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This report describes strategies to increase the reactive surfaces of integrated gold

nanoparticles (AuNPs) by employing two different types of host materials that do

not possess strong electrostatic and/or covalent interactive forces. These composite

particles are then utilized as highly reactive and recyclable quasi-homogeneous

catalysts in a C-C bond forming reaction. The use of mesoporous TiO2 and

poly(N-isopropylacrylamide), PNIPAM, particles allows for the formation of relatively

small and large guest AuNPs and provides the greatly improved stability of the

resulting composite particles. As these AuNPs are physically incorporated into the

mesoporous TiO2 (i.e., supported AuNPs) and PNIPAM particles (i.e., encapsulated

AuNPs), their surfaces aremaximized to serve as highly reactive catalytic sites. Given their

increased physicochemical properties (e.g., stability, dispersity, and surface area), these

composite particles exhibit notably high catalytic activity, selectivity, and recyclability in the

homocoupling of phenylboronic acid in water and EtOH. Although the small supported

AuNPs display slightly faster reaction rates than the large encapsulated AuNPs, the

apparent activation energies (Ea) of both composite particles are comparable, implying

no obvious correlation with the size of guest AuNPs under the reaction conditions.

Investigating the overall physical properties of various composite particles and their

catalytic functions, including the reactivity, selectivity, and Ea, can lead to the development

of highly practical quasi-homogeneous catalysts in green reaction conditions.

Keywords: gold nanoparticle, deposition precipitation, mesoporous TiO2, poly(N-isopropylacrylamide),

homocoupling reaction

INTRODUCTION

In the last few decades, metal-based materials have been extensively fabricated to develop reactive
catalysts for various chemical reactions (Astruc et al., 2005; Corma and Garcia, 2008; De Rogatis
et al., 2010; Prati and Villa, 2013; Narayan et al., 2019). Nanoscale colloidal metal particles can
possibly serve as quasi-homogeneous catalysts to overcome common pitfalls (e.g., recyclability
and reactivity) of homogeneous and heterogeneous catalytic systems (Astruc et al., 2005; Prati and
Villa, 2013; Price et al., 2019). Among the many metal-based colloidal systems, gold nanoparticles
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(AuNPs) have shown great potential in fulfilling the need for
quasi-homogeneous catalytic properties for several reasons: they
have relatively easy-to-control structural features (e.g., size and
shape), inherent biocompatible characteristics, and a reasonably
high stability when properly modified (Cortie and van der
Lingen, 2002; Corma and Garcia, 2008; Piella et al., 2016;
Parmentier et al., 2018; Carabineiro, 2019; Tabakova, 2019;
Jang et al., 2020). In addition, simple wet chemical synthetic
approaches can readily allow for designing structurally diverse
colloidal AuNPs possessing these advantages to serve as effective
catalysts, even under green reaction conditions. However, many
colloidal NPs, including AuNPs in quasi-homogeneous catalytic
systems, have shown an intrinsic thermodynamic instability
where various strong capping agents are often introduced during
synthesis to maintain their stability for many chemical reactions
(Han et al., 2009; Fenger et al., 2012; Imura et al., 2016; Rossi
et al., 2018). Although the utilization of capping agents allows
for the easy control of the structural and physical properties, as
well as the catalytic selectivity (Li et al., 2012; Imura et al., 2016;
Lu et al., 2018; Rossi et al., 2018), the strong interactive forces
between the functional groups of the capping agents and the
surfaces of the colloidal NPs generally deter their overall catalytic
performance. Specifically, the presence of strong capping agents
around the catalytically active sites of AuNPs (e.g., corners,
edges, and terraces) greatly diminishes their catalytic functions
by blocking the access of reactants during the reactions. This
detrimental effect can ideally be avoided if a greatly improved
stability of the colloidal AuNPs is achieved in the absence of
strong capping agents (Li et al., 2012; Niu and Li, 2014; Imura
et al., 2016; May-Masnou et al., 2018; Eyimegwu et al., 2019).
Various modification strategies have been explored to prepare
AuNPs possessing abundant free surfaces without any capping
agents, yet which maintain their stability and catalytic activity.

Here we designed two types of composite particles where
AuNPs are physically loaded into mesoporous TiO2 (supported
AuNPs) and encapsulated into polymer particles (encapsulated
AuNPs) via very weak interactive forces. Both the supported
AuNPs and encapsulated AuNPs exhibited abundant bare
surfaces but still displayed great dispersity and stability in
water and EtOH. Subsequently, these composite particles
were tested as quasi-homogeneous catalysts in homocoupling
reactions, which are of particular interest because of their
high importance in fundamental chemical production and
applicability in the synthesis of bio-active heterocycles, drug-like
molecules and natural products (Li and Jin, 2013). In addition,
the homocoupling of arylboronic acid in aerobic conditions
has been regarded as an effective strategy to form biaryl
compounds without using relatively toxic halogen aromatics.
Furthermore, these homocoupling reactions sometimes require
slightly harsh conditions and a long reaction time to validate
the overall catalytic functions of various materials. A strategy to
reduce the formation of the phenol byproduct, but to improve
biphenyl target product in this reaction, is an additional attractive
topic of research that can help to elucidate the selectivity of
catalysts (Xu et al., 2017; Chen and Shon, 2018). We have
thoroughly compared the reactivity, selectivity, and recyclability
of both supported and encapsulated AuNPs in water and EtOH

for their possible use as quasi-homogeneous catalysts. The
reaction rate and activation energy (Ea) of these composite
particles were also evaluated to understand the effect of capping
agent-free surfaces of physically integrated AuNPs during the
catalytic reaction. Building upon our previous findings, the
comparative study utilizing two different composite particles
exhibiting similarities (e.g., bare surface) and discrepancies (e.g.,
size) could help provide a better understanding of the overall
catalytic functions in the homocoupling reactions. In addition,
the catalytic activity and overall reaction conditions of these
composite particles in the homocoupling of phenylboronic acid
are thoroughly compared to reported systems in literature
(Supplementary Table S1). As such, investigating these types of
composite colloidal materials in chemical reactions can allow
for the development of high-yielding, cost-effective, and green
quasi-homogeneous catalytic systems.

METHOD

Preparation of Composite Particles for
Catalytic Homocoupling Reactions
Integration of Gold Nanoparticles Into Mesoporous

TiO2 Particles (Supported AuNPs)
Mesoporous TiO2 particles were prepared by a modification of
the sol-gel method (Yoo et al., 2005; Niu et al., 2018). An aliquot
(20mL) of titanium tetraisopropoxide (TTIP) was diluted with
200mL water. Concentrated HCl (30mL) was then added to this
mixture, which was kept at 90◦C. After stirring for 24 h, 60mL
of P123 (10 wt% in water) and 3mL of mesitylene were added
to the resulting mixture, which was cooled to room temperature
by stirring for additional 1 h. Finally, 40mL of NH4OH was
added and stirred at room temperature for 24 h. The resulting
nanoparticles were centrifuged and washed with water, followed
by drying at 80◦C overnight. The powder was uniformly ground
in a mortar and then calcined at 500◦C for 5 h using the ramping
temperature of 3◦C/min.

The loading of AuNPs onto TiO2 particles was accomplished
by a slight modification of the deposition precipitation method
(Zanella et al., 2005; Ma et al., 2008). Specifically, 5.0mL of
10mM HAuCl4 (0.0394 g/10mL water) was mixed with 0.4mL
of 1M KOH in a glass vial (∼10.5 pH). This mixture was stirred
for 5min, followed by heating to 80◦C using an oil bath. TiO2

particles (0.09 g) were then introduced to the heated mixture,
which was stirred for additional 2 h. After cooling the mixture
to room temperature, it was centrifuged at 6,000 rpm for 30min
three times to remove the free gold ions. The final precipitates
were dried at 50◦C overnight, resulting in gray powders. The
powders were thermally treated in an oven at 210◦C for 2 h prior
to use as catalysts. The integration of AuNPs into nonporous
TiO2 particles was accomplished using the same process.

Integration of Gold Nanoparticles Into Polymer

Particles (Encapsulated AuNPs)
Poly(N-isopropylacrylamide), PNIPAM, particles were initially
synthesized in water via radical polymerization (Bergbreiter et al.,
1998; Jang et al., 2019). The subsequent loading of AuNPs into the
PNIPAM particles was also achieved in water by a light-induced
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SCHEME 1 | Overall process to prepare the supported and encapsulated AuNPs as reactive catalysts for homocoupling applications.

reduction method (Eyimegwu and Kim, 2019; Eyimegwu et al.,
2019). Specifically, an aliquot of a PNIPAM solution (10mL) was
mixed with 1.0mL of 1 wt%HAuCl4·3H2O for 30min in a water-
jacketed beaker. A trisodium citrate solution (1.0mL of 1.0 wt%)
was added to the reactionmixture, which was placed under a desk
lamp (∼85 mW/cm2) for 3 h. The reaction was fully completed
after stirring a minimum of 5 h without the light source. The
formation of AuNPs was easily observed by the solution’s color
change from light yellow to red. The encapsulated AuNPs were
then purified in water or EtOH by centrifugation (6,000 rpm
for 20min × 3) to remove the free AuNPs and unreacted
species. The overall preparation processes for the supported and
encapsulated AuNPs and their catalytic reactions are summarized
below (Scheme 1).

Homocoupling Reactions
The homocoupling of phenylboronic acid was performed in
water or EtOH using the supported AuNPs and encapsulated
AuNPs. Specifically, an aliquot of the purified composite particles
(10mg for supported AuNPs or 2.0mL for encapsulated AuNPs)
was mixed with phenylboronic acid (21mg, 0.17 mmol) and
K2CO3 (67mg, 0.48mmol) in a glass vial. After a brief sonication,
the reaction proceeded under stirring at various temperatures as
a function of time. An aliquot of the reaction mixture was then
transferred to an Eppendorf tube and separated by centrifugation
at 10,000 rpm for 5min. For the reaction in EtOH, the top

EtOH layer (1.0mL) was directly subjected to GC analysis.
For the reaction in water, the water layer was gently extracted
with 2.0mL of diethyl ether. The ether layer (1.0mL) was
then subjected to the GC analysis. A small amount of octane
(5 µL) was used as an internal standard for all samples. The
recyclability of the composite nanoparticles was tested upon
recovering the precipitated composite particles by centrifugation
at 6,000 rpm for 20min twice. Bare AuNPs and nonporous
TiO2 particles loaded with AuNPs were also tested under the
same reaction conditions but underwent severe aggregations
(black precipitation or red chunk formation, respectively) in
30min, indicating a poor stability and dispersity throughout
the reactions.

RESULTS AND DISCUSSION

Figure 1 and Supplementary Figure 1 show the representative
images and absorption spectra of supported AuNPs (integrated
into the mesoporous TiO2 particles) and encapsulated AuNPs
(integrated into PNIPAM particles) prepared via the deposition

precipitation method and light-induced reduction approach,

respectively. The surface of the mesoporous TiO2 host particles
appeared to be somewhat rougher than that of the PNIPAM
particles. The pore size of the mesoporous TiO2 particles
was estimated to be ∼9.72 nm (BET test with N2 gas shown
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FIGURE 1 | SEM/TEM images of (a) supported and (b) encapsulated AuNPs and (c) their corresponding absorption patterns. The numbers on the images indicate

the size of the incorporated AuNPs and the overall surface charge of the composite particles in EtOH.

in Supplementary Figure 1B). A small deviation of the pore
size from TEM and BET could be due to the wormhole-like
framework structures of the mesoporous TiO2 particles. The
diameter of the loaded AuNPs into these TiO2 particles was
analyzed to be 7.1 ± 2.9 nm (TEM). These relatively small and
uniform AuNPs were randomly distributed and their surfaces

were expected to be free from anymodifiers because the synthetic
method did not require any reducing and stabilizing agents. On
the other hand, the spherical PNIPAM host particles (∼590 nm
diameter, SEM) encapsulated relatively polydisperse AuNPs (20.2
± 13.1 nm, TEM), which were formed by the reduction of gold
ions in the presence of the trisodium citrate reducing/stabilizing
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FIGURE 2 | Power X-ray diffraction (PXRD) patterns of the supported and

encapsulated AuNPs and their host materials.

agent. The loading of the AuNPs was then observed by the
distinctive surface plasmon resonance (SPR) band at ∼538 nm.
However, the AuNPs supported onto the TiO2 particles displayed
a generally flat absorption band across the entire wavelength,
except a broad and weak peak at ∼550 nm, implying that the
dispersity of the composite particles slightly deteriorated upon
the integration of the AuNPs. The near absence of a distinctive
SPR peak could also be attributed to the poor dispersity of
the host TiO2 particles (e.g., more light scattering) and the
relatively small size of the guest AuNPs (e.g., the weak absorption
ability). Our current effort involves the systematic control of
the structural features (e.g., size) and loading efficiency for the
integrated AuNPs onto the mesoporous TiO2 particles.

To examine the physical integration of the AuNPs (e.g.,
absence of any modifiers) into the TiO2 and PNIPAM host
particles, the changes of the surface charges and vibrational peaks
were compared before and after the formation of the composite
particles by the zeta potential and IR spectroscopy, respectively
(Figure 1 and Supplementary Figure 2). Specifically, the
negligible changes of the surface charges were observed for
the initial TiO2 particles (−24.2 ± 5.0mV) and the supported
AuNPs (−27.8 ± 2.4mV) in EtOH. Similarly, the zeta potentials
for the initial PNIPAM particles (−13.4 ± 3.4mV) and
encapsulated AuNPs (−18.1 ± 3.3mV) were comparable in
EtOH. The FT-IR spectra patterns were also identical across
the entire vibrational range, which clearly indicated the absence
of strong electrostatic or covalent interactions between the
guest AuNPs and host materials (i.e., they were free from any
stabilizing and/or capping agents). In addition, powder X-ray
diffraction (PXRD) spectra were collected to show the presence
of supported and encapsulated AuNPs within the mesoporous
TiO2 and PNIPAM particles (Figure 2). The bare PNIPAM
particles showed an amorphous characteristic peak at 2θ =

24.5◦, but the encapsulated AuNPs exhibited three distinctive
peaks at 2θ = 38.3◦, 44.8◦ and 65.2◦ for the (111), (200), and
(220) planes of the face-centered cubic gold structure with space
group Fm3m (Zhang et al., 2018; Eyimegwu et al., 2019). For

the mesoporous TiO2 particles, the prominent XRD peaks at
2θ = 25.8◦, 38.5◦, 48.7◦, 54.9◦, 55.9◦, and 63.4◦ presented the
characteristic patterns of mostly anatase phase TiO2 (JCPDS card
21-2172) (Nafria et al., 2013; Machin et al., 2017; Solaiyammal
and Murugakoothan, 2019). However, the supported AuNPs did
not show the detectable characteristic peaks of AuNPs except
for a very weak peak at 2θ = 44.8◦. This observation could
be because the main diffraction peak at 2θ = 38.5◦ overlaps
broadly with the peak of TiO2 particles, and the supported
AuNPs are too small and/or broadly distributed to generate
diffraction peaks, which is also explained by previously reported
literature (Nafria et al., 2013; Machin et al., 2017; Solaiyammal
and Murugakoothan, 2019). As such, our synthetic methods
readily led to the physical adsorption and encapsulation of the
AuNPs within the TiO2 and PNIPAM particles where these
stable supported and encapsulated AuNPs could potentially
circumvent the problems associated with the need for capping
agents and the reduction of the catalytic performance.

To examine the thermal stability, the thermogravimetric
analyzer and differential scanning calorimetry (a dual TGA/DSC
system) were used after completely drying the composite particles
(Supplementary Figure 3). The supported AuNPs exhibited a
negligible weight loss (TGA) and heat flow (DSC), which were
expected because the host TiO2 particles were calcined to
produce a mesoporous structure prior to AuNP loading. As
such, the absence of a sharp exothermic peak at 420◦C coming
from the phase transition from amorphous to anatase clearly
supported themesoporous feature of the TiO2 particles (Deorsola
and Vallauri, 2008; Khatim et al., 2013; Byun et al., 2017). The
encapsulated AuNPs showed a sharp weight loss at 380◦C and
complete decomposition over 480◦C, which corresponded to
the host PNIPAM particles. The amount of loaded AuNPs was
estimated to be ∼6.9 wt% with respect to the PNIPAM particles.
To quantitatively determine the amount of integrated AuNPs
into both host particles, atomic absorption spectroscopy (AAS)
was utilized after treating the composite particles with a mixture
of strong acids. Based on the calibration curve obtained from
a series of standard solutions (Supplementary Figure 4), the
amounts of integrated Au atoms were found to be 0.86mg of
Au per 10mg of supported AuNP particles (8.6%) and 1.54mg
of Au per 20mg of encapsulated AuNP particles (7.7%), which
were used for the catalytic applications.

After the characterization of overall physicochemical
properties, the supported and encapsulated AuNPs were
employed in the homocoupling of phenylboronic acid in
water and EtOH under ambient conditions (Figure 3). The
composite particles as catalysts resulted in a high-yield reaction,
except for the encapsulated AuNPs in water. Specifically, the
supported AuNPs showed notably higher reaction yields than
the encapsulated AuNPs in water, possibly due to the size of the
integrated AuNPs. In addition, the presence of oxidized and/or
residual citrate molecules around the surface of the encapsulated
AuNPs could block the number of catalytically active sites during
the reaction in water, which was also reported in the literature (Li
et al., 2012; Niu and Li, 2014). This is because the encapsulated
AuNPs formed in the aqueous solution using the trisodium
citrate reducing/stabilizing agent exhibited a low zeta potential
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FIGURE 3 | Catalytic yields obtained by GC for the homocoupling reaction of

phenylboronic acid using supported and encapsulated AuNPs in water and

EtOH (both reactions were performed at 55◦C for 4 h under aerobic

conditions).

value (−40mV), even after extensive purification with water.
However, purifying and dispersing the encapsulated AuNPs in
EtOH greatly decreased the surface charges (−18mV), which
implied the efficient removal and/or localization of the surface-
bound citrate stabilizing agent (Liao et al., 2003; Spina et al.,
2017). Reducing the role of the capping agent and maximizing
the exposure of catalytic surfaces in EtOH could be one of the
reasons for the encapsulated AuNPs to display significantly
improved catalytic properties. In addition, the EtOH solvent
could improve the mass transfer processes for organic substrates
(i.e., phenylboronic acid and biphenyl) during the reaction,
which was observed in our recent work (Eyimegwu and Kim,
2019; Eyimegwu et al., 2019). The high yielding reactions using
both composite particles in EtOH were clearly observed by
FT-NMR spectra which only showed the biphenyl product with
near absence of background noise (Supplementary Figure 5).
A detectable amount of phenol byproduct was only formed in
water, but not in EtOH. This phenol formation in an aqueous
system has been explained by the formation of the boron
peroxide species in basic reaction conditions (e.g., abundant
hydroxide groups and molecular O2) (Dhital et al., 2012; Karanjit
et al., 2015), and the details of the reaction mechanisms in EtOH
are under investigation.

To further examine the overall catalytic performance of
both composite particles, the reaction kinetics and activation
energies were obtained after using them in the homocoupling
reaction in EtOH (Figure 4). The biphenyl product yields at
three different temperatures were examined as a function of
time where the supported AuNPs reached the maximum yields
slightly faster than the encapsulated AuNPs. Mildly increasing

the reaction temperatures rapidly improved the reaction yields
for both composite particles. Based on the initial reaction rates,
the observed reaction rate constants from the straight slope
indicated the first-order reaction for both composite particles.
The activation energy (Ea) was then derived fromArrhenius plots
using these three slopes where the apparent Ea of the reaction
was ∼45 kJ/mol for the supported AuNPs and ∼43 kJ/mol for
the encapsulated AuNPs. The size of both integrated AuNPs was
relatively large compared to other reactive AuNP-based catalysts
(≤ ∼5 nm in diameter), but their abundant bare surfaces that
act as catalytically active sites might play an important role
to display the comparable Ea values within the reported range
(27–61 kJ/mol) (Wang et al., 2013; Karanjit et al., 2015; Liu
et al., 2016). One can also speculate about the size-dependent
Ea for the supported and encapsulated AuNPs (Sharma et al.,
2003; Fenger et al., 2012; Murzin, 2019), but the comparable
Ea values, even with notably different sizes and distributions of
the AuNPs (e.g., uniform 7 nm vs. polydisperse 20 nm), were
possibly due to the compromise effect between the reactivity and
dispersity in solution (e.g., higher reactivity but poorer dispersity
for supported AuNPs vs. lower reactivity but better dispersity).
As the supported AuNPs exhibited relatively high reactivity in
water and EtOH, their reaction kinetics were also monitored in
water at two different temperatures (Supplementary Figure 6).
Using the initial rate of reactions, their apparent Ea in water was
calculated to be ∼44 kJ/mol, which was very comparable to the
EtOH solvent system. This observation implied that the catalytic
property of the supported AuNPs are not sensitive to these two
solvents. More details of the catalytic reactivity and selectivity
as well as the reaction kinetics and mechanisms are currently
being investigated.

The recyclability of both composite particles was then
examined in EtOH under aerobic conditions at room
temperature (Figure 5). Unlike the catalytic reaction in
water, the use of EtOH readily circumvented the extraction
step due to the good solubility of the biphenyl product, which
also allowed for the easy recovery of the composite particles.
Interestingly, the supported AuNPs easily maintained a great
catalytic activity at a minimum of six cycles. However, the
encapsulated AuNPs were slightly losing their activity due to the
obstruction of the host PNIPAM matrix, which was observed
in our previous work (Eyimegwu et al., 2019). In contrast to
the supported AuNPs, the digital photos also displayed the
slight change of the solution color for the encapsulated AuNPs
after the fifth batch. Based on the ICP-OES analysis after each
recycling test (Supplementary Figure 7), the leaching of AuNPs
per cycle was found to be ∼0.021 wt% (∼0.09 ppm per 430
ppm of total AuNPs) for the supported AuNPs and 0.019 wt%
(∼0.15 ppm per ∼770 ppm of total AuNPs) for the encapsulated
AuNPs. Both composite particles exhibited an insignificant
loss of AuNPs in each cycle, which could minimally impact
the overall catalytic activities. Given the high reactivity and
robustness of both composite particles, the homocoupling
of arylboronic acid derivatives possessing 4-methyl and 4-
methoxy groups was performed at mild temperatures in EtOH
(Supplementary Table 2). Both composite particles generally
resulted in good reaction yields after 4 h where the slightly
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FIGURE 4 | Reaction kinetics (a) and Arrhenius plots (b,c) to estimated the Ea value (d) of supported and encapsulated AuNPs in the homocoupling of phenylboronic

acid in EtOH.

FIGURE 5 | Recycling test of supported and encapsulated AuNPs for the homocoupling reaction in EtOH at ambient conditions (the yield for the dashed bar graph in

purple was obtained after washing the encapsulated AuNPs).
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lower coupling yield for 4-methoxyboronic acid was obtained
due to the limited solubility of the 4,4’-dimethoxybiphenyl
product in the EtOH solvent conditions. It is noted that these
reactions mainly led to the formation of biaryls with trace
levels of phenolic side products. More studies are underway
to understand the solubility-related reaction yields under our
reaction conditions. These composite particles with controlled
physicochemical properties have shown a great potential to
serve as reactive, selective, and recyclable catalysts in the
homocoupling of phenylboronic acid in EtOH under ambient
conditions. Further control of the structural features (e.g., size
and shape) and loading amount for integrated AuNPs and
understanding their catalytic performance will provide a clear
perspective in the development of highly efficient, practical, and
green catalytic systems.

CONCLUSIONS

Relatively small and large AuNPs were effectively prepared into
mesoporous TiO2 (supported AuNPs) and PNIPAM particles
(encapsulated AuNPs), respectively, to serve as reactive quasi-
homogeneous catalysts. Both kinds of AuNPs were physically
incorporated into these host particles in the absence of any
stabilizing agents via strong electrostatic and covalent bonds,
and they exhibited an improved stability in water and EtOH.
Upon the utilization of these composite particles in the aerobic
homocoupling of phenylboronic acid, the bare surfaces of the
integrated AuNPs greatly improved the overall reaction yields by
maximizing the interactions between the catalytically active sites
and organic reactants. Specifically, the supported AuNPs showed
a slightly poor dispersity in water and EtOH but exhibited
high catalytic activity and recyclability. The encapsulated AuNPs
exhibited good dispersity both in water and EtOH, but showed a
high yielding reaction only in EtOH possibly due to the increase
of free surfaces and mass transfer processes. Interestingly, these
composite particles displayed no clear correlation between the
apparent Ea values and the size of integrated AuNPs (i.e., size-
independent Ea) in this catalytic reaction. Understanding the
way AuNPs are integrated into the host particles and their
physiochemical properties in a proper solvent can lead to the

significant improvement of their catalytic activity, selectivity,
and recyclability.
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