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ABSTRACT
Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-Hodgkin lymphoma. Despite notable therapeutic advances in 
the last decades, 30%–40% of affected patients develop relapsed or refractory disease that frequently precludes an infamous outcome. 
With the advent of new therapeutic options, it becomes necessary to predict responses to the standard treatment based on rituximab, 
cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP). In a recent communication, we presented a new machine 
learning model (LymForest-25) that was based on 25 clinical, biochemical, and gene expression variables. LymForest-25 achieved high 
survival prediction accuracy in patients with DLBCL treated with upfront immunochemotherapy. In this study, we aimed to evaluate the 
performance of the different features that compose LymForest-25 in a new UK-based cohort, which contained 481 patients treated with 
upfront R-CHOP for whom clinical, biochemical and gene expression information for 17 out of 19 transcripts were available. Additionally, 
we explored potential improvements based on the integration of other gene expression signatures and mutational clusters. The validity 
of the LymForest-25 gene expression signature was confirmed, and indeed it achieved a substantially greater precision in the estimation 
of mortality at 6 months and 1, 2, and 5 years compared with the cell-of-origin (COO) plus molecular high-grade (MHG) classifica-
tion. Indeed, this signature was predictive of survival within the MHG and all COO subgroups, with a particularly high accuracy in the 
“unclassified” group. Integration of this signature with the International Prognostic Index (IPI) score provided the best survival predictions. 
However, the increased performance of molecular models with the IPI score was almost exclusively restricted to younger patients (<70 
y). Finally, we observed a tendency towards an improved performance by combining LymForest-25 with the LymphGen mutation-based 
classification. In summary, we have validated the predictive capacity of LymForest-25 and expanded the potential for improvement with 
mutation-based prognostic classifications.

INTRODUCTION

Diffuse large B-cell lymphoma (DLBCL) is the most frequent 
type of aggressive B-cell lymphoma, and it exhibits a disparity of 
clinical outcomes. Roughly 60% of fit patients can be cured with 
upfront rituximab, cyclophosphamide, doxorubicin, vincristine 
and prednisone (R-CHOP), whereas the remaining patients 
develop relapsed or refractory disease, which is associated with 

adverse survival.1 Risk stratification in DLBCL has classically 
been based on clinical risk scores such as the International 
Prognostic Index (IPI), the Revised IPI, and the National 
Comprehensive Cancer Network IPI (NCCN-IPI).2 However, 
the discriminative power of these tools is suboptimal, as evi-
denced by recent studies which revealed concordance indexes 
(c-indexes) for overall survival in the range of 0.59–0.63. Due to 
these limitations, other strategies have been explored based on 
the identification of molecular prognostic factors. Cytogenetic 
data indicate that patients with MYC translocations and BCL2 
and/or BCL6 translocations share a worse prognosis, and indeed 
these are currently classified as a different lymphoma subgroup.3 
Studies based on gene expression data identified 3 groups of 
patients based on cell-of-origin (COO) status with different sur-
vival trends: germinal-center B-cell–like (GCB), activated B-cell–
like (ABC), and unclassified (UNC) subgroups.4 In the same line, 
different reports indicate that those lymphomas who share a 
gene expression profile with double-/triple-hit or Burkitt lym-
phomas are also a high-risk subgroup, and these are commonly 
named molecular high-grade (MHG) lymphomas.5,6 Finally, the 
existence of concise prognostic subgroups based on patterns 
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of somatic mutations has also been described, and a clear rela-
tionship between COO and mutation subgroups has also been 
observed.7 Despite such advances, there is a need to optimize 
and integrate these prognostic features into standardized and 
personalized prognostic models for real-world application.

A variety of new treatment strategies are under development 
for relapsed and refractory DLBCL patients. Recently, an interest 
to evaluate these therapies in the upfront setting of DLBCL has 
emerged, with a particular focus on high-risk patients. Recent 
data from the POLARIX trial evidenced an improvement in 
progression-free survival for patients with intermediate-high or 
high IPI (3–5) when treated with upfront polatuzumab, ritux-
imab, cyclophosphamide, doxorubicin and prednisone versus 
standard R-CHOP.8 On the contrary, no significant differences 
were observed between both treatment arms for low or low-in-
termediate risk patients (IPI 0–2). These data indicate that sub-
stantial improvements in treatment response can be achieved 
with new drugs in patients who are unlikely to respond to 
R-CHOP. Other strategies based on anti-CD19 chimeric anti-
gen receptor T cells or drug combinations using bispecific 
antibodies (eg, glofitamab) have shed promising results in the 
first-line setting of patients with high-risk DLBCL.9,10 However, 
there is no clinically available score capable of detecting patient 
subgroups who have a median 5-year overall survival <50% 
after R-CHOP treatment.2 Therefore, the growing need to iden-
tify high-risk patients at diagnosis becomes an evident unmet 
medical need.

In a previous effort, we developed a 54-variable model based 
on gene expression and a limited number of clinical variables 
that was capable of predicting overall survival in DLBCL 
patients treated with R-CHOP.11 More recently, we refined this 
prognostic model in a new cohort by incorporating data from 
the IPI score. This new model, named LymForest-25, contained 
25 variables (19 transcripts, 5 IPI-related variables and the IPI 
score itself).12 The aim of the present study was to validate 
and improve LymForest-25 predictor in an external cohort of 
DLBCL patients. For this, we followed the following structure: 
(1) we evaluated if the LymForest-25 gene expression signature 
was prognostic and compared it with the COO and MHG clas-
sification; (2) we compared the precision of LymForest-25 gene 
expression signature + IPI score with that of COO and MHG 
classification + IPI score; and (3) we analyzed if mutation-based 
classifications added extra prognostic value to LymForest-25 
alone. Our results indicate not only that LymForest-25 is repro-
ducible but also that its performance is superior to the IPI score 
and the COO and MHG classification, particularly among 
younger patients.

MATERIALS AND METHODS

Data origin and preprocessing
Patient data was produced by the UK population-based 

Haematological Malignancy Research Network (https://www.
hmrn.org). Pretreatment gene expression data was obtained 
from DLBCL biopsies pertaining to 644 patients treated 
with R-CHOP (Gene Expression Omnibus identification: 
GSE181063).13 Among these, 481 patients had full annota-
tion for all the clinical and biochemical variables included in 
LymForest-25: age at diagnosis, baseline lactate dehydrogenase, 
Ann Arbor stage, number of extranodal areas affected, Eastern 
Cooperative Oncology Group (ECOG) score, which were used 
to calculate the IPI score. Gene expression data were obtained 
using Illumina HumanHT-12 WG-DASL V4.0 R2 gene expres-
sion bead chips. Before downstream analysis, we rank-normal-
ized the expression estimates. Expression data for 17 of the 19 
original genes included in LymForest-25 was retrieved for each 
patient. These genes were PSIP1, ADAM12, SGK196, BCL2A1, 
LMO2, SULF1, KLHL6, SNHG3, RAB3GAP2, HLA-DQB2, 
CPT1A, SCRG1, ATP8A1, LSMEM2/IFRD2, SLC5A12, 

FNBP1 and PDK1. The 2 missing genes were TRAV6 and 
FAM208B, as these were not included in the design of the gene 
expression chips.

Statistical analysis
Different gene expression models were evaluated by taking 

either the entire expression matrix or the decomposed matrix 
using principal component analysis (PCA). The Cox propor-
tional hazards model (“survival” package) was used to evalu-
ate the performance of the different models.14 Time-dependent 
areas under the curve (AUCs), Brier scores, Akaike information 
criterion (AIC), and Harrel’s c-indexes were used to compare 
the models. For validation, bootstrapping 362+ without replace-
ment with 500 cycles was implemented in 75% of the cohort, 
and the remaining 25% of samples were used for cross-valida-
tion.15 Bootstrapped c-indexes were computed with the “pec” 
package using the bootstrapping 632 method with 500 resa-
mples.16 Optimism-adjusted c-indexes were calculated with the 
“rms” package.17

RESULTS

Cohort characteristics
Complete data for 481 DLBCL patients treated with 

R-CHOP was available for analysis. All cases were labeled for 
COO and MHG status (derived from gene expression data), and 
this information was codified in a single variable, that is, each 
case pertained to either the GCB, ABC, UNC or MHG class. A 
subgroup of 264 patients also had mutation-based annotation 
available. Four mutation-based prognostic classifications were 
available: (1) a 6-cluster classification developed by Lacy et al13 
using the AIC; (2) a 7-cluster classification developed by Lacy et 
al,13 which assigns NOTCH1 mutated lymphomas and BCL2 
and MYC rearranged cases to separate clusters and removes 
the TET2/SGK1 cluster; (3) a 9-cluster prognostic classification 
developed by LymphGen18; and (4) a modified LymphGen classi-
fication that establishes a new group based on the coexistence of 
MYC rearrangement with EZB cluster membership.18 Baseline 
characteristics of the 481-patient cohort and the 264-patient 
subgroup were similar (Tables 1 and 2).

Evaluation of the LymForest-25 gene expression signature
Initially, we evaluated the performance of survival models tak-

ing either the whole LymForest-25 gene expression matrix (17 
genes) or a decomposed matrix obtained using PCA. According 
to AIC and bootstrapped c-indexes, the model using the first 
4 principal components (PC4) was superior to the remaining 
models (Figure 1; Table 3). Therefore, we evaluated this model 

Table 1

Baseline Characteristics of DLBCL Patients Treated With 
R-CHOP (N = 481).

Variable Proportion

ECOG > 2 2.50%
IPI > 2 42.41%
Raised LDH 61.54%
Ann Arbor stage > II 60.50%
Median age 65.7 y
Number of extranodal > 1 17.88%
ABC subtype 27.86%
GCB subtype 48.02%
Unclassified subtype 17.67%
MHG subtype 6.44%

ABC = activated B-cell–like; DLBCL = diffuse large B-cell lymphoma; ECOG = Eastern Cooperative 
Oncology Group; IPI = International Prognostic Index; LDH = lactate dehydrogenase; MHG = 
molecular high-grade; R-CHOP = rituximab, cyclophosphamide, doxorubicin, vincristine, and 
prednisone.

https://www.hmrn.org
https://www.hmrn.org
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in comparison with the COO + MHG classification. As indi-
cated in Table 3, time-dependent AUCs and Brier scores revealed 
that the LymForest-25 PC4 model was substantially superior to 
the COO + MHG at all time points evaluated, and the model 
was also superior in terms of Brier score, AIC, and bootstrapped 
c-index (Suppl. Table S1).

Optimization of LymForest-25 using the IPI score
We evaluated the performance of the LymForest-25 gene 

expression signature (PC4) combined with the IPI score 
(Figure 2). The results indicate that the new signature was sub-
stantially superior to the IPI score combined with COO + MHG 
classification at all time points evaluated during the first 5 years 
after diagnosis, both in terms of Brier scores and time-depen-
dent AUCs (Figure 1; Table 4). Importantly, the model achieved 
an AUC of 78.73% for predicting 2-year survival. Considering 

these metrics, no substantial benefit was obtained by integrating 
the PC4 signature with the COO + MHG classification into the 
same model.

Subanalysis within cell-of-origin and molecular high-grade 
subgroups

Our previous work with LymForest-25 revealed that COO 
classification did not provide any additional prognostic infor-
mation when integrated with the new classifier, and so this vari-
able was not included in the final model.12 In order to inspect this 
effect here, we evaluated the performance of the LymForest-25 
gene expression signature (PC4) within each COO group and in 
patients with lymphomas classified as MHG. Time-dependent 
AUC confirmed that the novel gene expression signature was 
prognostic in all cases but with remarkable differences between 
subgroups (Table 5). For example, a substantial improvement in 
risk prediction was observed in unclassified COO DLBCL, with 
AUCs >70% at all time points evaluated. Predictions within the 
ABC and GCB subgroups were less accurate but nonetheless 
substantially superior to 50%. Interestingly, in these groups, 
the signature was more precise in the identification of early 
events (6 mo and 1 y) than delayed ones (2 and 5 y). On the 
contrary, the signature was less accurate to predict early events 

Table 2

Baseline Characteristics of the Subgroup of DLBCL Patients 
Treated With R-CHOP Who Had Genomic Classification Data 
Available for Analysis (N = 264).

Variable Proportion

ECOG > 2 3.41%
IPI > 2 43.56%
Raised LDH 61.36%
Ann Arbor stage > II 62.50%
Median age 64.85% y
Number of extranodal > 1 17.80%
ABC subtype 28.79%
GCB subtype 46.59%
Unclassified subtype 18.56%
MHG subtype 6.06%
Lacy et al13 Akaike information criterion clusterization BCL2: 21.97%

MYD88: 14.39%
Unclassified: 25.00%

NOTCH2: 18.94%
SCOS1/SGK1: 10.61%

TET2/SGK1: 9.09%
Modified Lay et al13 Akaike information criterion 
clusterization

BCL2: 20.08%
BCL2-MYC: 1.89%
MYD88: 14.39%

Unclassified: 22.73%
NOTCH1: 3.41%
NOTCH2: 18.18%

SCOS1/SGK1: 10.61%
LymphGen classification BN2: 9.85%

BN2/N1: 0.38%
EZB: 23.86%

EZB/ST2: 1.14%
MCD: 7.95%

MCD/ST2: 0.38%
N1: 3.03%

Unclassified: 45.83%
ST2: 7.58%

Modified LymphGen classification BN2: 9.85%
BN2/N1: 0.38%
EZB: 22.35%

EZB-MYC: 1.52%
EZB/ST2: 1.14%

MCD: 7.95%
MCD/ST2: 0.38%

N1: 3.03%
Unclassified: 45.83%

ST2: 7.58%

ABC = activated B-cell–like; DLBCL = diffuse large B-cell lymphoma; ECOG = Eastern Cooperative 
Oncology Group; IPI = International Prognostic Index; LDH = lactate dehydrogenase; MHG = 
molecular high-grade; R-CHOP = rituximab, cyclophosphamide, doxorubicin, vincristine, and 
prednisone.

Figure 1. Representation of time-dependent AUCs of the different mod-
els evaluated in the whole DLBCL cohort (N = 481). AUC = area under the curve;  
COO = cell-of-origin; DLBCL = diffuse large B-cell lymphoma; GEP = gene expression profiling; IPI 
= International Prognostic Index; MHG = molecular high-grade.

Table 3

Evaluation of the 17-gene Expression Signature Using Whole 
Gene Expression Data and Principal Components.

Model AIC C-index

17 genes 2290 60.0
PC1 2307 54.2
PC1 + PC2 2284 60.9
PC1 + PC2 + PC3 2279 60.7
PC1 + PC2 + PC3 + PC4 2275 61.7
PC1 + PC2 + PC3 + PC4 + PC5 2277 61.5

Bootstrapped c-indexes and Akaike information criteria are provided. Results were obtained from 
the whole cohort of DLBCL patients treated with R-CHOP (N = 481).
AIC = Akaike information criterion; c-index = concordance index; DLBCL = diffuse large B-cell 
lymphoma; PC = principal component; R-CHOP = rituximab, cyclophosphamide, doxorubicin, 
vincristine, and prednisone.

http://links.lww.com/HS/A239
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than late ones in the MHG subgroup, although the interpreta-
tion of this finding should be taken cautiously due to the small 
sample size of this class (N = 31).

Model performance in younger and older patients
We evaluated the performance of the best prognostic models 

separately for younger (≤70 y old, N = 302) and older (>70 
y old, N = 179) patients. We confirmed the superiority of the 
LymForest-25 gene expression signature compared to the COO + 
MHG classification in both subgroups (Table 6; Suppl. Table S2).  
However, notable differences emerged. Firstly, we observed that 
mortality prediction accuracy was inferior in older patients for 
all models, including the IPI score. Secondly, although both 
gene expression-based signatures retained individual prognostic 
accuracy among older patients, time-dependent AUCs revealed 
that their integration with the IPI score did not provide any 
improvement to the IPI score alone. Therefore, these results sug-
gest that the power of molecular predictors of survival appears 
to be partially limited to younger patients.

Integration with prognostic features based on mutation clusters
Prognostic mutation-based classifications were originally 

evaluated in a subgroup of 264 patients. Therefore, we set 
out to understand how LymForest-25 performance could be 
improved with such prognostic features. Due to the existence 
of very small clusters in these mutation-based classifications, 
we were unable to perform bootstrapping to compare time-de-
pendent AUCs and Brier scores. However, we could evalu-
ate AICs and optimism-adjusted c-indexes (Suppl. Table S3). 
Considering c-indexes, no relevant improvement was observed 
with any of the mutation-based classifications. AICs indicated 
that LymForest-25 was superior to its integration with the mod-
els developed by Lacy et al,13 the modified model by Lacy et 
al13 and the LymphGen model. On the contrary, a difference in 
more than 2 AIC units was observed after the introduction of 
the modified LymphGen model, which points towards a modest 
but significant improvement.

DISCUSSION

A growing need exists to develop precise prognostic models 
in DLBCL patients treated with R-CHOP. Such models must 

Figure 2. Outcome of patients stratified by to tertiles of expected survival 
according to LymForest-25 gene expression signature and the IPI score 
(cox regression). IPI = International Prognostic Index.

Table 4

Time-dependent AUCs and Brier Scores of the Different Survival Models.

Model Time (y) AUC Brier Score

17 genes (PC1 + PC2 + PC3 + PC4) 0.5 65.11 0, 063
17 genes (PC1 + PC2 + PC3 + PC4) 1 69.12 0, 113
17 genes (PC1 + PC2 + PC3 + PC4) 2 69.79 0, 142
17 genes (PC1 + PC2 + PC3 + PC4) 5 67.21 0, 183
COO + MHG 0.5 52.78 0, 066
COO + MHG 1 60.69 0, 119
COO + MHG 2 64.14 0, 150
COO + MHG 5 63.27 0, 190
IPI score 0.5 74.70 0, 061
IPI score 1 74.27 0, 109
IPI score 2 74.57 0, 136
IPI score 5 72.83 0, 173
IPI score + 17 genes (PC1 + PC2 + PC3 + PC4) 0.5 74.56 0, 058
IPI score + 17 genes (PC1 + PC2 + PC3 + PC4) 1 77.48 0, 101
IPI score + 17 genes (PC1 + PC2 + PC3 + PC4) 2 78.73 0, 124
IPI score + 17 genes (PC1 + PC2 + PC3 + PC4) 5 76.45 0, 160
IPI score + COO + MHG 0.5 70.38 0, 062
IPI score + COO + MHG 1 74.11 0, 107
IPI score + COO + MHG 2 76.98 0, 130
IPI score + COO + MHG 5 75.95 0, 162
IPI score + COO + MHG + 17 genes (PC1 + PC2 + PC3 + PC4) 0.5 72.05 0, 059
IPI score + COO + MHG + 17 genes (PC1 + PC2 + PC3 + PC4) 1 75.91 0, 102
IPI score + COO + MHG + 17 genes (PC1 + PC2 + PC3 + PC4) 2 78.57 0, 124
IPI score + COO + MHG + 17 genes (PC1 + PC2 + PC3 + PC4) 5 76.96 0, 160

Evaluated time points were 6 mo and 1, 2, and 5 y after diagnosis. Results were obtained from the whole cohort of DLBCL patients treated with R-CHOP (N = 481).
AUC = area under the curve; COO = cell-of-origin; DLBCL = diffuse large B-cell lymphoma; IPI = International Prognostic Index; MHG = molecular high-grade; PC = principal component; R-CHOP = rituximab, 
cyclophosphamide, doxorubicin, vincristine, and prednisone.

http://links.lww.com/HS/A240
http://links.lww.com/HS/A241
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incorporate traditional prognostic variables (ie, IPI score) with 
the different layers of molecular complexity of DLBCL that 
have been discovered in the last years. Such an approach should 
enable a more robust identification of high-risk patients from 
the moment of diagnosis. Currently, clinical and molecular risk 
scores rely on patient subgrouping, which create suboptimal 
predictions for individual cases. For example, according to a 
recent report, the high-intermediate and high-risk subgroups 
of the best clinical risk score (NCCN-IPI) have 5-year overall 
survival rates of 62.7% and 49.0%, respectively.2 These find-
ings imply that a major part of such “high risk” patients will 
be still alive at this time point. In a similar line, 8.2% of the 
high-risk MYD88mut DLBCL patients have a GCB COO status, 
which is a maker associated with favorable outcomes. On the 
contrary, 10.0%, 6.2%, and 2.7% of patients assigned to the 
low-risk TET2/SGK1, SCOS1/SGK and BCL2 clusters, respec-
tively, have an ABC COO status, which is a predictor of short 
survival. Remarkably, up to 27% and 21.6% of patients in the 
same study were assigned to an unclassified subgroup with 
intermediate prognosis according to the mutational and COO 
classifications, respectively.13 Altogether, these findings highlight 

the need for an integrated model capable of accommodating the 
prognostic complexity of DLBCL and making optimal survival 
predictions for each individual case.

In this study, we have evaluated a prognostic model based on 
clinical and genomic data that we presented in recent publica-
tions.11,12 This predictor outperforms currently established molec-
ular subtypes of DLBCL, such as the COO and MHG status, and 
improves substantially the prognostic capacity of the IPI score. 
The model retained important prognostic information within 
each COO subgroup and in patients with high-risk lymphomas 
defined by a gene expression signature that resembles Burkitt lym-
phoma (MHG group). Remarkably, the best prediction accuracy 
was observed in patients whose COO status was unclassified. 
Furthermore, we have observed that a promising strategy to opti-
mize these predictions relies on the integration of LymForest-25 
with the modified LymphGen mutation-based classification.

Another important conclusion of our modeling strategy 
points towards a limitation of molecular data in the survival 
prediction of older patients (>70 y). Treatment dose intensity 
can be largely conditioned by comorbidities and patient’s frailty 
that are not adequately reflected by age and the ECOG status. 

Table 5

Time-dependent AUCs and Brier Scores for the Different Survival Models Within the ABC, GCB, Unclassified and MHG Groups.

Model Time (y)

ABC GCB Unclassified MGH

AUC Brier Score AUC Brier Score AUC Brier Score AUC Brier Score

17 genes (PC1 + PC2 + PC3 + PC4) 0.5 64.40 0, 069 61.42 0, 058 74.41 0, 072 53.19 0, 106
17 genes (PC1 + PC2 + PC3 + PC4) 1 58.06 0, 162 61.37 0, 085 78.47 0, 108 49.48 0, 245
17 genes (PC1 + PC2 + PC3 + PC4) 2 56.62 0, 216 59.18 0, 103 78.81 0, 114 58.22 0, 264
17 genes (PC1 + PC2 + PC3 + PC4) 5 53.21 0, 252 55.81 0, 151 73.69 0, 163 56.04 0, 287

Evaluated time points were 6 mo and 1, 2, and 5 y after diagnosis.
ABC = activated B-cell–like; AUC = area under the curve; GCB = germinal-center B-cell–like; MHG = molecular high-grade; PC = principal component.

Table 6

Time-dependent AUCs and Brier Scores for the Different Survival Models in Younger (≤70 Years) and Older (>70 Years) Patients.

Model Time (y)

≥70 y (N = 179) <70 y (N = 302)

AUC Brier Score AUC Brier Score

17 genes (PC1 + PC2 + PC3 + PC4) 0.5 54.50 0, 099 75.42 0, 044
17 genes (PC1 + PC2 + PC3 + PC4) 1 64.85 0, 145 71.92 0, 095
17 genes (PC1 + PC2 + PC3 + PC4) 2 63.87 0, 181 74.01 0, 117
17 genes (PC1 + PC2 + PC3 + PC4) 5 65.13 0, 221 68.08 0, 154
COO + MHG 0.5 45.11 0, 103 58.17 0, 045
COO + MHG 1 54.23 0, 158 63.89 0, 098
COO + MHG 2 56.81 0, 196 67.01 0, 121
COO + MHG 5 54.76 0, 243 66.71 0, 155
IPI score 0.5 68.75 0, 098 78.00 0, 042
IPI score 1 73.43 0, 147 73.93 0, 091
IPI score 2 70.93 0, 182 76.11 0, 110
IPI score 5 68.50 0, 223 74.06 0, 142
IPI score + 17 genes (PC1 + PC2 + PC3 + PC4) 0.5 60.30 0, 096 81.93 0, 039
IPI score + 17 genes (PC1 + PC2 + PC3 + PC4) 1 70.01 0, 140 78.06 0, 084
IPI score + 17 genes (PC1 + PC2 + PC3 + PC4) 2 69.56 0, 173 81.30 0, 100
IPI score + 17 genes (PC1 + PC2 + PC3 + PC4) 5 68.96 0, 213 77.80 0, 133
IPI score + COO + MHG 0.5 59.42 0, 100 74.88 0, 041
IPI score + COO + MHG 1 68.64 0, 147 75.01 0, 088
IPI score + COO + MHG 2 68.79 0, 180 79.48 0, 105
IPI score + COO + MHG 5 65.98 0, 225 78.40 0, 133
IPI score + COO + MHG + 17 genes (PC1 + PC2 + PC3 + PC4) 0.5 57.31 0, 099 78.36 0, 039
IPI score + COO + MHG + 17 genes (PC1 + PC2 + PC3 + PC4) 1 68.11 0, 144 76.40 0, 085
IPI score + COO + MHG + 17 genes (PC1 + PC2 + PC3 + PC4) 2 67.60 0, 177 80.89 0, 100
IPI score + COO + MHG + 17 genes (PC1 + PC2 + PC3 + PC4) 5 66.48 0, 221 78.82 0, 131

Evaluated time points were 6 mo and 1, 2, and 5 y after diagnosis.
AUC = area under the curve; COO = cell-of-origin; IPI = International Prognostic Index; MHG = molecular high-grade; PC = principal component.
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In this case, improvements might be achieved by incorporating 
into the model the results of scores based on integrated geriatric 
assessment. Indeed, the benefits of this strategy in DLBCL have 
been extensively studied by different groups.19,20

The present work is in line with other efforts that highlight 
the importance of advanced data analysis in lymphoma prog-
nostication. Recently, Zaccaria et al21 used machine learning 
techniques to evaluate data from a mantle cell lymphoma phase 
III trial developed by the Fondazione Italiana Linfomi. Briefly, 
they applied unsupervised clustering techniques to baseline clin-
ical data, identifying 3 groups of patients with different survival. 
Importantly, they validated these findings in 2 independent 
cohorts. The new prognostic score retained similar prognostic 
information as other prognostic scores in the field but pro-
duced more balanced clusters. Notably, this score also revealed 
a reduced performance among old patients. On the contrary, 
our strategy aims for a more complex evaluation of lymphoma 
by including clinical scores and molecular profiles to directly 
model survival. We observed that this strategy is superior to 
“standard” classifications within the first 5 years after diagnosis, 
which is the temporal window where lymphoma-related mor-
tality is concentrated.22 As a drawback, our method requires the 
application of relatively complex molecular techniques that are 
not readily available to most centers.

Our study protocol had some limitations. Firstly, not all the 19 
transcripts of the LymForest-25 classifier were measured in the 
present cohort, and our evaluation had to rely on 17 transcripts. 
Even so, the prognostic accuracy of this transcriptomic signature 
added substantial improvements to the IPI score, and it performed 
substantially better than those models based on the COO + MHG 
status. Secondly, although we used bootstrapping to validate our 
results, these findings should be verified in additional cohorts.

In conclusion, we have confirmed the validity of a new risk 
stratification model in DLBCL. This tool, named LymForest-25, 
exhibited an superior performance compared with the MHG 
and COO classifications, and it was particularly useful to 
risk-stratify younger patients. Additionally, we provide prelim-
inary evidence that the integration with the LymphGen muta-
tion classification can enhance the performance of the model. 
Therefore, the precise integration of these approaches emerges 
as a promising strategy in order to achieve highly accurate sur-
vival predictions in the field of DLBCL.
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