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Regenerating lost or damaged tissue is the primary goal of Tissue Engineering.

3D bioprinting technologies have been widely applied in many research areas of

tissue regeneration and disease modeling with unprecedented spatial resolution and

tissue-like complexity. However, the extraction of tissue architecture and the generation

of high-resolution blueprints are challenging tasks for tissue regeneration. Traditionally,

such spatial information is obtained from a collection of microscopic images and then

combined together to visualize regions of interest. To fabricate such engineered tissues,

rendered microscopic images are transformed to code to inform a 3D bioprinting

process. If this process is augmented with data-driven approaches and streamlined with

machine intelligence, identification of an optimal blueprint can become an achievable task

for functional tissue regeneration. In this review, our perspective is guided by an emerging

paradigm to generate a blueprint for regeneration with machine intelligence. First, we

reviewed recent articles with respect to our perspective for machine intelligence-driven

information retrieval and fabrication. After briefly introducing recent trends in information

retrieval methods from publicly available data, our discussion is focused on recent works

that use machine intelligence to discover tissue architectures from imaging and spectral

data. Then, our focus is on utilizing optimization approaches to increase print fidelity and

enhance biomimicry with machine learning (ML) strategies to acquire a blueprint ready

for 3D bioprinting.

Keywords: machine learning, bioprinting, tissue engineering, cardiovascular, machine intelligence

INTRODUCTION

Tissue Engineering (TE) has advanced over the last few decades to tackle challenging problems
in tissue regeneration (Shafiee and Atala, 2017; Armstrong and Stevens, 2019). Of many available
tools and methods for tissue and organ fabrication, 3D bioprinting (3DBP) has been widely applied
to create tissue-specific microenvironments and patient-specific organs (Giannitelli et al., 2015;
Jung et al., 2016; Morss Clyne et al., 2019; Tamay et al., 2019). Recent examples of 3D bio-printed
tissues include a multicellular human scale 3DBP platform (Kang et al., 2016), thick engineered
vessels (Kolesky et al., 2016), convoluted renal proximal tubules (Homan et al., 2016), a vascularized
alveolar model (Grigoryan et al., 2019), a bioprosthetic ovary model (Laronda et al., 2017), a
neonatal scale human heart with vasculature and heart valve (Lee et al., 2019), a personalized
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perfusable cardiac patch (Noor et al., 2019), and printing
stem cell-derived organoids as a building block (Skylar-Scott
et al., 2019). Despite the advancement evidenced by literature,
significant challenges are still ahead to effectively handle the
complexity that originates from native tissue components and
architecture (Ogle et al., 2016; Ghaemi et al., 2019). While the
majority of 3DBP publications focused on printing methods (Cui
et al., 2017) and bioinks (Valot et al., 2019), only a few focused on
generating a blueprint for regeneration (Jung et al., 2012; Hanson
et al., 2013; Gao et al., 2017).

Thus, it is imperative to collect ample data to extract
features that can be successfully translated to a blueprint for
3DBP. In addition, it is desirable to systematically optimize
printing parameters and bioink properties to generate
such a blueprint. For such a case, Design of Experiment
(DOE) approaches are common statistical quality control
techniques, utilizing systematic randomization to inform
experiment planning, execution, as well as model fitting of
the results. Although DOE approaches are widely utilized
for optimization (Allen, 2010), these statistical methods
may not be suitable to process high-dimensional imaging
data and prediction of such high-dimensional data with
analytical models. Rather, it would be appropriate to exploit
machine intelligence (MI) to perform such inherently complex
tasks. The following sections discuss (1) the extraction of

FIGURE 1 | Hypothetical stages to fabricate functional tissues with 3DBP guided by MI. (1) Generation of a blueprint for regeneration: We may acquire data from

publicly available database and experimental data from imaging (e.g., microCT or MRI) and spectroscopy (e.g., FT-IR, adapted with permission from Berisha et al.,

2019). Then, acquired data will be processed to extract specific features that we can translate into a blueprint. (2) MI-guided 3DBP: To fabricate an organ-size,

functional tissue from a complex blueprint, we need to optimize printing parameters leveraging MI. This approach benefits from the capacity of identifying complex

data patterns to predict certain parameter space, which may not be possible to obtain without MI and which may accelerate the production of functional tissues.

information from publicly accessible texts, images and spectral
data and (2) optimization with statistical methods, computer
algorithms and MI (Figure 1). The future of TE requires
more robust guiding principles and templates for regeneration
(Williams, 2019) and a reproducible workflow that is not
contingent on human expertise (Armstrong and Stevens,
2019).

Generating a blueprint for 3DBP via a systematic strategy
will be particularly useful in several aspects (Murphy
et al., 2019). Many current 3DBP applications aim to
fabricate exact replicates of target tissue, which is difficult
due to technological and monetary limits; hence, the
degree to which increased complexity leads to increased
functionality is unknown and should be investigated.
Systematic automation via MI for blueprint design could
be useful in 3DBP to better inform personalized medicine
via understanding how to determine variable values that
ensure successful clinical outcomes. This automation can
reduce the cost of tissue design and fabrication logistics
for patient-personalized tissues. In addition, processes
involved in 3DBP can be standardized to minimize the
expense of resources required for blueprint and construct
development, which in turn, could streamline clinical processes
in order to faster produce 3DBP tissues for patients who
need them.
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AUTOMATIC EXTRACTION OF EXISTING
KNOWLEDGE AND PATTERN DISCOVERY
FOR GENERATING A BLUEPRINT

Information Retrieval (IR)
Most of the existing methods of IR have been developed
by focusing on a specific modality, rather than a wholistic
multi-modal method. Examples include analysis of image
data with computer vision techniques (Litjens et al., 2017;
Brent and Boucheron, 2018; Carin and Pencina, 2018). IR
in biomedical applications will be beneficial for perception
problems (i.e., observing images) along with reasoning, under
a common platform like human intelligence (Hassabis et al.,
2017). Recently, robust and powerful deep learning (DL)
models have emerged, offering novel neural models for complex
problems, including machine reasoning tasks such as entailment
and abstractive summarization (Miller et al., 2016; Devlin
et al., 2018), which deal with multi-modality of images
altogether. What we expect is various emerging integrative
strategies to combine information at different length scales and
dimensionality to produce tissue constructs suitable for 3DBP
(Del Sol et al., 2017).

Imaging Data Retrieval and Analysis
One can easily detect characteristics of tissue under investigation
and additionally discover hidden features with image analysis,
often via machine learning (ML). Although collecting existing
image data is the first step, currently existing IR systems are
less effective for customized functionalities for tissue image
data. Instead, online image data are collected manually or using
relatively simple text-based engines. Examples are Yale Image
Finder (Xu et al., 2008), Cell Image Library (Orloff et al., 2013),
OpenMicroscopy Environment (Goldberg et al., 2005), andAllen
Cell Explorer (Johnson et al., 2017) to name a few, which are
resources to be utilized by TE researchers.

Without constructing such a database or retrieval service,
one can directly extract information from image data taken
with native tissue samples. Microscopy is one of the most
popular methods for TE (Dhulekar et al., 2016; Buggenthin
et al., 2017; Liang et al., 2017; Brent and Boucheron, 2018;
Christiansen et al., 2018; Nitta et al., 2018; Rivenson et al., 2019;
Vu et al., 2019), and visual images are also demonstrated to
be useful (Gholami et al., 2018). Non-linear imaging methods
are also actively developed, including multiphoton (Kistenev
et al., 2019) and second harmonic generation (SHG) microscopy,
allowing for the visualization of tissue structure and permitting
imaging of samples without labeling (Hanson et al., 2013). X-
ray microCT, utilized for additive manufacturing (Du Plessis
et al., 2018), was demonstrated to be a viable technique for
3D histology (Katsamenis et al., 2019). Magnetic resonance
imaging (MRI) is one of the most popular methods used for
TE (Jackson et al., 2017). FTIR and Raman microspectroscopy
are underexplored techniques in TE, presumably due to their
low-resolution nature, but the resulting molecular vibrational
or rotational modes can be used as a biochemical fingerprint
to characterize tissues (Chen et al., 2012; LeCun et al., 2015;
Schmidhuber, 2015; Albro et al., 2018; Gupta et al., 2019; Li et al.,

2019; Marzi et al., 2019). Mass spectrometry is used for spatial
localization of collagen and elastin in tissue samples (Angel et al.,
2018).

Acquisition of imaging and spectral data needs additional
steps to instruct 3DBP processes. This implies a significant gap
in between data retrieval and generation of tissue blueprints.
For examples, imaging structural information of tissue (i.e.,
extracellular matrix proteins), detailed biochemical information
(i.e., via fluorescence microscopy and SHG), tissue anatomy
and overall architecture (i.e., using microCT and MRI) need
to be combined systematically to generate a collective template
for 3DBP. Multi-modality imaging is a way to obtain tissue
information, but often requires specific computer programs as
well as dedicated imaging techniques (Meng et al., 2017; Guo
et al., 2018; Stamatelos et al., 2019). If the abovementioned
steps can be streamlined to extract only necessary information

for a specific modality of 3DBP (a type of 3D bio-printer), we
can reduce efforts and resources. Technological and economical

limitations may require a departure from biomimicry in the
process of enhancing tissue function, tissue scale or printing

throughput (Murphy et al., 2019). It is possible that an MI/ML-

based training or model can reduce the gap significantly. The
outcome of such MI/ML-based model will include information
on biomaterials, their coordinates and overall shape with
optimized structural properties. In addition, further information
needs to be augmented to reduce the gap between information of
tissue microenvironments and the tissue properties at the scale
that the 3DBP modality can fabricate. For example, cell adhesion
via integrin cannot be specifically fabricated via an extrusion-
based 3DBP, but we can to add ECM proteins to mimic cell-
matrix interactions. After such a model is established, MI/ML
can solve these problems faster without introducing any bias or
human errors and further optimize parameters from blueprint to
final 3DBP product.

Pattern Discovery and Translation to a
Blueprint for 3DBP
The next step is to unravel hidden or complex patterns
from collected information. DL, after being rebranded with
breakthroughs for training of deep neural network models,
has been incredibly successful for a wide range of pattern
discovery uses, which is the main realm of ML (LeCun et al.,
2015; Schmidhuber, 2015). Recently, a great number of ML
tools have been developed, allowing efficient data mining and
predictive models. DL outperforms other methods for image-
related problems (Litjens et al., 2017) because of its inherent
architecture and learning mechanisms, which are effective for
complex, high-dimensional data and computational scalability
in analysis.

Pattern discovery can be grouped into (i) MLmethods directly
targeting imaging data (Brent and Boucheron, 2018; Casiraghi
et al., 2018; Gupta et al., 2019; Kistenev et al., 2019; Li et al., 2019;
Rivenson et al., 2019; Vu et al., 2019), (ii) ML-based predictive
modeling for TE scaffolds (Buggenthin et al., 2017; Tanaka et al.,
2017; Chaudhury et al., 2018; Nitta et al., 2018; Marzi et al., 2019;
Waisman et al., 2019), and (iii) a broad range of bioinformatics

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 3 January 2020 | Volume 7 | Article 443

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Kim et al. Generating a Blueprint With Machine Intelligence

such as network analysis (Camacho et al., 2018). Specifically,
several studies are (i) predicting tissue properties with DL from
images or experimental observations (Liang et al., 2017; Brent
and Boucheron, 2018; Kusumoto et al., 2018; Berisha et al.,
2019; Gupta et al., 2019; Kistenev et al., 2019; Lutnick et al.,
2019; Rivenson et al., 2019; Vu et al., 2019; Xie et al., 2019),
(ii) classifying tissue type, state, and material properties with
various MLmethods (Casiraghi et al., 2018; Hailstone et al., 2018;
Li et al., 2019), (iii) integrating multiple imaging platforms and
experiments (Heredia-Juesas et al., 2018), (iv) modeling tissues
for pattern discovery and predictive modeling (Bilgin et al.,
2010; Yener, 2016; Kusumoto et al., 2018), and (v) extracting
information from images for TE (Gholami et al., 2018).

Finally, MI algorithms, including methods leveraging ML,
were recently applied to optimizing parameters for 3D printing
(Gardner et al., 2019; Menon et al., 2019). Considering the
complexity of these additive manufacturing techniques and their
potential application to tissue fabrication, it is not surprising to
find various methods ranging from biologically inspired ones
such as genetic algorithms (GA, which mimic the process of
natural selection, de Castro, 2007; Paszkowicz, 2009) to statistical
and probabilistic algorithms. They could be grouped as (i)
optimal design methods with DOE and its variants such as
Taguchi method (Mohamed et al., 2016; Scaffaro et al., 2017;
Yousefi et al., 2019), (ii) optimization with population-based
methods (Rahmani-Monfared et al., 2013; Asadi-Eydivand et al.,
2016; Rao and Rai, 2016; Heljak et al., 2017; Abdollahi et al.,
2018), and (iii) problem specific approaches often facilitated
by ML (Cheheltani et al., 2012; Farzadi et al., 2015; Tiwari
et al., 2015; Langelaar, 2016; Querido et al., 2017; Saadlaoui
et al., 2017; Gholami et al., 2018; Shi et al., 2018, 2019; Menon
et al., 2019; Zhang et al., 2019; Zohdi, 2019). Despite the
abovementioned progress, there is still a significant gap in
combining data-to-blueprint translation (Figure 1), which is the
process of extracting information from data and incorporating
the information in a blueprint file [e.g., CAD (computer-aided
design) files] for 3DBP.

OPTIMIZATION OF COMPLEX 3DBP

Challenges in Optimizing 3DBP Parameters
In order to produce a 3DBP construct for translational and
clinical applications, we need to consider how the generated
blueprint from IR is fabricated without compromising fidelity
and functionality in TE applications. Assessing the print fidelity
and biomimicry of a construct for every possible print parameter
combination would be impractical to explore due to time and
availability of resources. Systematic optimization methods can
aid in the investigation of vast and complicated parameter spaces,
and we found a small number of cases that apply systematic
optimization to 3DBP procedures (summarized in Table 1 and
Tables S1–S3).

Efforts to Increase Print Fidelity in 3DBP
The optimization of print fidelity refers to finding the ideal
combination of printing parameters and their corresponding
values that promote accurate reflections of blueprints.

Some systematic approaches have been attempted without
incorporating the utility of MI. One method, termed the multi-
objective optimization (MOO) method, used a hybrid multiple
subgradient descent bundle (MSGDB) method in conjunction
with an Adam algorithm to reduce satellite droplet formation
and increase printing precision and stability in piezoelectric
drop-on-demand bioprinting (Shi et al., 2019). MSGDB is a
gradient-based method for which a candidate descent direction
is chosen by combining descent directions calculated with
each objective in the case of MOO. The Adam algorithm
(Kingma and Ba, 2014) is a recently introduced gradient-based
method for stochastic optimization, which is based on adaptive
estimation of the first and the second moment of the gradient
and widely popular in applications including DL with better
performance, stability, and comparable computational cost. The
Adam algorithm computes individual adaptive learning rates
for parameters and estimates the first and second moment of
gradients to optimize weights matrices. Parameters for satellite
droplet formation (applied voltage, viscosity of bioink, surface
tension, nozzle radius) were processed through a fully connected
neural network to reduce the occurrence of satellite droplets and
optimize precision, stability, and droplet formation.

A method termed Expert-Guided Optimization (EGO) for
3DBP employs a hill-climbing algorithm to optimize print fidelity
through the exploration of print parameters (Abdollahi et al.,
2018). Response variables, such as stringiness, infill, and layer
fusion, are graded to determine the print accuracy of the 3DBP
prints. The EGO method requires the experimenter to identify
the parameter space and select the parameters and factor levels
that will be considered during the optimization process. Next,
random combinations of the selected parameters are tested and
evaluated. The best run is then identified, and new combinations
of parameters are generated that are similar to the best run
but with slightly different parameter values. Then the process is
repeated with the new best run, until a combination with optimal
stringiness, infill, and layer fusion is identified (termed hill-
climbing). After each hill-climbing iteration, the experimenter
can decide whether to adjust the considered parameters and/or
whether to try different parameter factor levels. While this
optimization method is structured and efficient, it poses a risk of
local rather than global parameter optimization. Building off of
the foundation created in the EGO study, another investigation
employed a hierarchical ML (HML) approach with freeform
reversible embedding (FRE) to 3D print silicone elastomer into
a hollow cylinder tube (Menon et al., 2019). Similar to the
EGO method, the HML method aimed to find the combination
of parameters that would produce a 3DBP construct with
optimal stringiness, infill, and layer fusion. Surprisingly, theHML
approach identified a unique silicone elastomer formulation and
printing parameters (bath concentration, ink viscosity, layer
height, flow rate, and retraction distance) that had not been found
from the EGO method (Abdollahi et al., 2018). Additionally, one
significant benefit of HML is the ability to optimize parameters
given very small data sets.

ML was also utilized in another recent study in which a set
of parameters were tested to optimize print quality and speed
via detection, prediction and smoothing modules to optimize
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TABLE 1 | Summary# of 3DBP optimization in improving print fidelity, biomimicry, and integrated approaches.

Optimization objective Type of printing Optimization method References

Print fidelity Piezoelectric drop-on-demand (DOD)

bioprinting

Multi-objective optimization (MOO)

method

Shi et al., 2019

Extrusion-based bioprinting Expert-guided optimization (EGO)

method

Abdollahi et al., 2018

Extrusion-based bioprinting Hierarchical machine learning (HML) Menon et al., 2019

Fused filament fabrication 3D printing Machine learning technique Gardner et al., 2019

Biomimicry Extrusion-based bioprinting $Bioink formulations Dubbin et al., 2017; Abdollahi et al., 2018;

Darnell et al., 2018; Peak et al., 2019;

Takebe and Wells, 2019

Extrusion-based bioprinting $Porosity and flow conditions Trachtenberg et al., 2018

3D Bioplotting $Porosity, pore size and

interconnectivity

Diaz-Gomez et al., 2019

Fused deposition modeling (FDM) Finite element analysis (FEA) with

genetic algorithm (GA)

Heljak et al., 2017

Integrated Extrusion-based bioprinting Parameter optimization index (POI) Webb and Doyle, 2017; Giuseppe et al.,

2018

3D Bioplotting I-optimal, split-plot DOE, and

COMSOL-based FEA

Uth et al., 2017

Additive manufacturing and thermally

induced phase separation (TIPS)

I-optimal DOE and the response

surface analysis

Yousefi et al., 2019

#Further details with print parameters and response variables are provided in Tables S1–S3.
$Features not strictly pertaining to optimization methods.

local geometry of fused filament fabrication without expert
intervention (Gardner et al., 2019). Each module was connected
via initial training and continued learning to optimize the print
time and quality. In addition to optimizing local parameters,
hardware responses were accounted for to improve the quality
of the final product. This work outlined an E2E (end-to-end) tool
for integrating ML into the 3D printing process to correct visual
flaws, which was augmented to training data.

The approaches discussed in this section all strive to promote
print fidelity, a necessary 3DBP characteristic that defines a
construct’s ability to accurately reflect its blueprint.

Efforts to Enhance Biomimicry in 3DBP
The optimization of biomimicry aims to find the biomimetic
combination of print parameter values that best promote the
construct’s biological, mechanical, and rheological likeness to
the native tissue. Currently, few bioinks have been capable of
matching these necessary properties required for production of
targeted tissue by 3DBP (Gungor-Ozkerim et al., 2018). However,
there have been gradual and persistent efforts in improving
bioinks and gaining critical information to promote biomimicry:
(i) formulating a new bioink including therapeutic proteins to
direct rapid migration of endothelial cells in a 3DBP object
(Peak et al., 2019), (ii) emphasizing the need for coordinated
spatial, biological and synthetic environmental cues to direct
development of cells for tissue growth (Takebe and Wells,
2019), (iii) defining the transcriptional responses associated
with stiffness, stress relaxation, and ligand density for stem cell
differentiation and proliferation (Darnell et al., 2018), (iv) aiming

to find the ideal biomimetic bioink by evaluating 3DBP structures
made from different bioinks based on cell sedimentation, cell
viability during extrusion, and cell viability after ink curing
(Dubbin et al., 2017), and (v) combining multi-material bioinks
to determine the optimal blend that can improve cell viability and
spatial distribution via the crosslinking abilities of three different
biopolymers (alginate, gelatin, and Matrigel) (Berg et al., 2018).

Another attempt to promote biomimicry showed that porosity
and flow conditions were modulated to simulate shear gradients
within solid tumors (Trachtenberg et al., 2018). The authors
investigated the combination of scaffolds composed of pore size
gradient with flow perfusion bioreactors to achieve complex,
intrascaffold shear stress environments that can elicit a gradient
phenotypic response in tumor cells. Scaffold porosity affected
cell growth under flow conditions in that cells in the top layer
experienced the highest level of shear stress, and the pressure
drop within lower layers likely caused a decline in shear stress.
In a similar case, optimization of pore size, porosity, and
interconnectivity as a function of structural permeability and
mechanics as well as material composition has been exemplified
in bone tissue engineering (Diaz-Gomez et al., 2019). Layer-
independent structures were created with high interconnectivity,
thus without introducing weak points in the welding between
segments. With printing resolution around 100–150µm range,
polycaprolactone-hyaluronic acid composite structures reached
a compressive modulus around 126.2 ± 7.6 MPa attainable from
human trabecular bone (50–150 MPa).

To produce bone scaffolds with desirable rates of degradation,
finite element analysis (FEA) with GA was utilized to identify
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the diameter and spacing of PLGA [poly(lactic-co-glycolic acid)]
scaffold that best promotes the required scaffold degradation
profile (Heljak et al., 2017). The initial set of scaffold structures
was generated randomly, and then each generated structure was
evaluated using FEA. Based on the values of the fitness function,
the probability of an individual being selected for the next GA
iteration was calculated. The more fit an individual, the higher
the probability of selection. Those individuals selected were
subjected to genetic operators such as cross-over and mutation
with a given probability. The cross-over and mutation operations
resulted in a new set of scaffold structures to be evaluated in the
following iteration. The GAwas stopped after the max number of
iterations was achieved. The overarching goal of the project was
to design scaffolds that display the required stiffness at each stage
of degradation. Thus, by combining FEA and GA, the authors
were able to select the scaffold diameter and spacing that would
achieve desired kinetics of polymer degradation.

The research discussed in this section highlights efforts toward
promoting biomimicry, a critical consideration in 3DBP that
defines a construct’s ability to reflect the biological, mechanical,
and rheological characteristics of its target tissue.

Integrated Approaches to Optimization of
Print Fidelity and Biomimicry in 3DBP
Integrated approaches that incorporate both print fidelity and
biomimicry are necessary because if a construct has high print
fidelity but is not able to serve its biological function, then it is
useless in a clinical TE setting. Similarly, if a construct functions
well from a biological standpoint but does notmatch the intended
blueprint, then the construct might not physically fit into the
space where it is needed and hence, would also not be useful in a
clinical setting.

One study investigated a simple optimization method for
3DBP that considered one element of print fidelity and one
element of biomimicry with a parameter optimization index
(POI), which relied on the minimization of line thickness and
shear stress to optimize the final construct (Webb and Doyle,
2017). Considering the following print parameters—print speed,
nozzle diameter, and pressure—each of the 72 combinations of
print parameters was assessed on line thickness and theoretical
shear stress and given a POI value. The POI values were
presumed to correspond with the ability of each combination
to maximize print fidelity without sacrificing cell viability. A
later study expanded the use of a POI to optimize fidelity
and biomimicry via strand thickness, percent print accuracy,
compressive modulus, and percent cell viability (Giuseppe et al.,
2018).

To enhance functionality of bone tissue scaffolds, one research
group attempted to optimize the scaffold topology and material
properties with two different engineering strategies (Uth et al.,
2017). The authors found the optimal component of nano-
hydroxyapatite (nHA) content (30%) in the PLGA/collagen
type I scaffold and the optimal strand diameter of 460µm
with both I-optimal, split-plot DOE (to minimize the average
prediction variance over the design space) and COMSOL-based
FEA. However, the two different optimization strategies showed

disagreement in strand spacing of 908µm with DOE and of
601µm with FEA. The two optimization strategies resulted
in similar scaffold porosity, but the prediction of compressive
modulus was substantially poor (51% DOE and 21% FEA)
partly due to the lack of accounting microtopology on the
surface of scaffolds in the optimization strategies. The same I-
optimal design was employed to fabricate 3D bio-printed bone
scaffolds made of PLGA/nHA composites with compressive
moduli exceeding 5 MPa and >85% porosity (Yousefi et al.,
2019). This approach resulted in generating scaffolds with a
porosity of 89% and a compressive modulus of 5.1 MPa with 10%
(w/v) PLGA and 10% (w/v) nHA.

The studies discussed in this section begin to consider both
print fidelity and biomimicry regarding parameter optimization;
this research lays a foundation to continue to strive toward MI-
based systematic approaches for creating patient-specific 3DBP
tissue constructs.

CONCLUSIONS AND OUTLOOK

As MI-based approaches emerge, a few cases utilized ML
approaches to accelerate the rate of production in 3D printing
with fewer errors, artifacts and bias. The majority of printed
features are based on simplified or artificial patterns that are less
relevant to tissue or organ architectures. A blueprint was created
from tissues to fabricate engineered cardiac muscle (Gao et al.,
2017) and the specific geometry of the heart was obtained with
medical imagingmodalities to construct life-size organs via 3DBP
(Lee et al., 2019).

While the limitations ofML are easily found inmany potential
applications of 3DBP and TE, the field of ML has a rich history
for solutions to tackle such limitations. For example, uncertainty
analysis has been an active area with Bayesian learning. To
improve the interpretability of a learned model, a number of
cases for the model and variable selection are found in literature
(Hastie et al., 2013). Despite significant challenges associated
with such fundamental issues, we strongly believe that recent
advances particularly in the domain of DL (such as incorporating
sophisticated statistical models and other orthogonal approaches,
namely Reinforcement Learning) could shed light on finding
novel practical solutions. Again, it is the authors’ anticipation that
ultimately the systematic framework for a TE blueprint needs to
include such capabilities.

It is our intention to emphasize the term of MI to be used for
the future direction to overcome many existing problems with
“the conventional ML,” including the uncertainty quantification,
induction bias, and machine reasoning. Elaborating this
perspective with an unbiased manner is beyond the scope of
the manuscript prepared for a mini review. Nevertheless, the
domain of ML is evolving fast, primarily motivated to deal with
the new challenges of Big Data problems and high-throughput
experiments. Thanks to recent advances in DL and other
associated ML methods, many limitations, previously considered
as roadblocks, are effectively or practically resolved.

MI processes are no longer regarded as a black-box model, but
rather processes that can be explained with expected behaviors
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(Gilpin et al., 2018). Thus, each process depicted in Figure 1

can be understood better as MI matures over time. The more
challenging task is to integrate both approaches—generating a
regenerative blueprint and optimizing printing parameters—in
an E2E 3DBP process without (significant) human intervention.
Such progress potentiates the development of customized and
life-size tissue or organ replacement in the near future via MI-
guided 3DBP.
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