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ABSTRACT
Background: Climate change has driven shifts in breeding phenology of many
amphibians, causing phenological mismatches (e.g., predator-prey interactions), and
potentially population declines. Collecting data with high spatiotemporal sensitivity
on hibernation emergence and breeding times can inform conservation best
practices. However, monitoring the phenology of amphibians can be challenging
because of their cryptic nature over much of their life cycle. Moreover, most
salamanders and caecilians do not produce conspicuous breeding calls like frogs and
toads do, presenting additional monitoring challenges.
Methods: In this study, we designed and evaluated the performance of an
environmental DNA (eDNA) droplet digital PCR (ddPCR) assay as a non-invasive
tool to assess the breeding phenology of a Western Chorus Frog population
(Pseudacris maculata mitotype) in Eastern Ontario and compared eDNA detection
patterns to hourly automatic acoustic monitoring. For two eDNA samples with
strong PCR inhibition, we tested three methods to diminish the effect of inhibitors:
diluting eDNA samples, adding bovine serum albumin to PCR reactions, and
purifying eDNA using a commercial clean-up kit.
Results: We recorded the first male calling when the focal marsh was still largely
frozen. Chorus frog eDNAwas detected on April 6th, 6 days after acoustic monitoring
revealed this first calling male, but only 2 days after males attained higher chorus
activity. eDNA signals were detected at more sampling locales within the marsh and
eDNA concentrations increased as more males participated in the chorus, suggesting
that eDNA may be a reasonable proxy for calling assemblage size. Internal positive
control revealed strong inhibition in some samples, limiting detection probability
and quantification accuracy in ddPCR. We found diluting samples was the most
effective in reducing inhibition and improving eDNA quantification.
Conclusions: Altogether, our results showed that eDNA ddPCR signals lagged
behind male chorusing by a few days; thus, acoustic monitoring is preferable if the
desire is to document the onset of male chorusing. However, eDNA may be an
effective, non-invasive monitoring tool for amphibians that do not call and may
provide a useful complement to automated acoustic recording. We found inhibition
patterns were heterogeneous across time and space and we demonstrate that an
internal positive control should always be included to assess inhibition for eDNA
ddPCR signal interpretations.
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INTRODUCTION
Climate change is negatively impacting biodiversity and ecological processes, raising
serious conservation concerns worldwide (Walther et al., 2002; Walther, 2010; Bellard
et al., 2012; Lister & Garcia, 2018). Among the widely documented consequences of global
warming are phenological shifts–changes in timing of seasonal activities such as migration
(Van Buskirk, Mulvihill & Leberman, 2009), flowering (CaraDonna, Iler & Inouye, 2014),
chorusing in frogs (Klaus & Lougheed, 2013), and spawning in fish (Lynch et al., 2016).
Consequences of phenological shifts can be at the population level, such as phenological
isolation from other populations and concomitantly loss of genetic connectivity (Heard,
Riskin & Flight, 2012), but also at the individual scale (Stillman, 2019; Abrahms et al.,
2022). For example, such shifts can influence reproductive success by creating a temporal
mismatch between offspring and access to their preferred prey (Visser, te Marvelde & Lof,
2012; Reed, Jenouvrier & Visser, 2013), reducing successful development and fitness of
individuals. Amphibians, which are among the most threatened vertebrate groups (Stuart
et al., 2004;Wake & Vredenburg, 2008), exhibit the greatest changes in breeding timing as a
consequence of climate change, over two times faster than trees, birds, and butterflies
(Parmesan, 2007;While & Uller, 2014; Thackeray et al., 2016). However, amphibian species
have responded heterogeneously to local climate changes (Ficetola & Maiorano, 2016),
with some exhibiting no phenological shift (Gibbs & Breisch, 2001; Klaus & Lougheed,
2013; Kirk, Galatowitsch & Wissinger, 2019), some breeding earlier (Klaus & Lougheed,
2013; Green, 2017), and others breeding later (Todd et al., 2011; Arnfield, Monk & Uller,
2012; Arietta et al., 2020). Primary factors underlying such heterogeneity remain elusive
(Gibbs & Breisch, 2001; Klaus & Lougheed, 2013). However, one reason might be that the
environmental cues for amphibian breeding are species-specific (Oseen & Wassersug,
2002), with some associated with temperature (Ospina et al., 2013), rainfall (Saenz et al.,
2006; Ulloa et al., 2019), photoperiod (Schalk & Saenz, 2015), and lunar cycle (Grant,
Chadwick & Halliday, 2009).

Monitoring and tracking amphibian activities commonly involve invasive approaches
such as drift fences, pitfall traps, and hand capture (Heyer et al., 1994; Kirk, Galatowitsch &
Wissinger, 2019). However, due to the cryptic nature of most amphibians over much of
their annual cycle, traditional non-invasive methods are often ineffective. For example,
visual surveys for Hida salamanders (Hynobius kimurae) in a stream in Honshu, Japan had
a detection rate of only 23.3% (Jo et al., 2020). Another limitation is that passive acoustic
monitoring can only be used to track male anuran calling but not emergence from
brumation nor female activities as they do not use advertisement vocalizations in many
species. Environmental DNA (eDNA) offers a powerful alternative to assess phenology.
It has been used as a non-invasive method to achieve multiple goals: (i) for detecting
presence of target species; (ii) for inferring aspects of species ecology, including spawning
activities in fish, based on eDNA concentrations (Bylemans et al., 2016; Thalinger et al.,
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2019; Tsuji & Shibata, 2020); (iii) for locating turtle overwintering sites (Feng, Bulté &
Lougheed, 2019; Tarof et al., 2021); (iv) for identifying frog breeding sites (Everts et al.,
2021); and (v) for quantifying seasonal distributions of salamanders (Jo et al., 2020).
However, challenges remain in sampling design (i.e., number of samples/site) and
interpretation of eDNA data, mostly because of differential rates of degradation of eDNA
in the environment, different spatial ecology of species–for example patchiness of focal
species, and PCR inhibition (Beng & Corlett, 2020). Droplet digital PCR (ddPCR) is
increasingly popular in species-specific eDNA surveys because it is less prone to PCR
inhibition, and is more sensitive and accurate for absolute concentration estimation
compared to the more widely-used quantitative PCR (qPCR) (Doi et al., 2015; Zhao et al.,
2016; Sidstedt, Rådström & Hedman, 2020).

The Western Chorus Frog (Pseudacris triseriata) is a small, well-camouflaged terrestrial
treefrog species whose populations in Ontario and Québec are declining (COSEWIC,
2008). Taxonomy of this species is controversial largely because evolutionary relationships
revealed by analyses of mitochondrial and nuclear genomes are discordant (Lougheed
et al., 2020). The nuclear genomes appear to be similar across Ontario and Québec, but
there exist two deeply diverged, non-sister mitochondrial genomes, one showing affinity to
P. triseriata and the other most similar to P. maculata (the Boreal Chorus Frog) in the
United States (Lemmon et al., 2007; Lougheed et al., 2020), suggesting a complex
evolutionary history with hybridization and introgression. The current legal name for
Ontario and Québec populations is Western Chorus Frog (P. triseriata) in Canada, with
two Designatable Units delineated for conservation purposes (Green, 2005), corresponding
to the twomitochondrial types (mitotypes): (i) the Carolinian population with P. triseriatia
mitotype; and (ii) the Great Lakes/St. Lawrence—Canadian Shield population with
P. maculata mitotype (COSEWIC, 2008). Western Chorus Frogs spend most of their lives
foraging, resting, and brumating beneath leaf litter and woody debris in wooded areas
(Whitaker, 1971), surviving the winter by producing a cryo-protectant that reduces
probability of freezing in sub-zero temperatures (Swanson, Graves & Koster, 1996; Higgins
& Swanson, 2013). Thus, they remain hidden for much of the year and become evident
only in the breeding season when males call from vegetation at the water surface in
marshes and vernal pools (Whitaker, 1971). The Western Chorus Frog is a cold breeder
and is among the first to breed in spring when air temperature starts to increase, with onset
usually after a few days of elevated temperatures (Whitaker, 1971). Male calling is
associated with temperature, rainfall, and water availability in breeding habitats (Buckley
et al., 2021). They are most vocally actively in the first half of the night, although they do
call all day (Whitaker, 1971; Buckley et al., 2021). MaleWestern Chorus Frogs typically stay
in ponds multiple days in early spring while females leave breeding ponds after ovipositing
(Whitaker, 1971). Females release hundreds of eggs in water that, once fertilized, typically
hatch in 1 to 3 weeks, depending on the water temperature (Whitaker, 1971). After 40–90
days, depending on temperature and hydroperiod, tadpoles metamorphose and migrate
short distances into adjacent woodlands (Ethier et al., 2021 and references therein).
The phenology of Western Chorus Frog appears not to have changed between 1970 to
2010 in Eastern Ontario concomitant with regional climate change, although data are
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sparse (Klaus & Lougheed, 2013). Amburgey et al. (2012) showed that P. maculata tadpoles
grew at rates reflecting the hydroperiods of their native ponds. If climate change shortens
the hydroperiod of chorus frog breeding habitat, tadpoles may have insufficient time to
develop and metamorphose (Gervasi & Foufopoulos, 2008). In contrast, if hydroperiod is
extended (e.g., because of increased precipitation in early spring), water bodies may
become deeper and/or permanent, resulting in increased predation risk (e.g., by fish, Skelly,
1996) or this may impact adult oviposition behaviour and tadpole activity (Hopey &
Petranka, 1994; Richardson, 2001). Western Chorus Frogs are notoriously difficult to find
and catch. Hocking et al. (2008) did a 4-year phenology monitoring for 11 amphibian
species in Missouri using drift fence and pitfall traps and Western Chorus Frog was the
only species that was not caught over the entire sampling period. The most efficient way of
monitoring the breeding phenology has been the passive automatic acoustic monitoring
(Buckley et al., 2021).

In this study, we designed and validated an eDNA assay for a Western Chorus Frog
population in Eastern Ontario (with the P. maculata mitotype)–hereafter we simply use
chorus frog. We assessed the efficacy of our ddPCR assay for breeding phenology
monitoring and compare these data with data from passive automatic acoustic monitoring.
We also investigated three methods that have been proposed to mitigate PCR inhibition:
diluting samples, adding bovine serum albumin (BSA), and purifying eDNA using a
commercial kit.

MATERIALS AND METHODS
Study site and environmental data
Our study site (Round Field Marsh) is a shallow upland marsh encompassing
approximately 8,000 m2 at the Queen’s University Biological Station (QUBS) in Eastern
Ontario (44.5175� N, 76.3883� W) (Figs. 1 and S1). Around 50% of the marsh area
comprises thickets and tall shrubs, while the rest is dominated by cattails (genus Typha;
Fig. 1). From March 8th to July 25th, 2022 we recorded hourly humidity and air
temperature using a HOBO MX2303 data logger (Onset Computer Corporation, Bourne,
MA, USA), and water temperature using a HOBO UA-001-08 Pendant data logger (Onset
Computer Corporation, Bourne, MA, US). We obtained precipitation and wind speed data
from an AcuRite Atlas weather station (Chaney Instrument Co., Lake Geneva, WI, USA)
located at 44.585� N, 76.304� W, 10 km away from the study site. A DJI Mavic 2 Air (DJI,
Shenzhen, China) unmanned aerial vehicle (UAV) was deployed at the field site during
each eDNA sampling session to characterize the field site including ice/snow cover.

Automated acoustic monitoring
We placed three Wildlife Acoustics Song Meters SM4 acoustic recorders on March 8th,
2022, when the marsh was still frozen and covered with snow (Fig. 1). Song Meters were
programmed to record the first 3 min each hour. We retrieved the data after the chorus
frog breeding season (July 2022) and found one recorder had experienced technical issues
with discontinuous recordings and many gaps (Song Meter C; Fig. 1C). We thus primarily
used data from two recorders (Figs. 1A and 1b) with the third (Fig. 1C) for supplementary
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insights if needed. We listened to and visually inspected the spectrograms in Kaleidoscope
Pro 5.4.6 (Wildlife Acoustics Inc, Maynard, MA, USA) and estimated the number of
calling males. Chorus frogs have distinctive pulsed advertisement calls with dominant
frequency at around 3.5 kHz (Fig. S2; Bee et al., 2010; Nityananda, Bee & Coleman, 2011).
Inter-individual call variation allowed counting individuals both audibly and visually and
up to five individuals were distinguishable with confidence (Fig. S2). If we estimated
different numbers of calling males from the two recorders (due to background noise
and/or the distance of calling males to the recorders), we used the higher of the two values.

We tested which environmental variables related to chorus frog calling intensity at our
study site. We classified calling activity as binary for each hour (1: calling, 0: non-calling)
from 0AM onMarch 31st (first day of male call), to 11PM on April 12th, the day that eDNA
sampling ended. We explored the association between environmental variables and hourly
calling activity using a Generalized Linear Model (GLM) with a quasibinomial family
(over-dispersion) in R version 4.0.5 (R Core Team, 2021). Water temperature (�C), relative
humidity (%), precipitation rate (mm/h), wind speed (km/h), and calling in the previous
hour (1: calling, 0: non-calling) were included as predictor variables. Adding calling in the
previous hour as another predictor variable allowed us to (partially) account for

Figure 1 Locations of eDNA samples, Wildlife Acoustic Song Meter recorders and temperature
Hobo loggers in Round Field Marsh. Locations of three Wildlife Acoustics Song Meter recorders
(A, B and C in squares), air and water temperature Hobo loggers and nine eDNA sampling locales
(in circles) at Round Field Marsh. The marsh was heterogeneous with patches of thickets and cattail
reeds. The approximate boundaries of the marsh are highlighted in white.

Full-size DOI: 10.7717/peerj.14679/fig-1
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non-independence of hourly calling activity. We did not include air temperature in the
model because air temperature was strongly correlated with water temperature
(Spearman’s correlation = 0.7; ggcor function of the GGally package) and male chorus frogs
typically call at the water surface.

eDNA assay design and validation
We designed a Taqman probe-based eDNA assay for chorus frog (P. maculata mitotype)
for the cytochrome b (cytb) mitochondrial gene in Geneious v7.1.9 (Kearse et al., 2012)
using parameter values recommended by Klymus et al. (2020) (see Table S1 for details).
We used 100 sequences produced by Lougheed et al. (2020) and 124 sequences available in
GenBank for target and co-occurring species (Table S2). The forward (5′-CGTAGCA
CACATCTGCCGTG-3′) and reverse primers (5′- CCGACGAAGGCTGTTGCTAT -3′)
labeled with the double-quenched probe (5′ 6-FAM- ACGCAACCTGCACGCAAACG
GA-Iowa Black FQ -3′) amplified a 196 bp amplicon, with at least nine mismatches
with any of the nine co-occurring anuran species and five mismatches with the P. triseriata
cytb mitotype sequence in Ontario (Tables S2 and S3). While other assays exist for
chorus frogs in Alberta (Booker, 2016), Ontario (Beauclerc et al., 2019), and Québec
(Hernandez et al., 2020; Dubois-Gagnon et al., 2022), we designed an assay that is effective
for ddPCR and that could reliably distinguish the two chorus frog mitotypes in Ontario
from other co-occurring anuran species in the region.

Optimal annealing temperature was 65 �C based on an initial thermal gradient
experiment testing temperatures from 62.8 �C to 68.1 �C on extracted chorus frog DNA
(P. maculatamitotype) on a Bio-Rad QX200TM AutoDGTM Droplet DigitalTM PCR System
(ddPCR) (Fig. S3). We assessed the specificity of the ddPCR assay on co-occurring species
and the P. triseriata mitotype from Ontario. We prepared four replicates of each sample
using the same ddPCR mix and PCR conditions, three for ddPCR detections and one for
Sanger sequencing. The PCR products from the fourth replicate were purified and Sanger
sequenced at Génome Québec (Montréal, Canada). None of the co-occurring species
amplified, and Sanger sequencing revealed that amplifications of the P. triseriata mitotype
with our P. maculata primers were due to cross contamination (Fig. S4). Finally, we
validated the assay using eDNA water samples collected in 2021 (triplicates for each site)
from: (1) four local marshes where chorus frogs are known to be present, and (2) five
marshes and two lakes where chorus frogs do not occur (Table S4). All the amplicons from
2021 were confirmed to be the correct species through Sanger DNA sequencing following
the same protocol as above.

We used an 11-point 1:2 dilution series of the chorus frog (P. maculata mitotype)
synthetic DNA (Integrated DNA Technologies gBlocksTM, 216 bp) with six replicates to
assess the Limit of Detection (LOD) and Limit of Quantification (LOQ) of the assay.
The highest concentration of this series, measured with ddPCR, was 4.64 copies/mL in the
reaction mix. We define the LOD as the highest concentration below which false negatives
may be expected (Klymus et al., 2020), and this is the lowest standard concentration at
which the chorus frog synthetic DNA could be detected (i.e., at least one positive droplet in
one replicate) (Brys et al., 2021). If a positive signal was detected in a control sample
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(i.e., field control, filtration control, extraction control or ddPCR no-template control; all
used to detect false positives), LOD was set to three times the number of positive droplets
observed in the control sample to account for possible false positive detections from cross-
contamination. LOQ was defined as the lowest standard concentration of the linear range
of the standard curve, before the measured concentrations plateaued (Brys et al., 2021).

Water sampling, filtration and eDNA extraction
We sampled water every 2 days starting on March 23rd, 2022 when Round Field Marsh
began to thaw (i.e., some patches of open water). No samples were collected on March 29th

and 31st when the surface of Round Field Marsh re-froze due to cold weather (Fig. S5).
We stopped sampling on April 12th, 2022 after we heard more than three frogs calling
during sampling. We collected between three and nine 1L samples of surface water
depending on the amount of ice-free open water using sterile 1L bottles (Nalgene HDPE
Narrow Mouth) (Fig. 1). For each sampling day, we included a field negative control
(bottle filled with distilled water left open during sampling). The sampling bottles were
stored individually in ZiplocTM bags in a cooler with ice packs for return to the lab for
filtration. All equipment (including waders) was decontaminated with 10% bleach solution
and rinsed with distilled water before and after sampling. Sterile nitrile gloves were
changed between water samples.

We filtered the water samples within 6 h of sampling in a dedicated room using
Polycarbonate (PCTE) membrane filters (pore size: 1.0 mm, diameter: 47 mm; Sterilitech)
housed in a 47 mm in-line filter holder and a Waterra portable peristaltic pump. Prior to
filtration, the filter holder and pump tubing were submerged in 10% bleach overnight and
thoroughly rinsed using distilled water. The filter holder and tubing were also bleached
with 1L of 10% bleach and rinsed with 1L of distilled water between each liter of water
sampled. After filtration, the filters were folded with tweezers (dipped in 95% ethanol and
flamed to disinfect) and stored in 2 mL tubes containing 700 mL 2% (w/v) cetrimonium
bromide extraction buffer (CTAB; Turner et al., 2014). All filters were immediately stored
at −20 �C until DNA extraction. When several filters were used for the same 1L sample,
each filter paper was individually stored in 700 mL CTAB for independent extraction.
We assessed the possibility of cross-contamination by filtering 1L distilled water as a
filtration negative control.

The eDNA extractions were conducted using a modified chloroform-based method
from Turner et al. (2014) by repeating the steps of adding equal volume of 24:1 chloroform:
isoamyl ethanol and skipping the step of adding 5 M NaCl. We eluted the DNA in a final
volume of 50 mL nuclease free water. For 24 water samples with multiple filters (two to six
filters), we applied a serial elution method to maximize yield. We added 25 mL of nuclease
free water to the first filter tube and incubated at 56 �C for 5 min. We then transferred
the 25 μL eluate from the first filter tube to the second filter tube and incubated at 56 �C for
5 min. This was repeated for all sequential filter tubes. We conducted the serial elution for
each sample twice, so that the 25 μL of eluate from the first and second serial elution added
up to 50 mL. We included one no-template control (NTC) for each DNA extraction session
(three in total).
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eDNA detection and quantification in ddPCR
All samples were run in triplicate with NTCs and chorus frog genomic DNA positive
controls (PCs) included in each ddPCR run to test for false negatives and positives,
respectively. The PCR mastermix was made to a volume of 25 μL: 12.5 μL of Bio-Rad
ddPCR Probe no dUTP mix (2X), 2.25 μL of forward primer (10 μM), 2.25 μL of reverse
primer (10 μM), 0.625 μL of Taqman probe (10 μM), 0.175 μL of nuclease free water and
7.2 μL of DNA. PCR cycling conditions were as follows: 95 �C for 10 min, 45 cycles of
94 �C for 30 s and 65 �C for 1 min, then 98 �C for 10 min and holding at 4 �C. We used the
direct quantification mode in the QX Manager 1.2 Standard Edition software (BioRad,
Hercules, CA, USA). The fluorescence threshold was set for each plate (Baker et al., 2018;
BioRad Droplet DigitalTM PCR Application Guide) using the corresponding NTCs and
PCs as reference for positive and negative droplets. Concentrations were reported as
number of copies/μL (i.e., ddPCR concentration measurement) and number of copies in
the original sample (1L of water, copies/L) calculated as follows:

ddPCR concentration � Volume ddPCR mix
Volume of DNA in the ddPCR mix

� �
� Volume of DNA extract

Volume of filtered water

Inhibition estimation and mitigation strategy
We used a northern map turtle (Graptemys geographica) probe assay (Feng, Bulté &
Lougheed, 2019) as an internal positive control (the northern map turtle does not inhabit
shallow marshes) to test for inhibition in all eDNA samples in a separate ddPCR run (i.e.,
no multiplexing). The PCR mastermix was made to a volume of 25 μL: 12.5 μL of Bio-Rad
ddPCR Probe no dUTP mix (2X), 1.125 μL of G. geographica forward primer (20 μM),
1.125 μL of G. geographica reverse primer (20 μM), 0.625 μL of G. geographica Taqman
probe (10 μM), 0.425 μL of nuclease free water, 2 μL of G. geographica synthetic DNA and
7.2 μL of eDNA samples (or nuclease free water for the no-template controls). PCR cycling
conditions were adapted from Feng, Bulté & Lougheed (2019): 95 �C for 10 min, 45 cycles
of 94 �C for 30 s and 60 �C for 1 min, then 98 �C for 10 min with a final holding step at
4 �C. All eDNA samples were run in one replicate.

As we observed strong inhibition in some samples, we tested three mitigation methods
on two of them (10L9, 12L5): (1) dilution of the eDNA samples to 1:5 and 1:10 ratio with
sterile nuclease free water, (2) addition of bovine serum albumin (BSA; 20 mg/mL) to the
ddPCR reaction mix (see below) of the 1:10 diluted samples, and (3) purification of the
undiluted eDNA samples using the DNA Clean-Up and Concentration Micro Elute kit
(Norgen Biotek Corp., Ontario, Canada) which were eluted in a final volume of 20 μL (2X
10 μL). We also purified two eDNA samples with high concentrations of chorus frog
eDNA from 2021 from two local marshes in Kingston, Ontario (Cecil Graham Park and
Old Mill Road sites, Table S4) to estimate the target eDNA recovery rate from the clean-up
kit. We used the same PCR mastermix recipe for the 1st and 3rd methods (see the eDNA
detection and quantification in ddPCR section). We used the following recipe for the 2nd

method: 12.5 μL of Bio-Rad ddPCR Probe no dUTP mix (2X), 1.125 μL of chorus frog
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forward primer (20 μM), 1.125 μL of chorus frog reverse primer (20 μM), 0.625 μL of
chorus frog Taqman probe (10 μM), 1.925 μL of nuclease free water, 0.5 μL BSA and 7.2 μL
of eDNA or nuclease free water for no-template controls. All samples were run in
duplicate.

RESULTS
Male calling activities and environmental conditions
We first found open water patches on March 23rd under consistent above-zero
temperatures, but these refroze completely during a cold snap (air temperature down to
−10 �C) from March 27th to March 30th (Fig. S5). The marsh started to re-thaw on March
31st when the daily maximum air temperature exceeded 5 �C. After a warm rain in the
afternoon of March 31st, the first calling male was heard at 7 PM (Fig. 2A), despite the fact
that over 90% of the marsh was covered with ice that morning (Fig. S5). Calls were evident
from recordings from Song Meter B but not A (the data were missing in recordings from

Figure 2 eDNA detections and hourly chorus frog calling activities, air and water temperatures, precipitation and relative humidity.
(A) Hourly number of calling males (red triangles, grey dash lines) from 0 AM on March 30th to 11 PM on April 12th, 2022. Black stars repre-
sent positive eDNA detections and grey stars represent inconclusive eDNA detections. Grey minus symbols represent negative eDNA detections.
(B) Hourly air and water temperature (�C). (C) Hourly relative humidity (%) shaded with precipitation.

Full-size DOI: 10.7717/peerj.14679/fig-2

Chen et al. (2023), PeerJ, DOI 10.7717/peerj.14679 9/25

http://dx.doi.org/10.7717/peerj.14679/supp-5
http://dx.doi.org/10.7717/peerj.14679/supp-5
http://dx.doi.org/10.7717/peerj.14679/fig-2
http://dx.doi.org/10.7717/peerj.14679
https://peerj.com/


C), suggesting that the male called near the east side of the marsh where the ice first started
to thaw (Figs. 1 and S5). No additional calling was heard the rest of day nor on April 1st.
After a warm rain in the afternoon of April 2nd, two males were heard at 6 PM from both
Song Meter B and C (but not A) with clearer sonograms evident in C recordings,
suggesting that males were closer to C in the east side of the marsh (Fig. 1). One male was
heard calling at 8 PM in recordings from all three recorders (Fig. 2A). The number of
hours that males called was low during these first few days and males called only briefly on
April 4th and April 5th (Fig. 2A). On the warm, rainy day of April 6th, when the maximum
air temperature was 18.9 �C, many males emerged and started to call (Fig. 2). The calls
were louder and clearer in sonograms from Song Meter A with fewer or even no
individuals heard from Song Meter B, suggesting many individuals emerged near the west
side of the marsh (Fig. 1). The marsh was mostly thawed by April 8th (Fig. S5) and the
water levels were high due to the rains on April 7th and 8th (Fig. 2C). Male calling activities
were intermittent despite the presence of many males in the marsh between April 8th and
April 11th. Beginning on April 12th, the chorus remained continuous. Calling activity (i.e.,
number of hour-time slots for which calling was recorded) in the early breeding season
increased with warmer water temperatures (partial R² = 0.248, F1,308 = 72.474, p < 0.001)
and was not affected by humidity (p = 0.801), precipitation (p = 0.236), nor wind speed
(p = 0.067). Calling in the previous hour was also a significant predictor (partial R² = 0.059,
F1,309 = 128.998, p < 0.001).

Sensitivity of the ddPCR assay and eDNA detections
The LOQ was set as 0.11 copies/μL (the mean concentration of the three positive 1/32
dilution replicates) (Fig. 3). Any eDNA samples with a concentration below 0.11 copies/μL
were considered true detections but could not be accurately quantified. The raw reading of
the LOD was 0.06 copies/uL (one positive replicate) but because this concentration is
below the LOQ, we calculated the LOD (1/512 dilution) by dividing the LOQ (i.e., 1/32
dilution) by 16, which resulted in 0.007 copies/μL.

In total, 56 eDNA samples were collected and run in triplicate using ddPCR: two
samples on March 23rd, four on March 25th, four on March 27th, six on April 2nd, six on
April 4th, seven on April 6th, and nine on April 8th, 10th and 12th respectively (Fig. 4). In the
ddPCR runs, one replicate from locale 7 sample taken on April 6th and two replicates from
locale 5 taken on April 10th did not generate sufficient droplets for valid interpretation (i.e.,
fewer than 10,000, potentially because of inhibitors, see below). Those replicates were
excluded from subsequent analysis. The total number of generated droplets across all other
samples and their replicates was on average 19,216, with a minimum of 10,015 droplets
and a maximum of 21,758. All field, filtration, extraction and ddPCR controls were
negative, except one field control replicate from April 12th, which had two positive
droplets; thus, we considered eDNA samples from April 12th positive only if the number of
positive droplets was higher than six.

The earliest positive eDNA sample was from locale 5 on April 6th with only one positive
replicate (Figs. 4 and 5E) although the concentration could not be estimated with
confidence (<LOQ). No chorus frog eDNA was detected on April 8th, despite the presence
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of calling males in the marsh (Fig. 2A). Two eDNA samples on April 10th showed positive
signals (10L9 and 10L3; Figs. 4, 5A and S6A). 10L3 had one positive replicate although
again concentration could not be estimated with confidence (<LOQ, Fig. S6A). All three
technical replicates from 10L9 showed positive signals with a mean concentration at
1.28 copies/μL (222.5 copies/L in 1L sample), which was underestimated due to PCR

Figure 3 Limit of Detection and Limit of Quantification of the eDNA ddPCR assay. Estimation of
Limit of Detection (LOD) and Limit of Detection (LOQ) using 1:2 dilution series with 11 steps (1, 1/2, 1/
4, 1/8,…, to 1/1,024 dilution). Each concentration was run with six replicates in ddPCR. Circles indicated
replicates with positive eDNA signals. Crosses were predicted concentrations based on the linear model
of the five highest concentrations. Full-size DOI: 10.7717/peerj.14679/fig-3

Figure 4 eDNA signal and inhibition patterns across sampling days. eDNA samples collected from
March 23rd to April 12th at locale 1 (L1) to locale 9 (L9). Positive eDNA detection is indicated with a filled
star. Inconclusive eDNA detection is indicated with an open star. A dark grey background indicates
strong inhibition in the eDNA sample as revealed by the internal positive control. A light grey back-
ground indicates minor inhibition as revealed by the internal positive control.

Full-size DOI: 10.7717/peerj.14679/fig-4
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Figure 5 ddPCR amplitude graphs of eDNA samples showing strong or minor inhibition. Strong
(A–C) and minor inhibitions (D–E) revealed by internal positive control (IPC positive control and IPC
spiked in eDNA sample; left) and ddPCR amplitude graphs of the chorus frog (Pseudacris maculata
mitotype) target assay (right). 10L9 1:5 dilution = locale 9 on April 10th with a 1:5 dilution, 10L9 = locale 9

Chen et al. (2023), PeerJ, DOI 10.7717/peerj.14679 12/25

http://dx.doi.org/10.7717/peerj.14679
https://peerj.com/


inhibition (Fig. 5A). Two samples on April 12th were also positive for all three replicates
(Fig. 4), locale 3 at 0.36 copies/μL (62.7 copies/L, Fig. S6B) and locale 5 at 2.48 copies/μL
(431.2 copies/L, although the concentration was underestimated due to PCR inhibition,
Fig. S6C). Finally, two samples (locales 4 and 8 on April 12th) were inconclusive because
the number of positive droplets was lower than six (i.e., lower than the number of positive
droplets in the no-template control; Figs. 5B and S6D). In summary, one sample had
positive eDNA detections on April 6th, two on April 10th, and two on April 12th with two
additional inconclusive samples (Fig. 4).

PCR inhibition
Using the G. geographica IPC, all samples generated enough droplets to be interpreted with
confidence (>10,000 droplets). Five samples (April 6th L3 and L7, April 10th L9, April 12th

L4 and L5; Fig. 4) showed strong inhibition with the collapse of positive droplets that either
lowered the concentration estimates or resulted in false negative detections (Figs. 5A–5C)
or a higher amplitude of some positive droplets (10L9 and 12L5; Figs. 5A and S6C).
Two samples with positive chorus frog detection (10L9, 12L5) and one with inconclusive
detection (12L4) were strongly inhibited (Fig. 4).

We also identified 15 samples showing minor inhibition in the IPC assay (April 2nd L8,
April 4th L1, April 6th L1, L5, L6 and L8, April 8th L8, April 10th L2, L3, L5 and L8, April
12th L1, L3, L6, L8; Fig. 4). Minor inhibition did not affect positive detections but can
increase concentration estimations (over 20% variation of the IPC concentration in the
NTC; Shehata et al., 2017) (Figs. 5D and 5F). They showed one or more of the following
patterns: (1) elevated fluorescence of some positive droplets (Fig. 5D), (2) elevated
fluorescence amplitude of the negative droplet baseline (Figs. 5E and 5F), and/or
(3) broader width of the negative droplet baseline (Fig. 5F). Those minor inhibition
patterns were not always observed in the corresponding target chorus frog assay. Three
samples with positive chorus frog detections (6L5, 10L3, 12L3) and one that was
inconclusive (12L8) showed minor inhibition in the IPC assay (Figs. 5 and S6).

Of the three mitigation methods used to assess inhibition of the locale 9 sample from
April 10th (10L9) and the locale 5 sample from April 12th (12L5), dilution was the most
effective (Fig. S7). The 1:5 and 1:10 dilutions of 10L9 had mean concentrations of
1.5 copies/μL and 0.55 copies/μL respectively, corresponding to 1,298 copies/L and
948 copies/L in the original 1L sample. The 1:5 and 1:10 dilutions of 12L5 had mean
concentrations of 2.765 copies/μL and 0.615 copies/μL respectively, corresponding to 2,402
copies/L and 1,074 copies/L in the original 1L sample. With dilution, the estimated chorus
frog eDNA concentrations were approximately four to six times higher in sample 10L9 and
two to five times higher in sample 12L5 (Fig. S8). However, the strong inhibition patterns

Figure 5 (continued)
on April 10th, 12L4 = locale 4 on April 12th, 06R5 = locale 5 on April 6th, 12L6 = locale 6 on April 12th,
PC = positive control using P. maculata genomic DNA and NTC = no template control. The numbers in
the IPC panel are the concentrations of the IPC as read by the ddPCR instrument (copies/μL). The pink
line represents the threshold for positive (blue) and negative (gray) droplets, which is set based on
positive control and no-template control in each plate. Full-size DOI: 10.7717/peerj.14679/fig-5
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were still evident because the collapse of positive droplets remained in the diluted 10L9 and
12L5 samples, resulting in lower concentration estimates (Fig. S8). The combination of the
1:10 dilution with BSA generated either lower or no eDNA positive signals in both samples
(Figs. S7 and S8). The commercial clean-up kit did not generate any positive eDNA signal
in either of the two samples, possibly due to target eDNA being washed away and/or the
inhibitors not removed completely (Figs. S7 and S8). The estimated target eDNA recovery
rate of the clean-up kit was 61.14% in the Cecil Graham Park sample and 85.43% in Old
Mill Road sample (Fig. S8; these two samples were not inhibited and were collected in 2021
for eDNA assay validation).

DISCUSSION
Assay design and validation
We developed and comprehensively validated a novel ddPCR probe assay for chorus frog
(P. maculatamitotype) detection in wetlands in Eastern Ontario. Species-specific detection
can be challenging when attempting to distinguish between closely related species,
subspecies, or mitotypes (Gorički et al., 2017; Boardman et al., 2021). Insufficiently specific
primers and probes between closely related species or mitotypes might result in both false
positive (amplification of non-target species) and negative (competition between target
and non-target DNA) detections (Wilcox et al., 2013). Our assay was rigorously designed
and tested using in silico approaches, in vitro tests with P. maculata genomic DNA and
genomic DNA from co-occurring anuran species plus P. triseriata, as well as in situ tests on
positive eDNA samples (known presence of P. maculata in the water bodies), and negative
eDNA samples (known absence of P. maculata in the water bodies). LOD and LOQ were
estimated, and all positive amplicons generated during the validation process were Sanger
sequenced (substantial validation at level 4 out 5 on the eDNA assay validation scale from
Thalinger et al., 2021). Following further testing of specificity on samples from a chorus
frog P. triseriata/P. maculatamitotype contact zone in Southern Ontario, our ddPCR also
could be used to improve the geographic delimitation of the two Designable Units
currently recognized in Ontario (COSEWIC, 2008).

The promise of eDNA for assessing breeding phenology of chorus
frogs
Both acoustic monitoring and eDNA surveys showed that chorus frog started breeding in
early spring when air temperature was low and the marsh just started thawing (Fig. 2;
Whitaker, 1971). The ddPCR eDNA approach was effective in detecting chorus frogs at
low abundance in a shallow marsh even when only a few males were calling. The first
eDNA detection was on April 6th, 6 days after the first male called but only 2 days after
males attained higher chorus activity. This temporal lag was not unexpected; the first male
called as soon as the marsh started to thaw and one would expect that it would take time
for sufficient amounts of DNA to be shed into the water. Moreover, eDNA was detected at
more locales and the eDNA concentrations at locale 3 and 5 increased with more calling
activities in later days, suggesting that overall eDNA may be a reasonable proxy for calling
assemblage size and location and that the detection of P. maculata mitotype was initially
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limited by the species small body mass (<1 g), its behavior (i.e., sit on floating vegetation
while calling) and a lower number of active individuals in the water. Frogs and
salamanders with higher body mass and more mobility within breeding water bodies
would likely have higher eDNA detection rates using ddPCR (Pilliod et al., 2014; Goldberg
et al., 2016; Goldberg, Strickler & Fremier, 2018). Although eDNA revealed the onset of
male activities a few days later than acoustic surveys, our results imply that, with sufficient
spatial sampling coverage, eDNA may be an effective approach for detecting chorus frogs
before oviposition and emergence of tadpoles (Bylemans et al., 2016; Buxton et al., 2017;
Dunn et al., 2017; Everts et al., 2021). By extension, eDNA might be an effective means for
broad-scale surveys of other anurans that do not vocalize (e.g., newts), or whose calls are
barely perceivable (e.g., African clawed frog).

Our eDNA data also revealed interesting fine spatial patterns of chorus frogs that may
be difficult to determine using acoustic monitoring, especially with one acoustic recorder,
wind, background noise, or overlap of male calls. For example, on the east side of the
marsh (locales 3 and 5) we detected chorus frogs eDNA twice while at locales 1, 2, 6 and 7
we never detected chorus frogs. This heterogeneity within the site could be explained by
either a difference in the number of active chorus frogs (i.e., more eDNA was shed in some
locales and not others), or differences in water physicochemical factors that allowed
longer/shorter persistence of eDNA.

Intensive spatial and temporal eDNA sampling is necessary for effective species surveys
when abundances are low (Goldberg et al., 2016; Goldberg, Strickler & Fremier, 2018).
We collected multiple 1L water samples every 2 days with the number of samples roughly
proportional to the marsh area that was free of ice. The percentage of positive samples was
less than 25% on April 6th and 10th but increased to almost 50% on April 12th when many
males were present and calling day and night. Low biomass of the focal taxon and the lentic
wetland properties with natural barriers of dense vegetation separating water patches,
reducing dispersion of shed eDNA, might be the important factors underlying the lower
detection rates earlier in the breeding season (Goldberg, Strickler & Fremier, 2018;
Shackleton et al., 2019). These factors should be considered in eDNA sampling design; for
example, conducting a pilot study can be useful to refine sampling schemes (Goldberg
et al., 2016). In addition, climate variables are important in eDNA surveys and data
interpretation. For example, the breeding activities in some anuran species are triggered by
rainfall (Saenz et al., 2006; Ulloa et al., 2019) but our data imply that rainfall can dilute
eDNA and reduce detection probabilities. Thus, repeated sampling across time and
collection of abiotic variables such as rainfall are important for interpreting eDNA results
(Buxton et al., 2017; Akre et al., 2019).

Inhibition in ddPCR
PCR inhibition can be a challenge for the detection and quantification of eDNA (Sidstedt,
Rådström & Hedman, 2020), especially in shallow wetlands with potentially high
saprotrophic activity, low pH, and proximity to sediments that can increase the
concentration of PCR inhibitor substances (Harper et al., 2019). In water samples,
inhibitors can be organic (debris, fulmic and humic acids, phenol) or metallic (metal
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ions) (Kim et al., 1990; Abbaszadegan et al., 1993; Schrader et al., 2012). Several inhibition
mechanisms can co-occur in PCR reactions (Opel, Chung & McCord, 2010; Alaeddini,
2012; Schrader et al., 2012): (i) interaction with the polymerase limiting PCR efficiency (e.
g., lowering of the rate of extension); (ii) competition between inhibitors and reagents;
(iii) interaction with the DNA (e.g., degradation); and (iv) interaction with the
fluorescence dye (e.g., a quenching effect). While we used a small elution volume (50 μL)
which could have concentrated inhibitors and DNA, we limited the presence of inhibitors
by processing our samples using current best practices (multiple filters, CTAB-based
storage method, and chloroform-isoamyl extraction; Hunter et al., 2019) and using a
ddPCR approach, which is less sensitive to PCR inhibitors than qPCR (Verhaegen et al.,
2016).

Nevertheless, our internal positive control revealed strong inhibitions in five samples
that caused lower concentration estimations and potential false negatives. Minor inhibition
was observed in 15 samples that did not seem to affect detection but sometimes increased
concentration estimation, although this might be assay specific as the patterns were not
always consistent between IPC and our target chorus frog assay. There was no obvious
spatial pattern of inhibition in the marsh (Fig. 4). We found less inhibition when ice was
thawing and after rain suggesting a potential dilution effect, followed by more inhibition
when the marsh was fully thawed which could be explained by the release of humic
substances. Warmer water temperatures could potentially activate humification (plant
decay and transformation by microbial community) which would increase concentrations
of humic substances in the water. Although ddPCR can be robust to high concentrations of
humic acids (up to 1,000 ng/μL; Kolar, 2015), the effects of other humic compounds such
as fulvic acids or humins have not been evaluated. We observed patterns of inhibition
similar to Maheshwari et al. (2017) (citrus leaf petiole and fruit columella extract), Zhao
et al. (2016) (copper-containing bactericides), and Kolar (2015) (metal ions). We did not
investigate the source of inhibition nor the underlying mechanisms affecting eDNA
detection probabilities in lentic systems, but metals and bactericides are unlikely to be the
main source of inhibition in our study as one would expect that metal concentration from
natural sources would be spatially homogeneous in the marsh and would not fluctuate
daily (Fig. 4); moreover, there is no agricultural treatment around the site. We found
samples with minor inhibition patterns sometimes had higher IPC concentrations (over
20% variation of the IPC concentration in the NTC; Shehata et al., 2017), while samples
with strong inhibition always had lower IPC concentrations. This could be due to different
concentrations of inhibitors in the sample causing different effects. For example, Zhao
et al. (2016) found that copper had an enhancing effect at low concentration levels on both
ddPCR and qPCR but an inhibitory effect at high levels. Some locales showed consistent
minor inhibition (L8), with an increase or a decrease of inhibition intensity over time (e.g.,
L4, L5 and L3, L7, respectively; Fig. 4). However, after the heavy rains on April 7th and 8th,
we detected no inhibition in any of the locales save for L8 (minor inhibition). The rain, by
increasing water level/volume, could have diluted inhibitors and eDNA. In sum,
quantification and detection of chorus frogs (P. maculatamitotype) in our study may have
been impeded by inhibition issues, especially early in the season when eDNA was at low
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abundance in the marsh. Our results highlight the value of IPCs in eDNA studies, even
when using a ddPCR approach. Although well established in qPCR studies, the use of an
internal positive control to detect inhibition in environmental samples is still rare in
ddPCR studies (but see Shehata et al., 2017; Everts et al., 2021).

Common solutions to PCR inhibition include adding BSA that can bind inhibitory
molecules, diluting the samples, and purifying the DNA using commercial clean-up kits
(Opel, Chung & McCord, 2010; Goldberg et al., 2016; Sidstedt, Rådström & Hedman, 2020;
Takasaki et al., 2021). We found that diluting samples was the most effective in mitigating
inhibition (i.e., increased eDNA concentrations), but the collapse of droplets was still
evident. The drawback of dilution is that it can also dilute the target eDNA concentration
to below the Limit of Quantification (LOQ) or Limit of Detection (LOD) and so may only
work for samples with higher eDNA concentrations. Although BSA has been found to be
effective in qPCR for some inhibitors (Sidstedt et al., 2015), it decreased the eDNA signals
in our ddPCR tests. Finally, purification using a commercial clean-up kit resulted in
varying eDNA recovery rates among samples (McKee, Spear & Pierson, 2015) and no
eDNA detections in the two samples, likely due to the complete loss of target eDNA.
In summary, the clean-up kit and diluting samples can reduce inhibition, but can also
reduce eDNA concentration below LOD, and one should interpret such results with
caution especially as these might result in false negative signals (McKee, Spear & Pierson,
2015; Mauvisseau et al., 2019).

CONCLUSIONS
We designed and thoroughly validated a sensitive eDNA-based ddPCR species detection
assay, that can accurately detect a specific mitotype of the Western Chorus Frog
(P. maculata mitotype). This will be particularly useful to study the contact zone of
P. maculata and P. triseriata mitotypes in Southern Ontario. eDNA-based ddPCR
approach can be used to quantify the spatial distributions of individuals within a marsh
and overall may be a good proxy for frog calling assemblage size, although acoustic
monitoring remains the preferred method to assess early spring breeding activities for
species that vocalize. PCR inhibition remained a challenge for eDNA detection and
quantification even in ddPCR studies and including an internal positive control was
necessary to interpret the data, especially when the abundance of the target species was
low. Finally, we found diluting extracted eDNA samples was the best in mitigating the
effects from inhibitors, further testing on a higher number of samples will provide more
insights on best mitigation methods. Altogether, our results show the promise of eDNA as
an effective, non-invasive tool for assessing breeding phenology in non-calling amphibians
and the importance of using IPC in detecting inhibition and interpreting results in ddPCR.
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AY830995, AY830994, AY830992, AY830987, AY830985, AY830981, AY830974,
AY830973

- Lithobates sylvaticus: MG002398, MG002397, MG002396, MG002395, MG002394,
MG002393, MG002392, MG002391, EU203546, EU203545, EU203544, EU203543,
EU203542, EU203541, EU203540, EU203539, EU203538, EU203537, EU203536,
EU203535

- Lithobates septentrionalis: AY083273, AY083272, KX269314
- Lithobates catesbeianus KX344492, KX344491, KX344490, KX344489, KX344488,

KX344487, KX344486, KX344485, DQ474180, AY210399, AY210398, AY210397,
AY210396, AY210395, AY210394, AY210393, AY210392, AY210391, AY210390

- Lithobates clamitans: DQ792700, DQ792699, DQ792698, DQ792697, DQ792696,
DQ792695, DQ792694, DQ792693, DQ792692, DQ792691, DQ792690, DQ792689,
DQ792688, DQ792687, DQ792686, DQ792685, DQ792684, DQ792683, DQ792682,
DQ792681

- Lithobates palustris: KX269353
- Lithobates pipiens: EU370726, EU370725, EU370724, KM396244, KM396243,

KM396242, KM396236, KM396235, KM396234, KM396233, KM396232, KM396231,
KM396230, KM396229, KM396228

- Anaxyrus americanus: AB159264
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