contura G2 CMM running 
Calypso software (Oberkochen, Germany). Heads were 
mounted at four points around the equator using a non- 
marring fixture. A custom measurement script was used 
to take at least 72 axial scans along the length of the head 
taper capturing 3D position every 0.1 mm with a 3 mm 
ruby stylus.

The measured point clouds were analyzed using 
Matlab (USA). Data was presented in graphical form and 
the evaluator selected a reference unworn region from 
which the original as- machined surface was extrapolated 
and material loss calculated. Material loss was presented 
as the maximum linear deviation from the as- machined 
surface. All devices were independently measured and 
analyzed three times by a single operator. The technique 
is accurate and repeatable to better than 7  μm for any 
retrieved bore.14 For this study, the measure’s 95% confi-
dence interval was calculated to be 2 μm. The accuracy 
and repeatability reported considers all sources of error, 
including CMM measurement error, 3D reconstruction 
error, and variability between operators.

Femoral head tapers were then visually inspected to 
identify wear mechanisms and measure the fretting and/
or corrosion damage surface areas. Damaged surface 
areas were measured by image analysis using Illustrator 
software (Adobe, USA). Images of the stem and head 
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Fig. 5

Definition of taper regions by dividing into quarters corresponding to medial, lateral, anterior, and posterior aspects, and dividing into proximal and distal 
halves. Head taper regions match stem taper regions.

Fig. 6

Example fretting and corrosion damage area identification. A stereomicroscopic image is taken of the head taper’s medial aspect and proximal (blue) and 
distal (red) regions of interest are identified. Within the regions of interest, fretting (yellow) and corrosion (red) damaged regions are manually traced. Area of 
the traced regions are calculated using a standard software function (Adobe Illustrator, USA).

taper’s medial, lateral, anterior and posterior aspects 
were taken using a Leica M123C stereomicroscope (Leica 
Microsystems, Germany) with the Leica LAS X software’s 
Z- stack feature to ensure a focused image down the 
head’s bore. Images were loaded into Illustrator software 
and the region of interest was identified geometrically 
corresponding to a 90° arc centred on the image. Each 
region was further divided into proximal and distal halves 
(Figure 5). Regions of fretting or corrosion were outlined 
using Adobe Illustrator’s pen tool and the area was calcu-
lated using the path area command (Figure 6). The areas 

on each aspect were summed to calculate the total corro-
sion or fretting damaged areas.
Statistical analysis. Statistical analysis was performed 
using SPSS 26 (IBM, USA). Data collected during the in-
cremental load test was analyzed by analysis of variance 
(ANOVA) with Tukey post- hoc analysis to determine the 
effect of head size. Corrosion current, change in OCP 
at cycling initiation (0 N to 100 N), and change in OCP 
at 3,300  N peak loading with and without joint move-
ment were each compared via paired t- test. Fretting and 
corrosion area comparisons were completed via paired 
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Table i. Incremental load test electrochemical measurements.

parameter
28 mm head, 
mean (SD)

36 mm head, 
mean (SD)

Corrosion onset load, N* 1,800 (330) 1,250 (250)

Change in OCP† at 100 N with joint 
movement, mV

21.88 (16.98) 54.34 (45.20)

Current at 3,300 N with joint 
movement, µA

0.648 (0.148) 0.357 (0.694)

Change in OCP† at 3,300 N with joint 
movement, mV‡

150.45 (60.78) 260.40 (48.42)

Current at 3,300 N with joint 
movement, µA

1.253 (0.386) 1.856 (1.023)

Change in OCP† at 3,300 N without 
joint movement, mV§

160.08 (40.08) 251.29 (45.39)

Current at 3,300 N without joint 
movement, µA

0.933 (0.185) 1.241 (0.585)

*Statistically significant difference (p = 0.009).
†Change in open circuit potential (OCP) measured relative to the at rest 
equilibrium level.
‡Statistically significant difference (p = 0.006).
§Statistically significant difference (p = 0.004).
SD, standard deviation.

Fig. 7

Typical corrosion current vs. load plot for the incremental load test. This sample demonstrates a corrosion onset load of 1,500 N due to a marked increase in 
current compared to the baseline at lower loads.

t- test between the proximal and distal regions as well as 
heads versus stem tapers. Percentage areas of fretting 
and corrosion in the medial, lateral, posterior and ante-
rior aspects were compared by ANOVA with Tukey post- 
hoc analysis. Data collected following wear cycling was 
analyzed by multiple linear regression to determine the 
effects of head size and loading regime (with or without 
joint movement). Statistical significance was determined 
to a level of 0.05.

Results
Results from the incremental load test are presented in 
Table I, and a typical corrosion current versus load plot is 
presented in Figure 7. Overall, 36 mm heads had signifi-
cantly lower corrosion onset loads (1,250 N (SD 250 ) vs 
1,800 N (SD 330) ; p = 0.009, ANOVA), significantly higher 

change in OCP at 3,300 N with joint movement applied 
(260.40 mV (SD 48.42)  vs 150.45 mV (SD 60.78 ); p = 
0.006, ANOVA) and without joint movement applied 
(251.29 mV (SD 45.39 ) vs 160.08 mV (SD 40.08) ; p = 
0.004, ANOVA) than 28 mm heads. No significant differ-
ence was found between 36 mm and 28 mm heads for 
corrosion current at 3,300 N with joint movement applied 
(1.856 µA (SD 1.023) vs 1.253 µA (SD 0.386); p = 0.206, 
ANOVA) or without joint movement applied (1.241 µA 
(SD 0.585) vs 0.933 µA (SD 0.18); p = 0.246, ANOVA).

Head sizes had no significant impact on corrosion 
current or change in OCP from rest to 100  N peak 
compression with joint movement, or once joint move-
ment was stopped and 3,300 N cyclic compression was 
allowed to continue in the same test sequence. After 
pooling samples across head size, there was a significant 
increase in both corrosion current (- 0.147 µA (SD 0.378) 
vs 0.356 µA (SD 0.428); p = 0.005, paired t- test) and 

OCP (13.90 mV (SD 86.43)  vs -24.21 mV (SD 87.39) ; p = 
0.006 paired t- test) upon commencing joint movement 
and 100 N compression from rest. With pooled samples 
discontinuing joint movement at the 3300  N compres-
sion level significantly decreased corrosion current (1.554 
µA (SD 0.801) vs 1.087 µA (SD 0.444); p = 0.042, paired 
t- test), but not OCP.

Visual inspection prior to testing found all devices 
free from defects and any visual signs of corrosion and 
wear. Qualitatively, stem trunnions showed no fretting 
damage and only small areas of mild corrosion as defined 
by Goldberg et al15 for all of the trunnions paired with 
36 mm heads and four of six with 28 mm heads. Head 
tapers showed greater damage than stem trunnions. 
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Fig. 8

Microscope images of head taper damage modes. a) Imprinting, b) pitting, c) darkened discoloration, d) ‘oil- slick’ discoloration, and e) fretting,

Fig. 9

Coordinate measuring machine wear map showing trend towards distal wear damage of head taper.

Heads tended to show greater corrosion than fretting 
damage. Only half of heads showed any fretting damage, 
constituting only small areas (< 3%). All heads showed 
mild corrosion damage. Only the most damaged head 
(36 mm, no joint movement group) met the Goldberg 
criteria15 for moderate corrosion damage (> 30% discol-
ored taper surface).

Head tapers exhibited imprinting (all samples), pitting 
(two of 36 mm heads, one of 28 mm heads), dark discol-
oration (four of 36 mm heads, no 28 mm heads), multicol-
ored ‘oil- slick’ discoloration (four of 36 mm heads, one of 
28 mm heads), and fretting (three of 36 mm heads, three 
of 28  mm heads) damage modes (Figure  8). All heads 
showed imprinting of trunnion microgrooves in the 
proximal head taper, extending distally 2 mm to 5 mm. 
CMM wear maps showed axisymmetric (2/12; 17%) and 

mirrored (5/12; 42%) wear patterns. The axisymmetric 
pattern typically showed a greater tendency for wear 
distally on the head taper (Figure 9). The mirrored wear 
pattern showed greater wear on diametrically opposed 
taper surfaces (Figure 10).

Head tapers had significantly greater proportions of 
their proximal than distal regions corroded (47% (SD 
6%) vs 8% (SD 3%); p < 0.001). There was no significant 
difference in medial, lateral, anterior, or posterior fretting 
or corrosion scores.

Figure 11 presents the fretting and corrosion damage 
areas for head and stem tapers after wear cycling. Corro-
sion damage area was significantly greater for 36  mm 
heads (28% (SD 4%) vs 23 (SD 4%); p = 0.050, ANOVA). 
Fretting levels were low and no significant difference 
between head sizes was observed. Significantly greater 
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Fig. 10

Ccoordinate measuring machine wear map showing wear on diametrically opposed surfaces.

Fig. 11

Area percentage of corrosion and fretting damage after wear cycling. a) 
Significantly greater corrosion damage on head tapers than stem trunnions 
(p < 0.001), and b) significantly greater corrosion damage area for 36 mm 
over 28 mm heads (p = 0.05).

areas of head tapers were corroded than stems (25% (SD 
4%) vs 1% (SD 1%); p < 0.001, ANOVA).

No significant difference in maximum linear wear 
depth was observed between 36 mm and 28 mm heads 
(4.49 µm (SD 3.21)  vs 2.13 µm (SD 2.67  ); p = 0.155, 
ANOVA). Samples wear cycled with and without joint 
movement showed no significant difference in maximum 
linear wear depth (2.63 µm (SD 1.63)  vs 3.99 µm (SD 
3.45 µm); p = 0.390, ANOVA).

No statistically significant effect was found as a result 
of wear cycling with or without joint movement, nor were 
head size and joint movement found to be cofactors.

Discussion
The present study aimed to determine the role of joint 
movements in head- neck taper corrosion and differen-
tial performance between femoral head sizes in a highly 
controlled in vitro simulation. To date, mechanisms for 
the inferior corrosion resistance of larger femoral heads 
in some patient cohorts have been proposed following 
retrieval studies and finite element analyses. Retrieval 
studies provide direct clinical data on a particular patient 
cohort; however, the diverse populations they study limit 
precise assessment of a particular corrosion mechanism. 
Conversely, finite element analysis allows well controlled 
evaluation of particular mechanisms, but simplifications 
necessary for digitization may exclude important corro-
sion processes. The in vitro simulation presented here 
provides further insight into the corrosion performance 
of large femoral heads by closely estimating in- vivo 
conditions and allowing direct control of potentially 
confounding factors.

The test methods reproduced some taper wear and 
corrosion damage modes of components retrieved 
in- vivo, including imprinting, pitting, discoloration 
and fretting. Damage was generally mild but may have 
progressed if wear cycling continued considering corro-
sion damage has been found to progress with time in 
vivo.15–17 Axisymmetric wear patterns were observed 
on the majority of head tapers, indicative of pistoning 
common with neutral offset heads.9,18 The mirrored wear 
pattern is different from toggling type damage previously 
reported in retrieval studies.19 Toggling type damage 
is exemplified by diagonally opposed damage areas, 
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whereas the mirrored damage pattern had diametrically 
opposed damage extending the full length of the taper. 
The axisymmetric and mirrored wear patterns may be the 
result manufacturing tolerances. Wade et al20 measured 
the taper connections of commercially available stem and 
head tapers using CMM and found a maximum differ-
ence of 0.05° and 20 µm between samples from the same 
manufacturer and with the same design. While sample- 
to- sample variation is larger than that within a single 
sample, the axisymmetric and mirrored wear pattern 
depths (4 µm to 14 µm) are on the same order of magni-
tude as manufacturing tolerances. The femoral head’s 
bore is typically manufactured on a lathe by rotating the 
femoral head around its axis of symmetry and translating 
a cutting head along the length of the bore. The axisym-
metric pattern may be the result of imperfect translation 
of the cutter head and the mirrored pattern may be the 
result of imperfect rotation of the femoral head. Stem 
microgroove imprinting in the head’s bore proximally 
was likely due to taper connection design. The Smith 
& Nephew- manufactured samples tested herein have a 
greater taper angle than their corresponding stem trun-
nion21 leading to proximal contact within the head.

To our knowledge, this is the first reported electro-
chemical instrumentation of a hip simulator to measure 
taper corrosion related electrical activity. Previous taper 
corrosion studies using a hip simulator have measured 
wear by ion analysis, visual assessment, roughness 
measurement or gravimetric analysis.22–24 Alternatively, 
electrochemical measurements have been made in 
models excluding full hip simulation, where instead the 
estimated torque is applied via a simplified apparatus.8,25 
Yan et al26 instrumented a hip simulator to investigate 
corrosion in metal- on- metal hip arthroplasty articulation. 
They found that upon initiating hip simulation the OCP 
decreased by 70 mV, indicating a shift toward the mate-
rial’s active corrosion phase. Similarly, we found a small 
but significant increase in corrosion current (0.503 µA; p 
= 0.005) and decrease in OCP (38 mV; p = 0.004), indic-
ative of electrochemical activity at the articular surface. 
This effect was observed under 100 N compression, well 
before taper corrosion initiated. The relative contribution 
of articular and taper corrosion could not be determined 
and could contribute to differences between head sizes. 
However, no significant difference between head sizes in 
corrosion current or change in OCP at the initiation of 
joint movement was observed, suggesting differences in 
articular surface electrochemical activity between head 
sizes were small if present.

Electrochemical measurements taken during the incre-
mental load test in the short term indicate the effect of 
simulated gait induced frictional torque is significant. 
However, this did not translate to significant differences 
in taper damage after long term wear cycling. At 3,300 N 
peak compressive loading, corrosion current decreased 

by 30% once joint movement was stopped and 3,300 N 
cyclic compression was allowed to continue in the same 
test sequence. Farhoudi et al27 performed a finite element 
analysis to investigate the effect of superimposing gait 
induced frictional moments over gait’s compression. 
They found compression during gait largely dictated the 
connection mechanics, but frictional moments increased 
micromotion by 15%. Our study found frictional torque 
had no significant effect on taper damage after   one 
million cycles.

Significant effect of head size and not the loading regime 
suggests that frictional torque is not the main mechanism 
involved in taper damage. However, this was found with a 
single bearing design, under restricted ROM and in pristine 
conditions. A portion of the larger head cohort’s increased 
electrochemical activity (corrosion current, change in 
OCP) may be due to geometrical changes in the corro-
sion cell, such as reduced distance between the sample 
and reference or counter electrodes, or greater material 
engaged in the electrolytic solution due to the larger diam-
eter. However, greater taper damage after cycling with 
larger heads indicates that the increased electrochemical 
activity is likely due at least in part to greater taper corro-
sion activity. We know that frictional torque scales with 
head diameter. Therefore, its contribution may increase 
with larger heads. The test apparatus used a conventional 
polyethylene socket with lower friction than modern cross- 
linked polyethylene28 due to restricted availability of cross- 
linked material. The ROM was greatly reduced compared 
to in vivo gait; however, it is considered sufficient to 
induce frictional torque. In accordance with the Coulomb 
model of friction, the magnitude of frictional torque is not 
proportional to the ROM, it is only proportional to the 
friction coefficient and the normal force (compression) 
between the femoral head and acetabular liner. Therefore, 
the reduced ROM does not reduce the frictional torque. 
Pereira et al5 retrieved metal- on- polyethylene components 
and found head diameter was an important co- factor with 
abrasive wear in predicting taper damage. Therefore, fric-
tional torque may have a greater effect on taper corrosion 
with larger heads and higher friction bearings, particularly 
in the presence of third- body debris. A further study inves-
tigating worst case articular friction conditions is neces-
sary to determine if the effect of frictional torque becomes 
significant when it is at its highest.

An alternative mechanism for the inferior corrosion 
resistance of larger heads may also be considered. Low- 
stem taper flexural rigidity has been identified as a factor 
increasing taper fretting corrosion in retrieved compo-
nents.16,29 Less stiff stem tapers are more susceptible to 
fretting displacements arising from elastic deformation. 
A taper flexed in bending experiences micromotion due 
to stretching on the bend’s tensile side and shortening 
on the compression side.30 The same mechanism may be 
relevant to the tapered bore of the head.
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Fig. 12

Cross section of the femoral head through the taper, identifying the inner 
diameter (di) taken as the taper diameter, and outer diameter (do) taken as 
the articular diameter.

Flexural rigidity is calculated by multiplying the 
second moment of area by the elastic modulus.15 The 
cross- section of the femoral head through the bore is a 
ring (Figure 12). The flexural rigidity of the cross- section 
of the femoral head through the bore may be calculated 
by the equation below.31

 
Flexural Rigidity = E× I = E× π

64

(
d4o − d4i

)
  

Where E is the elastic modulus, I is the second moment of 
area, do is the outer diameter and di is the inner diameter. 
The elastic modulus of CoCr is 210 GPa.32 The inner and 
outer diameter vary along the length of the bore. For the 
purposes of approximation, the outer diameter may be 
taken as the femoral head’s spherical diameter and the 
inner diameter may be taken as the proximal diameter of 
the bore (12 mm) since the subject taper connection was 
designed for proximal engagement. The flexural rigidity 
for a 28 mm head is then calculated as 6,100 Nm2 and for 
the 36 mm head as 17,100 Nm2. The flexural rigidity of 
the femoral head bore for the 36 mm head is 2.8 times 
that of the 28  mm head. Kao et al33 found stem taper 
fretting inversely related to stem taper flexural rigidity 
in a retrieval analysis of 77 metal- on- polyethylene THA 

implants. The highest flexural rigidity of the tapers in this 
study was 3.5- times higher than the lowest. The relative 
difference in stem taper flexural rigidity found signifi-
cant in the study by Kao et al23 (3.5- times) is similar in 
magnitude to the relative difference in femoral head bore 
flexural rigidity of the samples in the present study (2.8- 
times), suggesting the magnitude of differences in flex-
ural rigidity of the femoral head bore due to femoral head 
size may be at significant levels. To the knowledge of the 
authors, previous studies have investigated the flexural 
rigidity of the stem taper but not the femoral bore.

Elastic deformation induced micromotion would be 
minimized if the head’s bore and stem’s trunnion had 
equal stiffness due to proportional bending without rela-
tive motion. Mating similar metals, such as with CoCr 
head- stem pairs, approximates this scenario. Conversely 
with dissimilar metal pairs, CoCr alloy is twice as stiff as 
titanium alloy (210 to 253 GPa vs 100 to 110 GPa, respec-
tively).32 Dissimilar metals with dissimilar stiffness increase 
the flexural rigidity differential, resulting in greater elastic 
deformation induced relative motion. Retrieval anal-
yses have shown that dissimilar metal head- stem pairs 
have greater taper damage than same metal combina-
tions.6,15,34–36 It is difficult to isolate mechanical and elec-
trochemical contributions due to galvanic corrosion, but 
differential flexural rigidity may explain these findings 
under the phenomena of mechanically assisted crevice 
corrosion without galvanic corrosion. With larger heads, 
the flexural rigidity differential is increased by stiffening 
the head’s tapered bore. Increasing head size increases the 
tapered bore’s wall thickness thus increasing its flexural 
rigidity. As a result, larger heads have a greater flexural 
rigidity differential leading to greater elastic deformation 
induced micromotion and potentially greater taper wear 
damage. Further research is necessary to investigate this 
proposed mechanism.
Limitations. This study is subject to limitations. The effect 
of frictional torque may not have been observed due to 
low study power (< 40%) and the specific test methods 
employed. Addition of joint movement to induce fric-
tional torque did not significantly increase taper wear 
damage. This suggests that under pristine metal- on- 
polyethylene wear conditions, frictional torque is not the 
main contributor to the inferior taper corrosion resistance 
of larger heads. The findings herein may not extrapolate 
to adverse wear conditions where frictional torque may 
increase.

The study is further limited by practical simplifications 
necessary for completion, such as reduced ROM, limited 
cycling duration and exclusion of biological factors. 
ROM and cycling duration was limited to allow practical 
test frequency and study duration. ROM is considered 
sufficient to induce frictional torque; however, discon-
tinuing cycling at  one million cycles may exclude clin-
ically relevant taper corrosion. Mechanically- assisted 
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crevice corrosion increases in severity with time as a 
corrosive environment builds within the taper connec-
tion,37 as observed in multiple retrieval studies.15–17 One 
million steps simulates only a year’s usage,38 but corro-
sion levels necessitating revision may take five to  seven 
years to develop.39,40 However, damage modes consis-
tent with retrieved components,41,42 including pitting 
and imprinting, were observed in this study. Testing was 
performed in PBS instead of a biological lubricant, which 
may affect frictional torque. Testing in PBS was selected 
to align and allow comparison with similar in vitro taper 
connection tribocorrosion studies.9,43–45 Further, the test 
apparatus held the components in an inverted position, 
which may have caused third body wear due to debris 
entrapment within the taper connection.

The study is limited to a single prosthesis design. 
Aspects of prosthesis design, such as head offset, head 
material, and taper connection geometry were not 
subject to investigation. Head offset has been identified 
as an important factor affecting taper corrosion;9,46,47 
however, neutral offset heads were selected for testing to 
control for head offset and taper coverage, and to isolate 
the effect of head size. Retrieval analyses have found taper 
design is an important factor related to tribocorrosion.48 
Retrieval analyses have found femoral stems with lower 
neck flexural rigidity,15,49 lower taper flexural rigidity,16,29,33 
higher taper roughness,50 lower taper angle,33 and 
narrower tapers17 associated with greater susceptibility to 
tribocorrosion. Ceramic heads have also been found in 
retrieval studies to be less susceptible to tribocorrosion 
than metal heads.17,49,51,52 Head offset, taper design, and 
femoral head and stem material were controlled vari-
ables in this study to isolate the effect of head size with a 
CoCr head. Higher loads than those tested may be expe-
rienced during stumbling or stair climb;53 however, gait 
representative loads were selected since these loads more 
commonly recur over time. The findings presented herein 
represent only the particular prostheses and conditions 
tested, and may not translate to different devices and 
conditions.

Conflicting evidence related to the effect of head size 
on tribocorrosion susceptibility has been reported else-
where. Dyrkacz et al4 found significantly greater severity 
and area of taper corrosion and fretting damage with 
36 mm than 28 mm heads in a retrieval study of 74 metal- 
on- polyethylene hip arthroplasty implants. Conversely, in 
a similar retrieval analysis of 154 metal- on- polyethylene 
hip arthroplasty implants, Triantafyllopoulos et al6 found 
no significant difference between head sizes in fretting 
or corrosion severity. Hip arthroplasty implant factors, 
such as head lateral offset, head material, and taper 
geometry, must be considered, alongside head diam-
eter to balance the risk related to taper tribocorrosion 
and other implant- related failure modes. However, the 
present study supports the recommendations of a recent 

consensus statement released by the American Associa-
tion of Hip and Knee Surgeons, the American Academy 
of Orthopaedic Surgeons, and The Hip Society54 that 
a large diameter CoCr femoral head is a moderate- to 
high- risk implant factor for head- neck taper corrosion 
associated adverse local tissue reactions following metal- 
on- polyethylene THA.

In conclusion, larger femoral heads in simulated hip 
arthroplasty were found more susceptible to taper corro-
sion, and contrary to the hypothesis herein, frictional 
torque in a pristine metal- on- polyethylene bearing was 
not supported as the underlying mechanism. Frictional 
torque may have a greater effect with adverse wear condi-
tions. Further investigation of alternative mechanisms, 
such as increased flexural rigidity differential, is required 
to understand the inferior performance of larger heads 
and its clinical significance.

Take home message
  - Larger femoral heads were found more susceptible to head- 

neck taper tribocorrosion in an instrumented hip simulator.
  - However, the increased tribocorrosion was not due to 

increased frictional torque, in pristine conditions. Therefore, larger 
femoral heads increase the risk of head- neck taper tribocorrosion, even 
under pristine conditions.
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