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A gene genealogy describes relationships among haplotypes sampled from a population.
Knowledge of the gene genealogy for a set of haplotypes is useful for estimation
of population genetic parameters and it also has potential application in finding
disease-predisposing genetic variants. As the true gene genealogy is unknown, Markov
chain Monte Carlo (MCMC) approaches have been used to sample genealogies conditional
on data at multiple genetic markers. We previously implemented an MCMC algorithm to
sample from an approximation to the distribution of the gene genealogy conditional on
haplotype data. Our approach samples ancestral trees, recombination and mutation rates
at a genomic focal point. In this work, we describe how our sampler can be used to
find disease-predisposing genetic variants in samples of cases and controls. We use a
tree-based association statistic that quantifies the degree to which case haplotypes are
more closely related to each other around the focal point than control haplotypes, without
relying on a disease model. As the ancestral tree is a latent variable, so is the tree-based
association statistic. We show how the sampler can be used to estimate the posterior
distribution of the latent test statistic and corresponding latent p-values, which together
comprise a fuzzy p-value. We illustrate the approach on a publicly-available dataset from
a study of Crohn’s disease that consists of genotypes at multiple SNP markers in a small
genomic region. We estimate the posterior distribution of the tree-based association
statistic and the recombination rate at multiple focal points in the region. Reassuringly, the
posterior mean recombination rates estimated at the different focal points are consistent
with previously published estimates. The tree-based association approach finds multiple
sub-regions where the case haplotypes are more genetically related than the control
haplotypes, and that there may be one or multiple disease-predisposing loci.

Keywords: coalescent model, gene genealogy, Markov chain Monte Carlo, fuzzy p-value, association study, Crohn’s

disease

1. INTRODUCTION
The gene genealogy describes the relationships among haplotypes
sampled from a population. For a genomic region undergoing
recombination, different locations within that region have differ-
ent ancestral origins and therefore different ancestries. The gene
genealogy for these recombining regions may be represented as a
graph, called the ancestral recombination graph (ARG). However,
at each site in the region, the ancestral history of that genomic
position can be represented as a tree; this marginal tree can be
extracted from the full ARG.

The concept of the gene genealogy has been useful in the
estimation of population genetic parameters. It is worth noting,
however, that the concept also has potential application in find-
ing disease-predisposing genetic variants. Since haplotypes from
case individuals are genetically more closely related to each other
at the site of a disease-predisposing mutation, their haplotypes
would appear to cluster together in the marginal ancestral tree

at the site of the mutation. The ancestry also offers a useful data
reduction strategy. Cluster membership defined by the ancestral
tree summarizes the genotypic similarity across multiple markers
and association of disease with cluster membership can be tested,
rather than association with each of the marker loci individually.

There has been much interest in incorporating the ancestral
history of a sample of sequences into association study method-
ology. However, the time scale for the gene genealogy is on the
order of tens of thousands of years, and there is therefore no
way to know the true underlying gene genealogy for a random
sample of sequences. Ancestry-based association methods must
handle this uncertainty appropriately. The genetic marker data
reflects the underlying but unknown genealogy and therefore
it can be used to estimate the distribution of the gene geneal-
ogy. Many approaches have used phylogenetic methods to first
impute a single marginal tree for a region based on the observed
marker data and then used the imputed tree to define clusters or
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clades (for example, Templeton et al., 1987; Durrant et al., 2004;
Bardel et al., 2005; Mailund et al., 2006; Kimmel et al., 2008).
Other approaches have used statistical clustering techniques to
cluster the haplotypes (Waldron et al., 2006; Igo et al., 2009;
Jin et al., 2010) or to sample multiple likely clusterings (Molitor
et al., 2003). With any of these approaches, cluster membership
is then tested for association with the phenotype. Minichiello and
Durbin (2006) and Adhikari et al. (2012) proposed heuristic rule-
based algorithms to sample from an approximation to the ARG
across a region. Each sampled graph is then tested for association
and the resulting statistic is averaged over the sample. There are
two reasons why these approaches are not optimal. First, many of
these approaches use a single imputed tree and treat the tree as if it
were known; therefore, tree uncertainty is not addressed. Second,
even for those approaches that sample multiple trees or approx-
imations to the ARGs, the models used to sample the trees and
graphs are not informed by population genetic models like the
coalescent (Kingman, 1982; Hudson, 1990), which gives a prior
distribution for the shape and branch lengths of gene genealogies.

In order to handle tree uncertainty, we previously imple-
mented an algorithm, called sampletrees, that treats the
marginal tree at a genomic position as a latent variable and uses
Markov chain Monte Carlo (MCMC) to sample realizations of the
tree, recombination and mutation rates conditional on haplotype
data at multiple markers (Burkett et al., 2013a). Provided that the
underlying model for the ancestry is applicable, any tree-based
association statistic can then be computed on the sampled trees
in order to estimate the posterior distribution of the association
statistic conditional on the data.

In this work, we present a proof-of-concept demonstration
of the usefulness of genealogic trees in fine-mapping of com-
plex traits. We apply a tree-based association method that relies
on ancestral trees sampled with sampletrees. We first briefly
review the sampletreesmodel and the MCMC algorithm. We
then introduce a tree-based association statistic that measures the
degree to which case haplotypes are more closely related than con-
trol haplotypes, without relying on a disease penetrance model.
Since the genealogical tree is a latent variable, so is the tree-based
association statistic. We subsequently show how the strength of
the association signal and the uncertainty associated with the
latent variable can be expressed by the fuzzy p-value (Thompson
and Geyer, 2007), which is the distribution of latent p-values cor-
responding to the latent tree-based association statistic evaluated
at each of the sampled trees.

We illustrate this analytic approach using the publicly-
available “crohn” dataset, which was analyzed by Rioux et al.
(2001), and is available in the R gap package (Zhao, 2013). The
data consist of genotypes at multiple SNP markers in a 500 kb
region on chromosome 5 for a sample of trios comprising a child
affected with Crohn’s disease and his or her two parents. Rioux
et al. (2001) found significant associations at 11 loci spanning
200 kb and including multiple genes; the risk alleles at the 11 loci
have been collectively labeled the IBD5 risk haplotype. Since the
original publication, association of Crohn’s disease with the IBD5
risk haplotype has been replicated in multiple studies (see Cooney
and Jewell; 2009 and Barrett and Chandra, 2011 for reviews).
However, because of the strong linkage disequilibrium (LD) in

the region, the SNPs in IBD5 give essentially equivalent associ-
ation information (Waller et al., 2006) and the location of the
true disease-predisposing variant(s) remains unknown. Using our
methods, we estimate the posterior distribution of the tree-based
association statistic and recombination rates at 100 different focal
points in the 500 kb region. For each focal point, we compute
the fuzzy p-value of the association statistic and use the median
of the latent p-value distribution as a measure of the strength of
association.

2. MATERIALS AND METHODS
2.1. THE SAMPLETREES ALGORITHM
We previously implemented an MCMC algorithm to sample
ancestral trees and population genetic parameters conditional
on multi-marker data. It is based on the sampler that was out-
lined in Zöllner and Pritchard (2005), with some changes that
are described in detail in Burkett et al. (2013a). Our sampler,
implemented in the C++ program sampletrees, is available at
http://stat.sfu.ca/statgen/research/sampletrees.html. An R pack-
age for sampletrees is currently under development. In this
section, we give a brief description of the sampler.

Letting a “focal point" be a genomic position of interest, recall
that at each site or focal point in a genomic region, the ancestral
history of the site is described by a marginal ancestral tree that can
be extracted from the ARG of that region. The approach used in
Zöllner and Pritchard (2005), as well as in our implementation, is
to sample ancestral trees at a focal point, rather than sample ARGs
that capture the full ancestral history of the region. Hence, to con-
struct ancestral histories across a larger region, trees are sampled
from their marginal (as opposed to joint) posterior distributions.

The MCMC algorithm samples Tx, the tree structure and
internal node times, at focal point x conditional on genetic
marker data G from the posterior distribution f (Tx|G). In order
to model f (Tx|G), the distribution of the tree conditional on the
marker data, additional latent variables corresponding to the hap-
lotypes at the internal nodes of the tree, recombination break
points, and mutation and recombination rates are added to the
model. The recombination event rate, ρ/2, is the rate of recom-
bination per unit of coalescence time, per pair of adjacent base
pairs. The mutation event rate, θ/2, is the rate of mutation of
an ascertained SNP, per unit of coalescence time. The posterior
distribution can then be written in terms of standard popula-
tion genetic models of sequence mutation, recombination and the
coalescent process.

Letting A represent the augmented data including the addi-
tional latent variables, and Qi(Ã|A) be the ith proposal distribu-
tion, at the jth iteration of the MCMC algorithm, Ã is accepted
as the jth sample with probability determined by the Metropolis-
Hastings ratio

α = f (Ã|G)Qi(A(j − 1)|Ã)

f (A(j − 1)|G)Qi(Ã|A(j − 1))
.

Each proposal distribution proposes new values for a subset of
the augmented data A. The five proposal distributions modify:
(1) the mutation rate, (2) the recombination rate, (3) the data at
an internal node of the tree, and (4) and (5) modify the topology
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of the tree. At each step of the MCMC algorithm, one of the five
proposal types is applied. The proposal distribution to apply at a
given step is randomly sampled according to a set of user-supplied
probabilities.

For the specified number of MCMC samples (N),
sampletrees returns the tree (topology and node times), the
mutation and recombination rates. Due to the large tree and
haplotype file sizes, we recommend thinning the Markov chain
by returning trees at periodic intervals. In addition, sampling
ancestral trees is computationally intensive and, as with all
MCMC algorithms, convergence issues and slow mixing are a
possibility; it is therefore important to use MCMC convergence
diagnostic techniques to evaluate results. Additional details about
our sampler can be found in Burkett et al. (2013a,b).

2.2. TREE-BASED ASSOCIATION STATISTIC
On each of the sampled trees returned by the sampletrees
function, we can compute a tree-based association statistic sum-
marizing the degree to which haplotypes from individuals with
similar trait values are related. We are particularly interested in
statistics that are non-parametric; that is, statistics that do not
require specifying a disease model. With respect to the ances-
tral tree of the disease mutation, haplotypes from case individuals
would show evidence of being more closely related if they tend to
preferentially coalesce or cluster with each other rather than with
haplotypes from controls. We therefore use the tree to define clus-
terings of the tips. Since many different clusterings can be induced
by a single tree, we focus on bipartition clusterings, as illustrated
in Figure 1. Each internal branch of the tree induces a partition
of the data into two groups: tips that descend from a given branch
form one group and tips that do not descend from the branch
form the second group.

FIGURE 1 | Illustration of bipartition clustering. The tree is cut at an
internal branch of the tree (orange line). The tips of the tree descending
from that branch form one group (orange box) and the tips of the tree that
do not descend from that branch form the second group (two blue boxes).

If a hypothetical disease-predisposing mutation occurred on
one branch, descendants of that branch will all carry the muta-
tion and will also be more likely to be from case individuals. The
cases should appear to cluster together in the group defined by the
branch where the disease mutation occurred. Therefore, to deter-
mine if haplotypes from cases tend to cluster in an ancestral tree,
we measure association between cluster membership and disease
status for all eligible bipartitions of the tree using the absolute
value of the Pearson correlation coefficient. We chose to define a
bipartition as eligible if it leads to a cluster containing at least 5%
of the total number of haplotypes sampled. This choice of mini-
mum cluster size is arbitrary, but it avoids the need to compute
the association on clusters that are too small to be interesting.
The ancestry association statistic for the ith tree, Ti, is the max-
imum, across all eligible clusterings, of the absolute correlation
between disease status and cluster membership. This statistic is
similar to the association statistic described in Minichiello and
Durbin (2006); however, they do not use a lower bound on the
number of tips in a cluster.

2.3. FUZZY p-VALUE
The fuzzy p-value (Thompson and Geyer, 2007) can be used as
a measure of the strength of association when the test statistic of
interest, T, is a function of a latent variable. For a tree-based test
statistic capturing an increased clustering of the case haplotypes,
the posterior distribution of that statistic will differ from the prior
distribution. Here, the posterior distribution of a latent variable
refers to the distribution conditional on the marker data, whereas
the prior distribution refers to the distribution unconditional on
the marker data. To measure the discrepancy between the pos-
terior and prior distributions, we use the posterior distribution
of latent p-values, which is called the fuzzy p-value. The fuzzy p-
value expresses both the strength of evidence and the uncertainty
associated with the latent variables.

For a realization of the tree statistic, Tc
j , sampled from the

posterior distribution, the latent p-value measures how compat-
ible this statistic is with the prior distribution. We take Tc

j to
be the maximum across bipartitions of the correlation between
cluster membership and case status. In the context of latent gene
genealogies of genomic focal points, we can assume the neutral
coalescent model (Kingman, 1982; Hudson, 1990) as the prior
distribution for the ancestral tree unconditional on the data. To
estimate the prior distribution of the test statistic, M trees are
sampled from the neutral coalescent model and the tree-based
association statistic, the maximum correlation statistic, is com-
puted on each tree, leading to the unconditional sample Tu =
(Tu

1 ,Tu
2 , . . . Tu

M). For Tc
j , the jth maximum correlation statistic

sampled from the posterior distribution using sampletrees,
the latent p-value is

pj =
∑i = M

i = 1 1[Tu
i ≥ Tc

j ]
M

.

The latent p-value is computed for all trees sampled from the pos-
terior distribution, leading to a distribution of latent p-values,
(p1, p2, . . . , pN). This distribution is called the fuzzy p-value.
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2.4. ANALYSIS OF CROHN’S DISEASE DATASET
We applied the tree-based association approach to a publicly-
available dataset composed of 258 trios consisting of a father,
mother and a child affected with Crohn’s disease, originally
analysed by Rioux et al. (2001). The genetic data consists of
genotypes at 103 SNP markers across 500 kb of the 5q31 region
of chromosome 5. The dataset is available either in the R gap
package (Zhao, 2013) or at the author’s website: http://www.

broadinstitute.org/archive/humgen/IBD5/haplodata.html.
Beagle (Browning and Browning, 2009) was first used to

impute haplotype phase and missing marker genotypes. We chose
Beagle for imputation and phasing because it could handle the
size of the dataset and the case-parent trios. The program was run
using default settings with the trios option and returned a single
estimate of the most likely haplotype that each parent passed to
his/her affected child (transmitted) and the haplotypes that were
not passed to the child (untransmitted). For this illustration, since
our statistic requires two disease groups, we define the transmit-
ted haplotypes as the cases and the untransmitted haplotypes as
the controls.

We sampled ancestral trees at 100 focal points spaced evenly
throughout the 500 kb region. For each focal point, a subset of
the 103 SNPs was chosen for the analysis: all SNPs within a win-
dow size of 100 kb around the focal point were included in the
dataset for that focal point. If fewer than 20 SNPs were available
in the window then the window-specific dataset was expanded to
include the closest 20 SNPs to the focal point, so that each dataset
had a minimum of 20 SNPs. If there was less than 100 kb between
the focal point and the lower or upper edge of the genotyped
region, the window size remained the same but the focal point
was not centered in each subset. Due to the sparsity and uneven
spacing of SNPs in the region, the majority of window-specific
datasets had to be expanded to include 20 SNPs.

Apart from the choice of focal point and dataset settings cor-
responding to the window, all run options and initial conditions
were set to be the same for each focal point. The prior distri-
bution for θ, the mutation rate, was chosen to be uniform on
(0.0001,10) and θ was initialized to 0.1. The prior distribution for
ρ, the recombination rate, was a gamma distribution with shape
parameter 1 and scale parameter 0.1. The initial ρ value was set
to 0.0004. The total MCMC chain length was 8 million with a
burn-in of 4 million iterations; these values were based on visu-
ally assessing convergence and mixing with traceplots of sampled
values and tree summary statistics such as the time to the most
recent common ancestor and the symmetric distance between
trees (Robinson and Foulds, 1981). Since the file sizes of sampled
trees can become large, only every 10,000th sample was saved.

Each focal point was run on a separate processor in a clus-
ter computing environment. The median time to complete one
million iterations on one focal point was 49 h but the maximum
time, over the 100 focal points, for these computations was 64 h.
Hence, the total time to complete all eight million iterations on
all focal points was on the order of three weeks. For each of the
returned trees, we used functions from the R phylogenetic pack-
age ape (Paradis et al., 2004) to compute tree-based statistics
and to sample ancestral trees from the coalescent prior distribu-
tion. We also computed more conventional single-locus (Fisher

Exact) and haplotype-based association statistics. Haplotype-
based TDT analyses were performed using the R TDTHAP pack-
age (Clayton and Jones, 1999) with window sizes of 10 SNPs,
20 SNPs and 100,000 bp (to match our tree-based approach).
For estimating the p-value within each window, we used 100,000
simulations.

3. RESULTS
3.1. ESTIMATION OF THE RECOMBINATION RATE, ρ
Sampletrees provides samples of the recombination and
mutation rates, ρ and θ, at each focal point. Although for the
anticipated applications of our sampler these parameters may not
be of primary interest, we would hope that the sampled values are
biologically plausible. Therefore, we compared our estimates of
the recombination rates in this region to those available in public
databases.

Recombination rate estimates computed by Peter Donnelly,
Gil McVean and Simon Myers using the coalescent approach in
McVean et al. (2004) are available with the Phase I HapMap
data (release 16a) (International HapMap Consortium, 2005).
These data were downloaded as part of the bulk data download
of chromosome five from http://hapmap.ncbi.nlm.nih.gov/. The
HapMap recombination rate was converted from cM/Mb to the
rate per pair of base pairs, per unit of coalescent time, by noting
that for the per generation rate 1 cM/Mb ≈ 10−8/bp and taking
an effective population size of 10,000 individuals. Although both
sets of data cover the same region, the SNP positions provided
with the Crohn’s dataset were relative to the SNP discovery region
and not the genomic positions. Therefore, the two sets of results
could not immediately be compared without first finding a map-
ping between the Crohn’s dataset and HapMap positions. The rs
numbers for the SNPs were not provided with the Crohn’s dataset.
To determine the SNP positions in HapMap, we conducted a lit-
erature search and found rs numbers for two of the SNPs. We
then used the UCSC Genome Browser (http://genome.ucsc.edu/)
to locate the genomic positions of these two SNPs relative to the
NCBI Build 34 human reference sequence. Although this refer-
ence sequence dates to 2003, the markers from HapMap Phase
1 (release 16a) are relative to this build. However, the distance
between the two SNPs was different between the provided posi-
tions and the genomic positions from UCSC. The order of the
SNPs was also reversed in the two sets of positions. Therefore, we
caution that the conversion between the two sets of positions may
not be completely accurate.

Figure 2 shows the estimated recombination rates across the
region. The dashed curve gives the recombination rates estimated
from the HapMap data. The solid curve connects the average of
the sampled ρ values from sampletrees at each focal point.
The sampletrees estimate for each focal point is based on
window sizes of varying numbers of markers and of variably-
spaced markers (spacing ranges from 38 to 133,517 kb); therefore,
the solid curve should be viewed as a smoothed version of the
HapMap estimates (the dashed curve) since our estimates are
based on fewer, less equally spaced SNPs than the HapMap esti-
mates. It is therefore not surprising that the peaks are lower and
the distribution smoother overall. The shifts in peak locations are
possibly due to the difficulties in aligning the HapMap positions
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FIGURE 2 | Plot of recombination rate values, ρ, estimated by

sampletrees and by HapMap. Solid curve: average of the sampled ρ

values from sampletrees for each focal point; Dashed curve: rescaled
recombination rates estimated from Phase I HapMap data (release 16a)
(International HapMap Consortium, 2005). The tickmarks at the bottom
show the marker locations.

with the Crohn’s dataset positions. Nevertheless, taking these fac-
tors (i.e., smoothing and shifts) into consideration, it is satisfying
to verify that the variation in recombination rate estimated by
our algorithm is consistent with the variation estimated by oth-
ers using different data and different algorithms. Although we see
two concordant peaks, we do not pick up the peak near 131.5.
However, in this dataset there were no markers genotyped in
this region, and so there may not be enough genotype informa-
tion to detect the increase in recombination rate indicated by the
HapMap estimates.

3.2. ASSOCIATION ANALYSIS
Figure 3A shows the single-locus association results for these
data. At each locus, Fisher’s exact test was used to deter-
mine whether there was an association between allelic state and
case/control status, where “cases” were the transmitted chro-
mosomes and “controls” the untransmitted chromosomes. This
figure also shows the locations of genes in the region. As expected
from the published results on this region, although there are a
few peaks, the signal in this region is not distinct and spans a
large region. Many SNPs pass the p = 0.05 threshold of signifi-
cance even if a Bonferroni correction is applied to account for the
103 SNPs tested.

With respect to the ancestral tree of a disease-mutation, we
expect cases to preferentially coalesce with each other rather than
with the controls, indicating that they are more closely related
at that focal point. The increased relatedness of the cases will be
reflected by a clustering of case haplotypes in the ancestral tree.
At each focal point, for the jth sampled tree, we computed Tj, the
maximum absolute correlation between disease status and cluster

FIGURE 3 | Plot of association results in the 5q31 region. (A) Single-SNP
analysis: plot shows − log10(p-value) from Fisher’s exact test of association
between allelic state and case/control status. The tickmarks at the base of
the plot show the locations of the SNPs. (B) Tree-based analysis: − log10 of
the median of the fuzzy p-value by focal point. In (B), the tiled horizontal line
segments under the association curve show the window spans for every
second focal point. In both panels, gene locations are indicated at the top of
each panel. The horizontal dotted line near y = 3.3 indicates a p-value of
0.05 after Bonferroni correction, and the horizontal dashed line near y = 1.3
is the uncorrected p-value threshold of 0.05. The Bonferroni correction for
(A) is based on 103 SNPs and for (B) it is based on 100 focal points. The
triangles in (B) correspond to the peaks of (A).

membership, as described in Section 2.2, and the corresponding
latent p-value, pj, as described in Section 2.3, with M = 35,000
samples from the coalescent prior distribution.

The − log10 of the median of the latent p-value distribution
is given for each focal point in Figure 3B. The signal from the
median of the latent p-values can be compared to the single-locus
results in Figure 3A. In Figure 3B, the peak correlation between
disease status and cluster membership, occurring near 131.9 Mbp,
is close to a peak of the single-locus results (as indicated by the tri-
angles). A second area of high signal from the cluster-based results
is between 131.6 and 131.7 Mbp; however, the peak in this region
corresponds to a p-value that is approximately 10-fold higher than
the peak near 131.9 Mbp. In contrast, in the single-locus results,
there are two additional peaks near 131.6 and 131.7 Mbp hav-
ing height only slightly below the overall peak near 131.9 Mbp.
These additional peaks of the single-locus results flank the lower,
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second peak of the cluster-based statistic. It is evident that the
cluster-based statistic yields a smoother association curve than the
single-locus results, with more distinct peaks. However, the tree-
based results are more than a smoothed version of the single-locus
results because they de-prioritize the two single-locus peaks near
131.6 and 131.7 Mbp. We return to this point in the Discussion.

Figure 4 shows the results from the TDTHAP analysis with a
window size of 20 SNPs, along with those from the tree-based and
single-locus analyses. The TDTHAP results differ from both the
single-SNP and tree-based results, though the peak location of the
TDTHAP results in the OCTN1/OCTN2 region is more compati-
ble with the single-SNP analyses. TDTHAP appears to be sensitive
to window size; the results with 10 SNPs were more erratic, while
with the 100,000 bp window size the peaks had all been smoothed
out (not shown).

Figure 5 summarizes the distribution of the latent p-values for
each focal point and can be used to evaluate the uncertainty asso-
ciated with the latent genealogy. The degree of uncertainty is not
the same at each focal point, as indicated by the width of the
inter-quartile range (IQR). In general, the width is larger when
there are fewer nearby SNPs, and hence less information in the
marker data about the latent tree (Thompson and Geyer, 2007).
The effect of marker density can be seen, for example, when com-
paring the widths near 131.9 to 132.0 Mbp. The width of the
interval is smaller at the peak of the cluster-based results but this
may be due to an inadequate number of samples from the coa-
lescent prior distribution for estimating the low p-values in this
region. In particular, since there were M = 35, 000 samples from
the prior distribution, any latent p-values of zero have been set to

1
35000 to enable plotting on the log scale.

In order to gain insight about whether the association signal
from the tree-based analysis of this region could be a false posi-
tive result, we repeated the analysis with a dataset consisting of a
permutation of the case-control labels versus the haplotype data.
Since the tree sampling step does not use phenotype information,

FIGURE 4 | Plot of − log10 of the p-values from the TDTHAP analysis

using a window size of 20 SNPs (blue solid line). The open circles and
the dashed line give the single-SNP and tree-based results, respectively,
that were also shown in Figure 3. Gene boundaries are marked by
horizontal line segments at the top of the plot.

we simply computed the correlation statistic between the previ-
ously sampled trees and the permuted phenotypes. The distribu-
tion of latent p-values from the permutation, at each focal point
(as described in Section 2.3), can be seen in Figure 6. For the
permuted phenotype, there is no evidence of association at any
location in this region; across all focal points, the 90th percentile
of − log10 of the fuzzy p-value is always less than the uncorrected
0.05 cutoff (the dashed horizontal line), and hence, as expected,
there is no evidence that case haplotypes are clustered together in
ancestral trees in the region.

4. DISCUSSION
In this work, we have described an ancestry-based approach to
association mapping that accounts for the uncertainty of the
ancestral tree at a given genomic location. With this approach,
multi-marker SNP data is used to sample ancestral trees from
their posterior distribution under the neutral coalescent. Each
sampled tree is used to define clusterings of the tips and the asso-
ciation is tested using the maximum correlation between cluster
membership and disease status. We showed how to compute
the fuzzy p-value with the neutral coalescent as the prior dis-
tribution in order to assess the evidence for association and the

FIGURE 5 | (A) Plot summarizing the distribution of the latent p-values by
focal point. The inter-quartile range (IQR) of the latent p-values at each focal
point is indicated by the solid vertical line. The filled in circle is the median
and the open circle is the 90th percentile of the distribution. The dashed
vertical line therefore indicates the range from the 75th to 90th percentile.
The dashed horizontal line indicates a p-value cutoff of 0.05 and the dotted
horizontal line shows a p-value cutoff of 0.0005 (0.05, Bonferroni-corrected
for 100 focal points). SNP locations are marked by tickmarks at the base of
the plot. (B) Heatmap of linkage disequilibrium (R2) between SNPs
estimated from control haplotypes and displayed by LDheatmap (Shin
et al., 2006). The relative positions of the SNPs are given by the horizontal
line above the heatmap and the positions are aligned with (A).
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FIGURE 6 | Plot summarizing the distribution of the latent p-values by

focal point for the permuted case-control labels on haplotypes. The
interquartile range (IQR) at each focal point is indicated by the solid vertical
line, the filled in circle is the median, and the open circles represent the
10th and 90th percentiles of the distribution of − log10 of the latent
p-values. The dashed horizontal line indicates a p-value cutoff of 0.05 and
the dotted horizontal line shows a p-value cutoff of 0.0005 (Bonferroni
corrected for 100 focal points). For all focal points, the 90th percentile of the
distribution of − log10 of the latent p-values is below the 0.05 cutoff.

uncertainty due to the latent ancestral tree. We emphasize that
due to the computational needs of this approach, the ancestry-
based approach would be proposed for fine-mapping and would
therefore be applied to a gene-region that has already been iden-
tified through, for example, a linkage study or a GWAS. This
approach requires that genotype data be available for multiple
linked markers in the identified region, as it is the pattern of allelic
association between the markers that provides information about
the underlying ancestral tree.

We illustrated the approach using the publicly-available 5q31
dataset of case-parent trios with Crohn’s disease. We first
imputed haplotype phase using the family information to esti-
mate the transmitted and untransmitted haplotypes from parents
to affected offspring. We then sampled ancestral trees and recom-
bination rates at 100 focal points across the 500 kb region to
compare transmitted and untransmitted haplotypes. Mixing and
convergence were assessed with traceplots of sampled values and
tree summaries (results not shown).

We compared our estimates of the recombination rates in this
region to those estimated by HapMap and found concordant
estimates. However, our recombination rate estimates were typ-
ically lower than those of HapMap and the overall curve appeared
smoother, which can be explained by the variable window size
and SNP density that was available in this dataset. The recombi-
nation rate estimated by sampletrees is the rate per adjacent
pair of base pairs, but this rate is assumed to be constant across
the window. The estimate is therefore the average recombina-
tion rate (per adjacent pair of base pairs) across the window.
Unfortunately, the SNPs available in the Crohn’s 5q31 dataset
were very unevenly spaced, particularly at the edges of the region.
The uneven spacing led to some windows spanning large physi-
cal distances and having variable recombination rates across the
window. For these windows, the estimated recombination rate

from sampletrees is therefore averaging this variable rate
over these large distances, leading to a smoother curve than the
HapMap results.

We then computed the fuzzy p-value of the ancestry-based
association statistic at each focal point. Examination of the
median of the fuzzy p-value across focal points showed that the
maximum peak locations were close to the single-locus asso-
ciation results previously published; however, the cluster-based
results appear smoother, and the peak is more distinct than in
the single-SNP analysis. In the tree-based analysis, the p-value
in C5orf56 near IRF1 is approximately 10-fold smaller than any
other areas of peak signal away from IRF1 (such as PDLIM4).
In contrast, for the single-SNP analyses the C5orf56 signal near
IRF1 is only slightly enhanced relative to the signals near P4HA2
and OCTN1. The tree-based analysis de-prioritizes the single-
locus analysis signal near P4HA2 and OCTN1. Therefore, the
tree-based analysis is not just smoothing the single-locus results;
if it were, we would expect the peak near IRF1 to be diminished
like the PDLIM4 signal. The tree-based analysis also prioritizes
different regions than the haplotype-based analysis. The peak
region for TDTHAP is near OCTN1 and OCTN2, between the
two single-locus peaks, which may be due to the best haplotype
window picking up association of both single-locus peaks simul-
taneously. To summarize, the tree-based approach indicates that
the transmitted haplotypes are more genetically related than the
untransmitted haplotypes and that there may be one or multiple
disease-predisposing loci in the region. Although not examined
here, evaluation of how the window size and local LD patterns
affect the behavior of the association statistic is an interesting
question for future research.

Because the Crohn dataset is publicly available, many groups
have used it to evaluate newly developed methodologies. Conti
and Witte (2003) developed a two-stage analytic approach that
modeled the odds ratio from a TDT analysis of each SNP with
a random effects model having means that depended on haplo-
type block membership. They compared their approach to the
single-SNP analysis and found similar results. Zheng and McPeek
(2007) developed a multi-point mapping method that also made
use of haplotype blocks; when applied to the Crohn dataset, the
same 9 significant SNPs from the original analysis in Rioux et al.
(2001) remained significant and two more SNPs reached region-
wide significance. Browning (2006) used this dataset to illustrate
the Variable Length Markov Chain (VLMC) technique. Although
the major features of the single-SNP results, including the sig-
nificant extended haplotype, were seen with the VLMC analysis,
it did not provide additional insights about the location of dis-
ease pre-disposing loci. Therefore, although this dataset has been
analyzed with several approaches that are richer or more sophis-
ticated methodologies than single-SNP analyses, these analyses
have not necessarily provided additional insights beyond those
from the original analysis by Rioux et al. (2001).

Unfortunately, determining which variant(s) explain the asso-
ciation signal has proven to be difficult due to the strong LD
observed in this region. The risk haplotype, IBD5, spans a 200 kb
region containing multiple genes, as shown in Figure 3. Peltekova
et al. (2004) found that two SNPs in the OCTN1 and OCTN2
genes were associated with inflammatory bowel disease (IBD),
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with Crohn’s disease a major subtype of IBD, independent of the
risk haplotype. However, subsequent studies did not replicate this
finding. Nevertheless, these two genes, and specifically the L503F
variant in OCTN1, are believed to be good candidates due to their
role in maintaining barrier function in the intestine (Barrett and
Chandra, 2011). In our results, we do not see a high signal from
either of these two genes.

The peak signal in our results is near the IRF1/C5orf56 region.
Recently, two papers examining selection in the IBD5 region have
also pointed to this subregion as harboring IBD variants rather
than the OCTN1/OCTN2 genes. Cagliani et al. (2013) cross-
categorized SNPs identified by a genome-wide association study
of IBD with SNPs showing patterns of selection to pathogens. Of
43 IBD-associated SNPs, eight showed a strong link with selec-
tion due to protozoa, including rs2188962 in the C5orf56 region.
Huff et al. (2012) suggested that the immune-related IRF1 gene
is a better candidate gene for association with IBD than the
other genes in the region. They argued that association of IBD
with variants in OCTN1 is actually explained by selection of the
OCTN1 L503F variant. This variant increases transport of ergoth-
ioneine, causing the true IBD-predisposing variant in a nearby
gene to also reach higher frequencies (genetic hitchhiking); the
IRF1 gene is 0.057 cM away from the L503F variant. They also
argued that positive selection on variants in this region explains
the unusually complex pattern of LD that has been documented.
To further support IRF1 as the candidate gene for IBD association,
they showed that haplotypes having evidence of recombination
between L503F and IRF1 are not associated with IBD whereas
haplotypes that have no evidence of recombination are associated
with IBD. Our results, which show the highest association near
IRF1, are consistent with both of these works.

In the analysis presented, we used a single imputation of hap-
lotypes based on the trio data. Bias of the haplotypic odds ratio,
inflated type I error rates and low power have all been observed
in haplotype-based association studies using single imputation
of haplotypes (Lin and Huang, 2007; Mensah et al., 2007).
However, our haplotype estimates are based on the family trios,
and therefore the imputed haplotypes are likely closer to the
true values than when imputation is done with samples of unre-
lated individuals. Although we have implemented a version of
sampletrees that handles missing haplotype phase (Burkett
et al., 2013b), it does not currently utilize the phase information
available from the family data. In the future, we would like to
extend sampletrees to handle partially-known haplotypes, as
would be available from trio data, for example.

A tree-based approach is flexible in that other test statistics
can be defined to capture different underlying disease models.
We have presented a tree-based association statistic that clusters
the data into two groups, and would be expected to be opti-
mal for a single-disease predisposing mutation that is relatively
common. All descendants of the internal branch on which the
mutation took place would carry the mutation and be part of the
same group for the bipartition formed by that branch. However,
we are currently investigating the potential utility of a tree-based
approach for the discovery of a set of rare variants associated with
disease. In a tree-based approach, rather than evaluating associa-
tion of alleles at rare variants with disease status, the test statistic

would capture increased relatedness of groups of haplotypes
derived from case individuals, with each group corresponding to
a different rare variant.
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