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Abstract: Multiple myeloma (MM) is the second most common hematologic malignancy in the world.
Even though survival rates have significantly risen over the past years, MM remains incurable, and is
also far from reaching the point of being managed as a chronic disease. This paper reviews the
evolution of MM therapies, focusing on anti-MM drugs that target the molecular mechanisms of
nuclear factor kappa B (NF-κB) signaling. We also provide our perspectives on contemporary research
findings and insights for future drug development.
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1. Background

Multiple myeloma (MM) is the second most common hematologic malignancy, accounting for
1% of all cancers globally in 2016 [1]. MM mainly occurs in older people, with a median age of
66–70 years at the time of diagnosis [1]. Age demography significantly contributes to MM progression
and regimen design [2,3]. Survival rates are higher in younger people, partially due to the feasibility of
autologous stem cell transplant (ASCT) and better drug tolerability during adjuvant therapy to ASCT
or non-transplant systemic therapy. Nevertheless, overall survival rates have risen significantly over
the past decades [4,5], with a five-year survival rate of 53.9% between 2010 and 2016 in the United
States (US) [5]. Improved outcomes resulted from a significant increase of the use of novel therapies,
including proteasome inhibitors and immunomodulatory drugs (IMiDs), which increased from 8.7%
in 2000 to 61.3% in 2014 in US patients [6]. Additionally, the introduction of low-dose continuous
therapy and maintenance therapy schemes post-ASCT or high-dose induction therapy also contributed
to improved clinical outcomes, mainly through palliating adverse effects to increase drug tolerability,
especially in weak elderly patients [7]. Aside from improvements in therapeutic design, novel drugs
are designed to target specific molecular mechanisms involved in MM, especially the nuclear factor
kappa B (NF-κB) signaling pathway [8–10], which is described in the following context.
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2. Multiple Myeloma and NF-κB Signaling

Myeloma, also known as plasma cell myeloma, is the accumulation of malignant plasma cells in
the bone marrow. Initially, in the asymptomatic phase (known as smoldering myeloma), myeloma
cells produce abnormally substantial amounts of monoclonal proteins (M-proteins) that are released to
the blood stream. As the disease progresses to the symptomatic phase, known as MM, the myeloma
cells harness the bone marrow microenvironment to promote growth and invasion. MM progression
leads to bone destruction, hypercalcemia and renal insufficiency, and may result in patient lethality.

MM is linked to the frequent onset of hyperploidy, chromosomal aberrations, genetic mutations
and epigenetic transformations. Among these anomalies, hyperploidy is most prevalent, contributing
to nearly half of all MM cases [11]. In non-hyperploid MM, chromosomal aberrations at the B cell
class switching gene locus IGH frequently occur, leading to aberrant production of M-proteins in MM
patients [12,13]. Aside from chromosomal changes, genetic mutations common in cancers frequently
occur in MM too, e.g., the oncogenic KRAS and NRAS transformations and loss-of-function TP53
mutations [11,14–16]. Some genetic modifications are more MM-specific and contribute to hyperactive
NF-κB signaling. These include the amplification or rearrangement of NIK, LTBR, TACI, NFKB1, NFKB2
and CD40 genes, as well as deletion or loss-of-function mutations in genes like CYLD, BIRC2/BIRC3
(cIAP1/cIAP2), TRAF2 and TRAF3 [17]. On the other hand, MM progression displays distinct epigenetic
landscape changes. For example, extensive DNA hypomethylation in non-CpG islands occurs during
the transition from monoclonal gammopathy of undetermined significance to the myeloma stage [18].
Moreover, hypermethylation of a subset of transcription factors, e.g., FOXD2, GATA4, RUNX2, and cell
cycle-related genes, e.g., CDKN2B, potentially remodels cellular processes to promote tumorigenesis [18].
Furthermore, MM development is supported by the promoter methylation of the P53 gene, which is
sustained by the NF-κB-regulated cytokine interleukin-6 (IL-6) [19]. Aside from DNA methylation,
histone modifications such as acetylation and methylation also significantly alter the epigenetic
landscape and drug response of MM [20]. For instance, overexpression of the histone methyltransferase
gene EZH2 that frequently occurs in MM may be induced by hyperactive non-canonical NF-κB
signaling [21]. Inhibition of EZH2 sensitizes MM to bortezomib treatment in vivo, through cooperative
MYC suppression and inhibition of H3K27 trimethylation to regulate genes involved in B cell metabolism
and antibody production [22,23]. NF-κB gene mutations are known to be the most prevalent in MM
among all human cancers [14,15,17,24,25], and plays a pivotal role in anti-cancer therapy and drug
resistance [26–29].

NF-κB refers to a family of transcription factors that form homo- and hetero-dimers within the
family, as well as with other transcription factors [30]. NF-κB signaling is classified into the canonical
and non-canonical pathways that are represented by the transcriptional protein complexes of p50/RelA
and p52/RelB, respectively [31]. These two pathways are activated by distinct membrane receptors
that respond to extracellular ligands like tumor necrosis factor α (TNFα), interleukin-1 (IL-1), receptor
activator of NF-κB ligand (RANKL), and so on (Figure 1). In canonical NF-κB signaling, receptor
activation leads to formation of the TRAF2-TRAF5-TRAF6 complex, which activates TAK1 kinase to
phosphorylate the complex of IKKα, IKKβ and NEMO. IKK complex phosphorylation subsequently
triggers the degradation of IκB to release the p105 protein for proteasomal processing to the p50
protein. Consequently, the p50/RelA complex translocates to the nucleus and initiates transcription.
Non-canonical NF-κB signaling involves the TRAF2-TRAF3-TRAF6 complex, which activates the NIK
kinase to phosphorylate the IKKα kinase. Phosphorylated IKKα then triggers proteasomal processing
of p100 to p52 for transcriptional activation. Although the canonical and non-canonical pathways have
variant triggering signals and downstream targets, both pathways are involved in MM pathogenesis
and progression [15,24,25].
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Figure 1. Schematic diagram of the NF-κB signaling pathway and anti-multiple myeloma (MM)
drug targets. First-line anti-MM drugs (highlighted in orange) passively target the canonical and/or
non-canonical pathways to shut down NF-κB signaling. For example, bortezomib inhibits the 26S
proteasome to hinder the processing of p105 and p100 proteins, to prevent gene transcription activation
in canonical and non-canonical NF-κB signaling pathways, respectively; dexamethasone induces IκB
protein synthesis to inhibit p105 processing; lenalidomide reduces RelA binding to open chromatin;
cyclophosphamide is a DNA alkylating agent that disrupts DNA replication and genome stability.
Ligands, adaptor proteins and transcriptional complexes involved in canonical NF-κB signaling are
depicted in dark blue, whereas those involved in non-canonical NF-κB signaling are depicted in light
blue; kinases are depicted in green; inhibitors are depicted in red. P and Ub indicate the post-translational
modifications of phosphorylation and ubiquitination, respectively. Arrows with triangle heads indicate
activation, whereas arrows with rhomboid heads indicate inactivation/inhibition; direct interactions are
indicated by solid lines, whereas indirect interactions are indicated by dash lines.

NF-κB signaling plays a pivotal role in promoting cancer growth, angiogenesis and tumor-
microenvironment crosstalk, which mainly involves the production of pro-inflammatory cytokines,
inflammation mediators, cell adhesion molecules, among others, to establish a favorable tumor
microenvironment for MM tumorigenesis and disease progression. Non-canonical NF-κB signaling
is also a key determinant of other oncogenic drivers, such as telomerase and telomeric proteins,
which are commonly deregulated in cancers [32–35]. NF-κB signaling, in combination with other
potent transcription factors such as STAT3, also plays important roles in regulating apoptosis and
polarization of immune subtypes, which contribute to a pro-tumoral microenvironment [36,37].
Hence, many first-line anti-MM drugs have an indirect impact on the NF-κB signaling pathway
(Figure 1). For instance, bortezomib is a reversible inhibitor of the 26S proteasome [38] and thus
prevents the proteasomal cleavage of NF-κB proteins and the IκB protein to inhibit gene transcription
activation. The insult of bortezomib on MM cells is further enhanced by the fact that the proteasome is
overloaded by excessive M-protein production in myeloma cells. On the other hand, the corticosteroid
dexamethasone induces inhibitor of κB (IκB) protein synthesis to inhibit NF-κB signaling [39]. Another
first-line therapy drug, the IMiD lenalidomide, diminishes sustained RelA binding to open chromatin
by inhibiting the Ikaros proteins Ikzf1 and Ikzf3 [40–42]. Co-administration of lenalidomide and
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dexamethasone suppresses interleukin-2 (IL-2), immunoglobin M (IgM) and immunoglobin G (IgG)
production, hence reducing the protein load of MM patients [43]. In recent years, immunotherapy using
antibodies and chimeric antigen receptor T (CAR-T) cells against specific NF-κB signaling receptors
has gained more attention. For example, antibodies against B cell-activating factor (BAFF) inactivate
non-canonical NF-κB signaling in MM cells [44,45]. Clinical trials are ongoing, so it is still too early to
conclude whether any of these strategies works.

In addition to intracellular NF-κB hyperactivation, MM cells also manipulate NF-κB signaling in
the bone marrow microenvironment to promote cancer growth and invasion (Figure 2). On the one
hand, myeloma cells hijack stromal cells to secrete cytokines, such as interleukin-6 (IL-6), receptor
activator of NF-κB ligand (RANKL) and vascular endothelial growth factor (VEGF), to promote cancer
proliferation and angiogenesis [46]. On the other hand, myeloma cells secrete Dickkopf-1 (Dkk1)
and macrophage inflammatory factor 1α (MIP-1α) to inhibit osteoblast differentiation to block new
bone formation, and activate osteoclasts to promote osteolysis [47,48]. In late-stage MM patients,
the myeloma cells acquire additional genetic abnormalities that lead to reduced dependency on the
microenvironment (e.g., P53 mutation), increased drug resistance and increased aggressiveness of the
clone (e.g., 1q21 amplification and CKS1B overexpression) [49]. Hence, therapies against both MM
cells and microenvironment control, such as daratumab, an antibody drug against CD38 that induces
antibody-dependent cytotoxic events in CD38-expressing cancer cells and complement-dependent
cytotoxicity [50–52], show success in MM treatment [53].

Figure 2. Schematic diagram of the MM microenvironment. Cancerous plasma cells interact with stroma,
osteoblasts and osteoclasts through membrane receptor interactions and secretory cytokine pathways.
Hyperactive NF-κB signaling plays a pivotal role in disease progression through transcriptional
activation of the secretion of various cytokines like IL-6, RANKL and Dkk1 to promote cancer cell
proliferation, osteoblast inactivation, osteoclast hyperactivation and angiogenesis. Proteins involved
in canonical NF-κB signaling are indicated in dark blue, whereas proteins involved in non-canonical
NF-κB signaling are indicated in light blue. Arrows with triangle heads indicate activation, whereas
arrows with rhomboid heads indicate inactivation/inhibition; direct interactions are indicated by solid
lines, whereas indirect interactions are indicated by dashed lines. Artistic images were downloaded
from Servier Medical Art (https://smart.servier.com/; Servier Medical Art by servier is licensed under a
creative commons attribution 3.0 unported license).

https://smart.servier.com/
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Even though receptor-/ligand-specific antibodies can target NF-κB signaling with high specificity,
the diverse NF-κB signals in MM cells and their microenvironment limit the application of these
therapies to treat MM effectively in vivo. Tumor evolution also contributes to altering pathways to
develop drug resistance. Hence, directly targeting the molecular machinery of NF-κB signaling remains
crucial. Until now, no specific NF-κB inhibitor has been approved for treating MM. We will discuss the
challenges of developing specific NF-κB inhibitors for MM treatment.

3. NF-κB Signaling: The Rose with Thorns in MM Treatment

Even though NF-κB signaling plays a critical role in MM, specifically targeting this signaling
pathway proves to be more difficult than previously thought.

The foremost hurdle is drug safety. NF-κB signaling plays a key role in innate immunity and
inflammation. Constitutive inactivation of NF-κB signaling silences the immune system, subsequently
rendering patients susceptible to infections. Population-based studies have pointed out that MM
patients displayed a seven-fold higher risk of bacterial infection and a 10-fold higher risk of viral
infections as compared to randomized control individuals, resulting in a stunning 22% death rate
among MM patients at one-year follow-up [54]. It is noteworthy that transplanted patients displayed a
broader spectrum of infection [55], where infection rate may be reduced by combined IMiD therapy [56],
due to the fact that immunosuppressive drugs are administered to prevent graft-versus-host defense.
On the other hand, bortezomib-based therapy is associated with a higher risk of severe infection
in various studies [56–58], possibly through inhibition of both canonical and non-canonical NF-κB
pathways. Hence, it is hypothesized that targeting of one NF-κB pathway may be safer than inactivating
both NF-κB signaling pathways. Nevertheless, trials of many IKKβ inhibitors showed severe adverse
effects [59], even though non-canonical NF-κB signaling is hypothesized to be unaffected. In contrast,
the anti-RANK antibody denosumab, which is recommended as adjuvant therapy to MM patients to
alleviate hypercalcemia due to hyperactive osteoclasts [60], produces little toxicity but cannot treat
MM because of its narrow-spectrum inhibition of RANK-mediated non-canonical NF-κB signaling.
Hence, striking the right balance between drug safety and treatment efficiency remains challenging.

Secondly, the context-specific and spatio-temporal regulation of NF-κB signaling complicates
therapeutic design. This complexity is further complicated by the interplay between cancer and its
immune microenvironment [26,46,61,62]. For example, the non-steroidal anti-inflammatory drugs
(NSAIDs) (e.g., aspirin, sulindac and tolfenamic acid) that target the COX-1/2 genes may suppress
NF-κB signaling during short-term administration but activate NF-κB signaling after prolonged
treatment [59].

Thirdly, selectivity remains a critical issue. For instance, several IKKβ inhibitors exhibit off-target
effects, whereas others display high selectivity toward IKKβ and loss of inhibition through IKKα [59].
In this regard, combined treatment may offer hope for highly selective inhibitors, but this also requires
more consideration of the treatment burden on patients, especially when many MM patients are
old and weak. Nevertheless, high selectivity suffers from poor treatment efficiency. For instance,
the anti-BAFF antibody tabalumab, which specifically inhibits non-canonical NF-κB signaling, failed to
improve outcomes in MM patients in a phase II trial in which it was combined with bortezomib and
dexamethasone [63].

Lastly, the lack of structural information hampers rational drug design, although solving the
structure does not guarantee success either. For example, structure of the NF-κB inducing kinase
(NIK) has been solved [64], but the NIK inhibitors AM-0216 and AM-0561 failed due to poor
pharmacokinetics in vivo, even though they displayed high NIK binding affinity and NIK-dependent
cytotoxicity in vitro [65]. On the contrary, a peptide mimetic of the NF-κB essential modulator (NEMO)
binding domain that blocks IKK complex formation [66] made its way to clinical trials in dogs for
treating diffuse large B cell lymphoma (DLBCL) and soft tissue sarcoma (STS) [67], but no clinical trial
has been reported to treat humans. Other molecular targets might lack specific inhibitors after solving
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the structure [68]. Consequently, no specific NF-κB inhibitor has been successfully developed to treat
MM until now.

4. MM Therapy: A Steep Road to Success

MM therapy mainly involves stem cell transplant and systemic drug therapy with occasional
use of radiotherapy for plasmacytomas (Figure 3). ASCT is an important treatment modality for MM
patients, whereas allogeneic stem cell transplant is suggested for high-risk patients with complex
karyotypes [69]. However, allogeneic stem cell transplant is still rarely used in MM patients because of
high rates of treatment-related mortality. Furthermore, stem cell transplant is often infeasible because
of the frailty of MM patients, who are mostly elderly, aged 65 and above. Hence, systemic drug therapy
remains an indispensable approach for MM treatment. Similar to many other cancers, MM is often
treated by a combination of drugs.

Figure 3. Therapeutic options of MM. Systemic therapy is the most common treatment option for MM
patients. Systemic therapy is usually administered in a combined manner, with synthetic drugs and
antibodies (green box), or in conjunction with stem cell transplant (cyan box). For example, bortezomib
and dexamethasone constitute the adjuvant therapy for stem cell transplant patients in first-line therapy
(shadowed in orange and connected by gray lines). On the other hand, melphalan and prednisone are
recommended for non-transplant patients in first-line therapy (shadowed in orange and connected by
gray lines). Alternatively, lenalidomide may be recommended with bortezomib and dexamethasone in
non-transplant patients in first-line therapy (connected by gray lines) or administered alone during
palliative care (shadowed in purple). Therapeutic options are color-coded in boxes according to their
application and placed or shadowed under the categories of first-line (orange), second-line (cyan) and
third-line (blue) therapy, or palliative care (purple), according to the frequency of recommendation for
clinical use under the National Comprehensive Cancer Network (NCCN) guidelines. Combination
therapies on the same line of therapy are connected by gray lines, whereas those spanning across
different lines of therapy are not indicated.

Among these drugs, bortezomib is the most frequently used drug for MM treatment. Bortezomib
is commonly paired with IMiDs such as lenalidomide and thalidomide, or alkylating agents such as
melphalan, cyclophosphamide and dexamethasone. Dexamethasone, lenalidomide and prednisone all
exhibit anti-inflammatory responses. On the other hand, melphalan is a DNA alkylating drug that has
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been used to treat MM since the 1950s [70]. Among all these drugs, melphalan and prednisone are the
oldest drugs used in MM treatment [71]. It is noteworthy that combination therapy is usually used for
MM treatment, often as a means of exploiting drugs with different mechanisms of action.

Existing anti-MM drugs target a diverse array of molecular pathways (Table 1). Analysis of the
recommended drugs along the lines of therapy, together with those undergoing clinical trials, displays
an interesting trend (Figure ??). Briefly, anti-inflammatory drugs take a central role in MM therapy and
are applied to both standard therapy and maintenance therapy for MM patients, given the pivotal
role of NF-κB and inflammation in MM progression. Next, the impact of protein secretion load in
myeloma cells and the resultant endoplasmic reticulum stress make the cells vulnerable to inhibition
of the proteolysis pathways. Therefore, proteasome inhibitors, including bortezomib and carfilzomib,
often make up a base for different combination therapies. Aside from the MM-specific mechanisms,
drugs that disrupt DNA and RNA synthesis, promote cell death and inhibit angiogenesis are frequently
applied to MM treatment too. However, the most intriguing part is the increasing trend of other
therapeutic mechanisms in drugs undergoing clinical trials or in research. The common mechanism
of these drugs is the specific targeting of certain molecules or molecular pathways, especially NF-κB
signaling. For instance, selinexor blocks exportin to retain NF-κB in the nucleus [72,73].

Table 1. Summary of anti-MM drug mechanisms.
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Drug Target
Bortezomib 1 NF-κB

Dexamethasone 1
Lenalidomide 1 VEGF, bFGF

Cyclophosphamide 1 DNA
Carfilzomib 2 Proteasome

Daratumumab 2 CD38
Doxorubicin 2 Topoisomerase

Ixazomib 2 Proteasome
Melphalan 2 DNA
Prednisone 2

Bendamustine 3 DNA
Cisplatin 3 DNA

Elotuzumab 3 CS1
Etoposide 3 Topoisomerase

Panobinostat 3 HDAC
Pomalidomide 3 VEGF, bFGF

Thalidomide 3 VEGF, bFGF
Abatacept CT CD80, CD86

Abemaciclib CT CDK4, CDK6
Acalabrutinib CT BTK

ACP-319 CT PI3K
ALT-803 CT IL-15

ASA CT COX-1/2
Atezolizumab CT PD-L1

Avelumab CT PD-L1
Azacitadine CT DNA methylation

AZD5991 CT Mcl-1
Binimetinib CT MEK-1/2

Busulfan CT DNA
Carmustin CT DNA
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Table 1. Cont.
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Drug Target
CC-92480 CT CRBN
CCS1477 CT p300, CBP

Cetrelimab CT PD-1
Clarithromycin CT Antibiotic

CLR131 CT
Cobimetinib CT MEK1

CT-011 CT PD-1
CYT-0851 CT RAD51

Cytarabine CT DNA
Dabrafenib CT BRAF

Denosumab CT RANKL
Depsipeptide CT HDAC
Durvalumab CT PD-L1

Enasidenib CT IDH2
Encorafenib CT BRAF

Erdafitinib CT pan-FGFR
Fludarabin CT DNA

GBR1342 CT CD38, CD3
Gemcitabine CT DNA
GSK2857916 CT BCMA
GSK3174998 CT OX40
GSK3359609 CT ICOS
Idasanutlin CT MDM2
Ipilimumab CT CTLA4
Isatuximab CT CD38

JNJ-42756493 CT pan-FGFR
Leflunomide CT PKC

Melflufen CT DNA
Metformin CT Complex I
Nelfinavir CT Antiviral, Akt

Nirogacestat CT γ-secretase
Nivolumab CT PD-1

MP0250 CT VEGF, HGF
ONC201 CT ERK-1/2
Osalmid CT

PD-L1 peptide CT PD-1
Pembrolizumab CT PD-1

Pralatrexate CT RFC-1
Cemiplimab CT PD-1

REGN5458 CT BCMA, CD3
Ricolinostat CT HDAC6

Rituximab CT CD20
Romidepsin CT HDAC
Ruxolitinib CT JAK-1/2

Selinexor CT Exportin
Siltuximab CT IL-6
Sonidegib CT Smo

TAK-573 CT CD38
TJ202 CT CD38

Tositumomab CT CD20
Trametinib CT MEK-1/2
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Table 1. Cont.
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Drug Target
Venetoclax CT Bcl-2
Vorinostat CT HDAC

Aspirin NA COX-1/2
The line of therapy of each drug is indicated by numbers according to the frequency of recommendation for clinical
use under the National Comprehensive Cancer Network (NCCN) guidelines; drugs under active clinical trial
according to clinicaltrials.gov as of 6 May, 2020, are indicated by “CT”; those that did not undergo clinical trial
according to clinicaltrials.gov as of 6 May, 2020, are indicated by “NA”. The mechanism of action of each drug
is indicated in gray, based on drug labels disclosed by the Food and Drug Administration (FDA) and literature
search. The known targets of respective drugs are listed in the rightmost column. For drugs indicated as “CT”,
the following criteria were applied in our search: (1) “Condition” was multiple myeloma; (2) “Phase” included
phases II, III and IV; (3) “Status” included recruiting, active not recruiting, enrolling by invitation and unknown
status. Afterwards, the list of drugs was compiled into a table and those that did not meet any one of the following
criteria were excluded from our analysis: (1) active clinical trials, inferred by the last update date lying within
5 years of the date of data retrieval; (2) Phase II and beyond, i.e., for trials in Phase I/II, confirmed progression by
literature search to Phase II was required; (3) not included as adjuvant or palliative care in combinations for stem
cell transplant, fever and pain management, etc.; (4) not included in pan-cancer trials, e.g., MATCH [NCT02465060]
(https://clinicaltrials.gov/ct2/show/NCT02465060?id=NCT02465060&draw=2&rank=1), CAPTUR [NCT03297606]
(https://clinicaltrials.gov/ct2/show/NCT03297606?id=NCT03297606&draw=2&rank=1) or TAPUR [NCT02693535]
(https://clinicaltrials.gov/ct2/show/NCT02693535?id=NCT02693535&draw=2&rank=1); (5) not banned from import
in certain countries; and (6) not having multiple records of dose escalation and/or drug combinations in incomplete
studies or study termination over the past 5 years, suggesting drug inefficacy.

5. Future Direction: Biomarker-Guided Targeted Therapy

The first paradigm shift in MM treatment occurred in early 2000s with the introduction of the
first-in-class proteasome inhibitor bortezomib [71]. Research on the correlation between proteasome
load and degradative capacity on the sensitivity of MM cells toward bortezomib was conducted [87],
suggesting that the levels of M-proteins and proteasome expression can be biomarkers for proteasome
inhibitor sensitivity. This incidence marks the start of evidence-based therapeutic design for MM
treatment. However, even though bortezomib is highly effective, its severe neurotoxicity is often
intolerable, leading to drop-offs in many studies [88]. This subsequently led to exploration of the
oral alternative ixazomib, which exhibits lower neurotoxicity [89]. Additionally, second generation
proteasome inhibitors with different chemical moieties were developed to improve outcomes and
reduce adverse reactions. For instance, carfilzomib showed a better response than bortezomib
in refractory MM [90–92]; its major adverse effects on the cardiac system also occurred in fewer
patients [93]. These protocols have paved the way for more precise regimens for application to different
patient subgroups.

Recently, Shin, et al. identified lymphocyte cytosolic protein 1 (LCP1) gene as a novel NF-κB target
in TRAF3 or NIK mutant MM cells [94] (Figure 4). TRAF3 loss induces constitutively active NIK [95,96],
which frequently occurs in MM patients [8,14,17]. B cell-specific TRAF3-/- mice developed MM and
peripheral B cell hyperplasia [97–100].

LCP1 encodes for the L-plastin protein, which is required for sealing ring formation in
osteoclasts [101], but not in bone formation by osteoblasts in vitro [102]. Secreted L-plastin by breast
cancer cells mediates metastatic osteolysis in mice [103]. Despite its osteolytic function, L-plastin
contributes to metastasis of breast cancer, melanoma and colon cancer [103–109]. Studies also reported
that L-plastin is responsible for disease progression of bladder and kidney cancer [110,111], and homing
of chronic lymphocytic leukemia (CLL) to bone marrow [112]. Analysis of transcriptomic data showed
that LCP1 overexpression is significantly correlated with poor overall and progression-free survival in
MM patients [94].

clinicaltrials.gov
clinicaltrials.gov
https://clinicaltrials.gov/ct2/show/NCT02465060?id=NCT02465060&draw=2&rank=1
https://clinicaltrials.gov/ct2/show/NCT03297606?id=NCT03297606&draw=2&rank=1
https://clinicaltrials.gov/ct2/show/NCT02693535?id=NCT02693535&draw=2&rank=1
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Figure 4. Constitutive NIK-driven NF-κB activation without functional TRAF3 in MM. In normal
physiological conditions, TRAF3-TRAF2 interaction recruits the E3 ligases cIAPs to NIK to induce K48
ubiquitination, followed by proteasome-dependent degradation of NIK. In TRAF3-mutant MM cells,
mutations in the TRAF or MATH domain of TRAF3 result in ∆TRAF3 proteins that are unable to interact
with TRAF2 and NIK, thus stabilizing NIK to activate non-canonical NF-κB signaling. Arrows with
triangle heads indicate activation, whereas arrows with rhomboid heads indicate inactivation/inhibition;
direct interactions are indicated by solid lines, whereas indirect interactions are indicated by dashed lines.

L-plastin not only serves as a prognostic biomarker, but may also serve as a therapeutic target.
For instance, radiotherapy represses exosomal release of L-plastin in both the tumor and its niche,
producing radiation-induced bystander effects and enhance outcomes [113]. Inhibition of L-plastin Ser5
phosphorylation re-sensitizes resistant MM cells to IMiDs and proteasome inhibitors [114]. Collectively,
these data suggest that inhibiting L-plastin provides an alternative route to treating MM, specifically in
TRAF3-mutant MM patients. In this regard, peptide inhibitors against L-plastin that inhibit osteoclast
activity [102,115] might be tested. Alternatively, NIK inhibitors under development [82,83], or shown
to repress inflammation in other mouse models [84,85], may be tested in MM mouse models too.

The revelation of LCP1′s involvement in TRAF3-mutant MM has led to deeper investigation of
the role of calcium signaling in MM development and progression. It has been reported that calcium
signaling activates NF-κB in B cells [116]. For instance, B cell receptor (BCR) activation stimulates
store-operated calcium entry (SOCE) to induce NFKB2 expression [117], which encodes for p100 that is
processed into p52 during non-canonical NF-κB activation. On the other hand, calcineurin A associates
with TRAF3 and NIK to inhibit LTβR-mediated NIK activity and TWEAK-mediated p100 processing
in fibroblasts [118]. Simultaneously, the calcineurin A-specific inhibitors cyclosporin A and FK506
inhibit IgM-induced B cell activation and trigger cell death [119]. Taken together, targeting L-plastin
and calcium-dependent NF-κB activation may be favorable for MM therapy.

Massive chromosomal aberrations are a key feature of MM. Nearly half of MM tumors are
hyperdiploid, usually comprising multiple copies of chromosomes 3, 5, 7, 9, 11, 15, 19 and 21 [11],
whereas non-hyperdiploid MM tumors usually contain IGH translocations that do not involve
c-myc [12,13]. This finding led to the proposal of patient risk group stratification based on molecular
signatures of MM [11]. However, cytogenetic analysis of all known mutations might be unaffordable
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for the less-privileged, so resource-stratified guidelines are proposed to circumvent the cost issue [120].
In order to carry out patient risk group stratification, genetic test was suggested to be mandated as a
routine clinical test for MM patients and subsequent clinical trials in 2009 [121]. Cytogenetic analysis is
exploited to indicate allelic mutations relevant to regimen design. For example, homozygous carriers
of the NFKB1 -94insATTG polymorphism were retrospectively demonstrated to benefit more from
bortezomib treatment than MM patients carrying the deletion allele [122]. Bortezomib also exhibits a
good response in del17p but not t (4;14) patients and those with 1q21 gain, although its combination
with lenalidomide and dexamethasone is promising in del17p, del1p, t (4;14), and t(14;16) patients [7].
Venetoclax is highly effective in t (11;14) MM patients [123]. Furthermore, epigenetic changes have
been correlated to certain cytogenetic subgroups. For example, extensive DNA hypomethylation is
correlated to MM subgroups of hyperploidy, t (4;14), t (11;14), and t (14;16) translocations, but not
the del1p, gain 1q, del13q, del16q, del17p and del22q subgroups [18]. Of note, t (4;14) translocation
upregulates the histone methyltransferase multiple myeloma SET domain protein (MMSET) [124] and
inhibition of MMSET activity inhibits MM cell proliferation in vitro [125]. Nevertheless, more research
is needed to elucidate the correlation between different karyotypes and drug sensitivity.

Lastly, drugs to delay MM progression and prevent or re-sensitize MM to treatment are being
investigated. For example, an antibody against IL-6 has been tried in smoldering myeloma patients
to delay MM progression [126]. In addition, a potent multi-drug resistance modulator, valspodar,
has been investigated to circumvent decreased drug deposition due to P-glycoprotein overexpression
in response to therapy [127], but failed because of unimproved treatment outcomes and increased
toxicity [128]. In contrast, nelfinavir sensitizes MM to overcome proteasome inhibitor resistance through
modulating TCF11/Nrf1-mediated proteasome recovery [129]. Hence, drug development is striving
incessantly to overcome the ever-evolving forms of drug resistance.

In addition to treatment efficacy, the tendency to trigger secondary neoplasm development is
another key factor to consider during development of novel anti-MM drugs. Early small cohort
studies showed that DNA alkylating drugs might possess a higher tendency to induce secondary
neoplasms [130–132]. However, more recent study using a 403-patient cohort suggested that the
therapeutic mechanism exhibited an insignificant impact; instead, complex karyotypes are largely
correlated to the risk of developing secondary neoplasms [133]. Nevertheless, the skewed tendency of
developing myelodysplastic syndrome (MDS) [130] warrants deeper investigation into therapy-related
secondary neoplasms.

6. Conclusions

MM therapy has come a long way, evolving from the miscellaneous application of rhubarb and
orange peel to the anti-proliferative melphalan and anti-inflammatory prednisone, to the first-in-class
proteasome inhibitor bortezomib [71]. History has shown that MM treatment strategies evolved with
our understanding of the molecular mechanism of MM progression. In this era of precision medicine,
evidence-based therapeutic design has become the golden rule for regimen design. Regimen design
considers factors like patient characteristics, therapeutic efficacy, working principle and adverse effects,
among many others, from the scientific perspective. From the ethical point of view, treatment burden,
quality of life and healthcare cost have received more attention in recent years. In parallel to treatment,
diagnostic tests to identify biomarkers and predict treatment outcomes are routinely conducted in
some countries. We predict that biomarker-guided targeted therapy will expand as our knowledge
grows and continues to evolve in the next decade.
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