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As a cold tumor, malignant glioma has strong immunosuppression and immune escape
characteristics. The tumor microenvironment (TME) provides the “soil” for the survival
of malignant tumors, and cancer-associated fibroblasts (CAFs) are the architects of
matrix remodeling in TME. Therefore, CAFs have potent regulatory effects on the
recruitment and functional differentiation of immune cells, whereby they synthesize and
secrete numerous collagens, cytokines, chemokines, and other soluble factors whose
interaction with tumor cells creates an immunosuppressive TME. This consequently
facilitates the immune escape of tumor cells. Targeting CAFs would improve the TME
and enhance the efficacy of immunotherapy. Thus, regulation of CAFs and CAFs-related
genes holds promise as effective immunotherapies for gliomas. Here, by analyzing
the Chinese Glioma Genome Atlas and the Cancer Genome Atlas database, the
proportion of CAFs in the tumor was revealed to be associated with clinical and immune
characteristics of gliomas. Moreover, a risk model based on the expression of CAFs-
related six-gene for the assessment of glioma patients was constructed using the least
absolute shrinkage and selection operator and the results showed that a high-risk group
had a higher expression of the CAFs-related six-genes and lower overall survival rates
compared with those in the low-risk group. Additionally, patients in the high-risk group
exhibited older age, high tumor grade, isocitrate dehydrogenase wildtype, 1p/19q non-
codeletion, O-6-methylguanine-DNA methyltransferase promoter unmethylation and
poor prognosis. The high-risk subtype had a high proportion CAFs in the TME of glioma,
and a high expression of immune checkpoint genes. Analysis of the Submap algorithm
indicated that the high-risk patients could show potent response to anti-PD-1 therapy.
The established risk prediction model based on the expression of six CAFs-related
genes has application prospects as an independent prognostic indicator and a predictor
of the response of patients to immunotherapy.
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INTRODUCTION

Glioma is the most common form of a primary malignant brain
tumor in adults. In particular, glioblastoma (GBM) is one of
the most lethal and highly aggressive cancer, associated with
low survival, less than 1 year (Lapointe et al., 2018). Although
current evidence indicates surgical resection as the main
treatment approach for gliomas, postoperative radiotherapy, and
chemotherapy can also be administered according to the specific
condition of patients. However, most gliomas are difficult to
completely be removed by surgery without affecting normal brain
functions due to the growth properties and its special local
anatomy characteristics. Some patients also do not respond well
to radiotherapy and chemotherapy, and consequently, develop
rapid recurrence after standard therapy (Tan et al., 2020).
Despite recent progress in the development of new drugs,
researchers are facing challenges in developing therapeutics for
gliomas due to biological properties, including the blood-brain
barrier, tumor specificity of gliomas, and immune environments
(Aldape et al., 2019).

The tumor microenvironment (TME), as the “soil”
for tumor survival, is crucial for tumor survival and is
closely associated with the malignant behavior of tumor
cells equivalent to “seed.” Compelling evidence shows that
tumor cells interact with the extracellular matrix (ECM),
immune cells, chemokines, and cytokines to create a favorable
microenvironment for the proliferation and metastasis of
tumors (Maman and Witz, 2018). The microenvironment of
different tumors is diverse. For instance, in glioma, tumors
can cooperate with peritumoral cells through chemokines and
cytokines, direct contact, extracellular vesicles, nanotubes and
microtubules, to promote tumor proliferation, brain invasion,
angiogenesis and immunosuppression. This consequently
creates a microenvironment conducive to the growth of
malignant tumors (Broekman et al., 2018). Therefore, an
in-depth understanding of the interactions between tumor
cells and peritumoral cells may provide a new perspective to
managing gliomas.

Interestingly, cancer-associated fibroblasts (CAFs) are an
important component of stromal cells in TME and an “architect”
of matrix remodeling, which are closely related to the prognosis
of solid tumors (Cox, 2021). In TME, CAFs play a key role
in the induction of Epithelial-mesenchymal Transition (EMT),
and the maintenance of the pool of cancer stem cells and drug
resistance by interacting with tumor cells and immune cells and
releasing a variety of soluble factors (Su et al., 2018; Erin et al.,
2020). Moreover, CAFs regulate tumor immunity and promote
immune escape and resistance to cancer immunotherapy (Liu
et al., 2019a). Therefore, targeting CAFs would not only inhibit
the “seed” of cancer but also transform the “soil” into a
microenvironment that inhibits tumor growth, and consequently
transform the “enemy” that promotes tumor progression into
a “friend” that inhibits tumor growth or metastasis (Chen and
Song, 2019). Also, CAFs are activated to different degrees at
different stages of tumor development. Studies have shown that
different cytokines secreted by CAFs can play a pro-cancer or
anti-cancer role (Liu et al., 2019b; Wang et al., 2021).

It is also noteworthy that because glioma is a “cold ”
tumor, immunotherapy has poor efficacy against the malignancy
(Jackson et al., 2019). As such, to improve the efficacy of
immunotherapy, transforming the “cold” environment into
a “hot” one without causing neurotoxicity is imperative.
Additionally, novel immunotherapeutic approaches, including
oncolytic virus and adoptive T cell therapy, may exploit the T
cell response to overcome the “cold” state of glioma, such as
GBM (Buerki et al., 2018). Intriguingly, CAFs are co-expressed
with the Fibroblast Activation Protein α (FAPα) and the Platelet-
derived Growth Factor Receptor (PDGFR), which are the main
components of stromal cells in GBM. Oncolytic adenoviruses
have also been shown to specifically target GBM cells and CAFs
(Li et al., 2020).

Cancer-associated fibroblasts are highly heterogeneous in
terms of tissue origin, phenotype and function (Louault et al.,
2020), but their function in the glioma microenvironment is
yet to be fully elucidated. In the present study, we analyzed the
sequencing data of glioma cohorts from the Chinese Glioma
Genome Atlas (CGGA) database by the Estimate Proportion
of Immune and Cancer cells (EPIC) algorithm (Racle et al.,
2017; Liu et al., 2020), which is a common method to analyze
the cell types based on the gene expression profile of the
different type of cells, to quantify the expression of CAFs,
then further analyze the relationship among CAFs and clinical
features, tumor purity, immune score, stromal score, ESTIMATE
score and stemness score of gliomas. Differentially expressed
genes related to prognosis in the high and low expression
subtypes of CAFs were also screened. Moreover, the risk scores
of gliomas were assessed according to the expression of six
genes identified as independent prognostic factors via the Least
Absolute Shrinkage and Selection Operator (LASSO) regression
analysis and validated in the Cancer Genome Atlas (TCGA)
database. The established risk signature containing six CAFs-
related-genes strongly correlates with the clinical and immune
characteristics of glioma, including immune cells, immune
checkpoints, and immunotherapy.

MATERIALS AND METHODS

Data Collection
The RNA sequencing datasets [mRNAseq_693, mRNAseq_325
and mRNA sequencing (non-glioma as a control)] and the
corresponding clinical and molecular information, including sex,
age, grade, IDH status, 1p/19q status, MGMT promoter, and
survival status information, were retrieved from the CGGA
database1 (Zhao et al., 2021). The data were categorized
into the training cohort [including 625 cases of low-grade
gliomas (LGG) and 388 cases of GBM] and the testing cohort
(comprising transcriptome data from 698 cases of gliomas in
TCGA database from the Genomic Data Commons Data Portal
(GDC).2 Additionally, the FPKM data was converted into TPM
for subsequent analysis. The mRNAseq_693 and mRNAseq_325

1http://www.cgga.org.cn/
2https://portal.gdc.cancer.gov/
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data were merged into one metadata set, and batch effects were
removed using the combat function in the SVA R package.

Quantification of Different Cell Types in
the Tumor Microenvironment
Estimate Proportion of Immune and Cancer cells (Racle et al.,
2017) is an effective algorithm used to simultaneously estimate
the proportion of cancer and immune cell types according to the
gene expression in tumors based on a unique set of RNA-seq
reference gene expression profiles described previously (Tirosh
et al., 2016). It allows for accurate prediction of the proportion
of cancer and non-malignant cell types even in the absence
of a priori information about cancer cells. In this study, the
reference profiles from tumor-infiltrating cells were used as the
parameter, whereas the TPM data of CGGA glioma were used
as input data. The proportion of CAF was estimated using the R
package “EPIC” to explore the changes of matrix components in
gliomas. CIBERSORT is a tool that deconvolutes the expression
matrix of human immune cell subtypes based on the principle
of linear support vector regression. Researchers also apply this
tool to determine immune cell composition, which comprises 22
immune cell subtypes, based on the specific gene expression data
of the cells (Newman et al., 2015). We analyzed gene expression
data with standard annotation using CIBERSORT source code in
relative mode. The algorithm was run using the LM22 signature
and 100 permutations. For each sample, the final CIBERSORT
output estimates were normalized to sum to one such that it could
be interpreted directly as cell fractions for comparison across
different immune cell types and datasets. Immune infiltration
analysis based on a single-sample gene set enrichment analysis
(ssGSEA) score can also be employed to explore the degree of
immune infiltration of gliomas. It defines an enrichment score
representing the absolute degree of enrichment of the gene set in
each sample in each dataset. ssGSEA-based evaluation of the level
of immune infiltration in a sample according to the expression
levels of immune cell-specific marker genes demonstrated the
immune infiltration landscape of gliomas (Bindea et al., 2013).
The ESTIMATE package was used to estimate tumor immune
score and tumor purity (Yoshihara et al., 2013). The stemness
index of glioma was calculated according to the expression of
tumor stem cell genes (Miranda et al., 2019). Submap3 algorithms
(Hoshida et al., 2007) were further utilized to predict the clinical
response to immune checkpoint blocking therapy for PD-1 and
CTLA4 in the low-and high-risk score groups. P-value < 0.05
denoted statistical significance.

Identification of Risk Genes and
Calculation of Risk Score
Data were grouped into high subtype and low subtype according
to the median value of CAFs. This was followed by the analysis
of the differences between the mRNAseq_325 and mRNAseq_693
CGGA data. Differentially expressed genes (DEGs) were obtained
according to a fold change (logFC) > 1.5 and P < 0.05. Genes
with P < 0.001 and genes associated with prognosis were

3https://cloud.genepattern.org/gp

screened through univariate Cox regression analysis. A total
of 329 genes were identified from mRNAseq_325 and 116
from the mRNAseq_693 CGGA database. Crossing the two
sets of genes yielded 104 genes. Furthermore, multivariate Cox
regression analysis was performed to identify 11 genes related to
glioma overall survival (OS) (P < 0.001). Subsequently, LASSO
analysis was employed, to minimize the risk of overfitting a
prognostic model and construct a risk model (Tibshirani, 1997).
The LASSO was utilized for variable selection and shrinkage
via the “glmnet” package in R software (Simon et al., 2011).
The independent variable in the regression was the normalized
expression matrix of candidates for prognostic factors. The
response variable was the OS time and state of the patients in
the CGGA cohort. The penalty parameter (λ) of the model was
constructed through tenfold cross-validations, followed by the
minimum criteria (i.e., the value of λ corresponding to the lowest
partial likelihood deviance). The risk score of the patients was
calculated according to the normalized expression level of the
prognostic gene signature and their corresponding regression
coefficients according to the formula: risk score = esum(each gene ′ s

expression × corresponding coefficient). Finally, patients were divided
into high and low risk groups according to the median risk score.

Establishment of the Nomogram
The nomogram incorporated age, grade, 1p/19q status based
on the CGGA cohort. The prognostic risk score model was
established via the “RMS” package in R. The consistency between
predicted survival rate and actual survival rate using time-
dependent calibration curves, and verified in the TCGA cohort.
The concordance index (C index) was calculated to evaluate the
effectiveness of the model in prognosis prediction. The C index
ranged between 0.5 and 1.0; notably, a higher index denoted the
better the performance of the model in predicting survival rate.

Functional Enrichment Analysis
Spearman’s correlation analysis was used to reveal the
genes associated with the risk score; here, the correlation
coefficient ≥ 0.4 was selected. Genes related to risk scores
were sorted according to the calculated correlation coefficient.
Next, Gene Set Enrichment Analysis (GSEA) was performed
with the “clusterProfiler” R package (Yu et al., 2012), using
“h.all.v7.0.entrez.gmt” as a reference gene set. P values
were adjusted using the Benjamini and Hochberg methods.
P-value < 0.05 implied statistically significant differences.
Lastly, the results of the first five enrichment analysis were
visualized using “enrichplot” and “ggplot2” (Wickham, 2016) R
software package.

Statistical Analysis
Patients in the CGGA training and TCGA validation cohorts
were categorized into the high- and low-risk subtypes according
to the median risk score. Wilcoxon rank-sum test was applied
to compare the high- and low-risk subtypes. Differences among
three or more subtypes of patients were tested using the K-W
test. Kaplan-Meier analysis and log-rank test were employed to
analyze survival rates between low-risk and high-risk subtypes.
Univariate and multivariate Cox regression analyses identified
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the independent factors associated with the OS of glioma.
All statistical analyses were conducted in R software (version
4.0.3), and P < 0.05 denoted statistical significance (∗P < 0.05,
∗∗P < 0.01, ∗∗∗P < 0.001, ∗∗∗∗P < 0.0001).

RESULTS

Cancer-Associated Fibroblasts Are
Closely Related to the Clinical
Progression of Gliomas
A detailed flow chart of this analysis is shown in Figure 1.
Using EPIC, the proportion of CAFs was calculated in different
glioma samples in the CGGA cohort. The mRNAseq_693 and
mRNAseq_325 datasets in the CGGA cohort were merged
and batch discrepancies were eliminated. Subsequently, the
proportion of CAFs was calculated in gliomas in the training
cohort. Patients were then stratified into high and low CAFs
subtypes according to the median of CAFs. The prognosis of
the high-CAFs subtype was worse than the low-CAFs subtype
(log-rank, P < 0.0001; Figure 2A). According to the WHO
(2016) grading guidelines, patients with high CAFs showed
poor prognosis in Oligodendroglioma with IDH mutation and
1p/19q co-deletion, Astrocytoma with IDH mutant, Astrocytoma
with IDH wildtype, GBM with IDH mutant, and GBM with
IDH wildtype (Supplementary Figure 1). In addition, both
univariate and multivariate Cox regression analyses verified that
the proportion of CAFs is an independent risk predictor for
gliomas (Figures 2B,C). On the other hand, the high proportion
of CAF is mainly enriched in glioma patients with higher age
(P < 0.0001), high WHO grade (P < 0.001), IDH wildtype
status (P < 0.001), 1p/19q non-codeletion status (P < 0.001),
and MGMT promoter un-methylated status (P< 0.01). However,
CAFs did not differ between genders (Figures 2D–I). To
eliminate the effect of data consolidation in mRNAseq_693 and
mRNAseq_325 datasets, the proportion of CAFs in both datasets
was calculated, respectively, which yielded a similar result to the
merged dataset (Supplementary Figure 2). Results suggest that
the proportion of CAFs is of promise as an independent predictor
for the prognosis and progression of gliomas.

A High Proportion of Cancer-Associated
Fibroblasts Is Associated With Immune
Landscape and Stemness of Gliomas
Cancer-associated fibroblasts as the architect of matrix
remodeling in TME may affect cell components of TME
and promote progression of tumor malignancy. In this study,
the ESTIMATE and GSVA packages in R were used to estimate
tumor purity, immune score, stromal score, ESTIMATE score,
and stemness score of gliomas in the CGGA cohort. A high
proportion of CAFs was revealed to be associated with the
glioma patients with low tumor purity, high stromal score,
high ESTIMATE score, and high stemness score (P < 0.0001;
Figures 2J–N). At the same time, the prognosis of glioma
patients characterized by low tumor purity, high immune score,
high stromal score, high ESTIMATE score, and high stemness

score was poor (P < 0.0001, Supplementary Figures 3A–E).
The findings suggest the association of low tumor purity, high
immune score, high stromal score, high ESTIMATE score, and
high stemness score with a high proportion of CAFs and the OS
of glioma patients.

Construction of Prognostic Gene
Signatures of Cancer-Associated
Fibroblasts Which Are Related to the
Status Gliomas
After calculating the proportion of CAFs in the CGGA
mRNAseq_693 and mRNAseq_325 cohorts, the training cohorts
were stratified into high and low subtypes according to the
median of CAFs. Subsequently, univariate Cox regression
analysis was conducted on both datasets of DEGs to screen
for genes related to prognosis (with P < 0.001). Through
a crossover analysis of the two DEGs sets, 104 genes
were obtained. Eleven genes related to the total survival
of glioma patients were obtained via multivariate Cox
regression analysis (P < 0.001). The risk of overfitting was
minimized using the LASSO regression algorithm. The risk
score was calculated according to the expression level and
regression coefficient of six genes (ABCC3, CTHRC1, MSR1,
PDLIM1, TNFRSF12A, and CHI3L2) (Figures 3A,B). The risk
score = (ABCC3× 0.00530703547540297)+ (PDLIM1× 0.0015
8225241997429) + (CHI3L2 × 0.0000527762285183538)
+ (MSR1× 0.00118065457455651)+ (CTHRC1× 0.004799633
48819953) + (TNFRSF12A × 0.00212454022154963). The
formula was also used to calculated risk scores for the glioma
patients in the TCGA validation cohorts. Of note, the six genes
associated with the risk of glioma were highly expressed in the
high-risk group (Figure 3C). There were significant differences
in risk scores among patients with different ages in terms of
first diagnosis (P < 0.001), WHO grade (P < 0.0001), IDH
(P < 0.0001), 1p/19q (P < 0.0001) and MGMT promoter
(P < 0.001). These six genes were also mainly highly expressed
in high-grade glioma and IDH wildtype groups (Supplementary
Figures 4A–L). These results strongly demonstrated that the
risk model, based on the six genes is closely associated with the
clinical progression of glioma, therefore, could be employed as a
risk prediction model for glioma.

Survival Analysis and Pathological
Features Between High- and Low-Risk
Patients
Kaplan-Meier analysis showed that the OS of the high-risk
subtype was worse compared to that of the low-risk subtype
(P < 0.0001; Figure 4A). Additionally, the risk score was
related to a prognostic value in gliomas, stratified according
to the WHO guidelines (2016) for the grading of tumors. The
high-risk subtype was related to the low OS of the patients
with Oligodendroglioma with IDH mutant and 1p/19q co-
deletion, Astrocytoma with IDH mutant, Astrocytoma with IDH
wildtype, GBM with IDH mutant, and GBM with IDH wildtype
(Supplementary Figure 5). Next, we performed a multivariate
Cox regression analysis of the risk score and clinical-pathological
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FIGURE 1 | Flowchart of the study.

features of glioma patients. Results demonstrated that risk score
is an independent risk factor to predict the OS in patients
with glioma (HR = 1.731, 95% CI = 1.341–2.237, P < 0.001;
Figure 4B). The heatmap showed that high glioma mortality
is related to an increased risk score (Figure 4C). Furthermore,
through ROC curve analysis, the accuracy of risk score as a
prognostic factor for glioma was validated. Results showed that
the risk score could predict the OS of the CGGA cohorts (5-
year, AUC = 0.789). Of note, higher CAFs (AUC = 0.7994),
tumor histology (AUC = 0.7822), IDH status (AUC = 0.8066),
1p/19q status (AUC = 0.8163) and MGMT promotor status
(AUC = 0.5641) was shown in the high-risk group than in
the lower group (Figures 4D–I). Moreover, glioma data from
TCGA was utilized to validate the risk score. The LASSO
regression analysis was performed on the TCGA data to calculate
the patients’ risk scores using similar regression coefficients.
Subsequently, K-M survival analysis of the TCGA data was
performed to assess the risk model. Results demonstrated lower
OS in the high-risk subtype than that in the low-risk subtype
(Supplementary Figure 6A). Univariate Cox regression analysis
was conducted to explore the prognostic value of the risk score.
Results showed a significant correlation of the risk score with
OS in TCGA LGG-GBM (HR = 4.255, 95% CI = 3.538–5.117,
P < 0.001, Supplementary Figure 6B). Moreover, multivariate
Cox regression analysis demonstrated that the risk score was an
independent prognostic indicator (HR = 1.888, 95% CI = 1.438–
2.4, P < 0.001, Supplementary Figure 6C). ROC curve analysis
revealed that the risk model had a strong predictive value
for the OS of glioma patients (Supplementary Figure 6D).
Furthermore, six CAFs-related genes were highly expressed in
TCGA LGG-GBM cohorts, particularly in the high-risk subtype
(Supplementary Figure 6E), consistent with the results of CGGA
cohorts. Taken together, the results provided evidence that the
high-risk subtype is associated with low OS rate and some

clinical-pathological features, therefore, has application prospects
as a risk model based on the specific expression of the six genes.

The Risk Model for Individual Prognostic
Prediction
Nomogram is a powerful tool used to quantitatively determine
individual risk in the clinical setting by integrating various risk
factors. Herein, using a six CAFs-related genes signature, a
nomogram was constructed based on age, grade, 1p/19q gene
deletion status, and risk score to predict the probability of 3-
and 5-year OS. Meanwhile, the calculated C index was 0.760.
Each factor was graded according to its contribution to OS
(Figure 5A). The calibration curve showed a consistent actual
survival rate with the predicted survival rate (Figures 5B,C).
The accuracy of the prognostic prediction model was
verified in the TCGA cohort, and the calculated C index
was 0.844. The correction chart demonstrated that the
3- and 5-year OS corroborated with the predicted values
(Figures 5D,E). These data demonstrate that the risk model
is relatively accurate and can improve the ability to estimate
individual prognosis.

The Immune Landscape Between
Different Risk Subtypes
To determine the potential biological processes of risk
score, Spearman’s correlation analysis was performed to
identify the genes related to the risk score. Genes with
Spearman correlation coefficient ≥ 0.4 were used for GSEA
analysis. Results revealed that genes associated with risk
score were mainly associated with epithelial-mesenchymal
transformation (P < 0.0001, q < 0.0001), hypoxia (P < 0.0001,
q < 0.0001), inflammation (P < 0.0001, q < 0.0001),
interferon-gamma response (P < 0.0001, q < 0.0001), and
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FIGURE 2 | Predictive values of cancer-associated fibroblasts (CAFs) in the survival of glioma patients and its relationship with pathological characteristics.
(A) Comparison of overall survival between low and high CAFs subtypes in the Chinese Glioma Genome Atlas (CGGA) database. (B) Univariate Cox regression
analysis. Forest plot of the association between CAFs and glioma survival. (C) Multivariate Cox regression analysis showed that the CAFs was an independent
predictor of gliomas. (D–N) Distribution of the CAFs in patients stratified according to age (D), gender (E), WHO grade (F), isocitrate dehydrogenase (IDH) status (G),
1p/19q status (H), O-6-methylguanine-DNA methyltransferase (MGMT) promoter status (I), Tumor purity (J), Immune score (K), Stromal score (L), ESTIMATE score
(M), and Stemness score (N). ****P < 0.0001; ***P < 0.001; **P < 0.01; ns, no significant.

NFkB-mediated TNFα signal transduction (P < 0.0001,
q < 0.0001; Figure 6A). Furthermore, the ESTIMATE and
GSVA packages in R were employed to estimate tumor
purity, immune score, stromal score, ESTIMATE score,
stemness score, and the proportion of immune cells in
the CGGA cohort. Results showed that the high-risk
subtype was associated with a high proportion of CAFs,
high stemness score, high stromal score, high immune
score, the high ESTIMATE score, and low tumor purity
(P < 0.0001; Figure 6B). In addition, aDC, pDC, iDC,
T helper cells, macrophage, Th2 cells, Treg cells, and B
cells were rich in high-risk subtype, whereas neutrophil,

Th1 cells were rich in low-risk subtypes (Figure 6B). To
further verify that immunosuppressive cells were mainly
enriched in the high-risk group, a histogram was generated
and the proportion of immune cells in the CGGA data was
calculated via the CIBERSORT algorithm. Results revealed
that immunosuppressive cells, including Tregs and M2
macrophages, were mainly concentrated in the high-risk
subtype (Supplementary Figures 7A,B). Intriguingly, the
proportion of immune cells calculated by ssGSEA and the
CIBERSORT algorithm showed that CD4+, CD8+ T cells,
and NK cells were also enriched in the high-risk subtype
(Supplementary Figure 7C).
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FIGURE 3 | Identification of a CAFs-related six-gene risk signature for overall survival risk characteristics by least absolute shrinkage and selection operator (LASSO)
regression analysis in CGGA cohort. (A) Cross-validation for tuning parameter (lambda) screening in the LASSO regression model. (B) LASSO coefficient spectrum
of six genes in gliomas. (C) The heatmap shows the association between risk and clinic pathological characteristics of the six-gene risk signature. LASSO, least
absolute shrinkage and selection operator. ****P < 0.0001; ***P < 0.001; ns, no significant.

The Immune Checkpoint Landscape
Between Different Risk Subtypes
Previously, T cells and NK cells exhaustion have been
demonstrated to potentially facilitate cancer cells to escape
host immunity, which is linked to poor prognosis (Gonzalez-
Gugel et al., 2016; Zarour, 2016). In the present work, most
of these exhaustion markers [TIGIT (Manieri et al., 2017),
CEACAM1 (Huang et al., 2015), CTLA4 (Krummel and Allison,
1996; Postow et al., 2015), LAG3 (Ruffo et al., 2019), PD-
1 (Ishida et al., 1992; Postow et al., 2015), PD-L1 (Postow
et al., 2015), and TIM3 (Huang et al., 2015)] were highly
expressed in the high-risk subtype (Figure 7A), indicating an
elevated level of immune exhaustion in the tumors of high-
risk glioma patients. It is well known that CAFs can promote
the transformation of M1 macrophages to M2 and induce
the secretion of related cytokines to promote tumor invasion,
angiogenesis, and change the immune landscape of tumors

(Farhood et al., 2019; An et al., 2020). Therefore, we explored the
expression of chemokines and cytokines secreted by CAFs in
the high-risk subtype and the low-risk subtype. M2 macrophage
chemokines (IL10, IL13, CSF1, TGFB1, TGFB2, and TGFB3)
were found to be highly positively correlated, whereas M1
macrophage chemokines (HMGB1, TNF) were weakly positively
correlated with risk score (Zhang et al., 2021; Figures 7B,C).
Additionally, analysis of the expression of chemokines and
cytokines secreted by CAFs in the high-risk subtype and the low-
risk subtype demonstrated that most of the cytokines secreted by
CAFs were highly expressed in the high-risk subtype (Figure 7D).
Patients with a high-risk score exhibited a type I interferon
response, type II interferon response, and the activation of
pro-inflammatory functions (Supplementary Figure 7C). These
observations provided evidence that patients with a high-
risk score are eligible for and respond to immunotherapy.
Furthermore, subclass mapping was applied to compare the
expression profile of the high- and low-risk subtypes with another
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FIGURE 4 | Prognostic significance of risk signature derived risk score in the CGGA cohort. (A) Kaplan-Meier analysis of CGGA glioma patients was stratified by
median risk. (B) Multivariate Cox regression analysis showed that the risk signature was an independent predictor of gliomas. (C) Risk score distribution, patient
survival time, and glioma status. The black dotted line is the optimal threshold for classifying patients into low-and high-risk subtypes. (D–I) A high-risk score is
associated with a lower survival rate for gliomas. ROC curves showed the predictive efficiency of risk characteristics, overall survival (D), CAFs (E), Histology (F), IDH
status (G), 1p/19q status (H), and MGMT promoter methylation status (I).

published dataset containing 47 patients with melanoma that
responded to immunotherapies (Roh et al., 2017). The high-
risk subtype showed potent responses to anti–PD-1 therapy
(Bonferroni correction P = 0.01; Figure 7E).

DISCUSSION

The present study, through analysis of the CGGA and TCGA
databases of glioma, revealed that CAFs are associated with
clinical and immunological characteristics of gliomas. More
evidence shows that CAFs are an independent prognostic factor

and CAFs are enriched in patients with a poor survival rate, older
age, high tumor grade, IDH wild-type, 1p/19q non-codeletion,
and MGMT promoter unmethylation (Figures 2A-I). This work
has also demonstrated the association of a high proportion of
CAFs in glioma patients with low tumor purity and high immune
score, high stromal score, ESTIMATE score, and high stemness
score (Figures 2J-N). By intersecting the two DEGs sets and
conducting a further screen through multivariate Cox regression
analysis, the remaining prognostic genes were used for LASSO
regression analysis. Assessment of the risk score was based on
the expression of six CAFs-related genes (ABCC3, CTHRC1,
MSR1, PDLIM1, TNFRSF12A, and CHI3L2) (Figure 3). Similar
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FIGURE 5 | The nomogram can predict the prognosis of gliomas. (A) A nomogram of the gliomas cohort (training set) was used to predict overall survival. (B,C) A
calibration plot was used to predict the 3-year (B) and 5-year survival (C) in the CGGA cohorts (training set). Calibration plots for 3-year (D) and 5-year survival (E) in
the Cancer Genome Atlas (TCGA) cohort (testing set). The X- and Y-axis represent the Nomogram prediction and actual survival, respectively. The solid line
represents the nomogram of the forecast and the vertical line represents the 95% confidence interval.

to the proportion of CAFs, the risk score was correlated with
a survival rate, clinical characteristics, tumor purity, immune
score, stromal score, ESTIMATE score, and stemness score. These
data strongly demonstrate that the risk score holds great promise
as an independent prognostic factor for glioma (Figure 4).
Furthermore, independent prognostic factors were used to
construct a nomogram to directly predict individual OS based
on six CAFs-related-gene signature risk score (Figure 5). It was
revealed that the main enriched pathways in the tumor, including
epithelial-mesenchymal transformation (Shintani et al., 2016),
hypoxia (Lappano et al., 2020), inflammatory Response (Ershaid
et al., 2019), interferon-gamma response (Broad et al., 2021),
and NFkB-mediated TNFα signal transduction (Katanov et al.,
2015) were closely related to the function of CAFs. These
observations indicate that risk scores can fully reflect the function

of CAFs (Figure 6A). To explore the role of the risk score
in the TME, ssGSEA, and CIBERSORT were employed to
evaluate immune cell infiltration. Percentage analysis of immune
cells demonstrated that gliomas were mainly enriched with
macrophages and few T cells. Also, significant differences in
the abundance of immune cells between the high-and low-risk
subtypes were noted. Th1 cells were mainly enriched in the
low-risk subtype while immunosuppressive cells such as Th2
cells, Tregs, and M2 macrophages were mainly enriched in the
high-risk category. Furthermore, CD4+ T cells, CD8+ T cells,
and NK cells were highly enriched in the high-risk subtype
(Figure 6B and Supplementary Figure 7). In addition, high-
risk patients were shown to express high levels of markers of
immune cell exhaustion (Figure 7A). These data demonstrate
that although immune-activated cells are highly expressed in
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FIGURE 6 | Gene set enrichment analysis (GSEA) and immune cell infiltration analysis. (A) The GSEA of genes positively correlated with risk score. (B) Heatmap
showing immune cells infiltration by ssGSEA algorithm between low- and high-risk groups in the CGGA cohort. NES, normalized enrichment score. ****P < 0.0001.

the high-risk group, it is possible that they are in a state of
functional inhibition.

High expression of immune-related cytokines and
chemokines in high-risk subtypes provide evidence on the
relationship between CAFs and tumor-associated macrophages
(TAMs) (Figures 7B–D). Studies show that recruitment of TAMs
into the glioma environment may induce immunosuppression
and tumor promotion effects (Hambardzumyan et al., 2016).
Moreover, CAFs may promote the polarization of macrophages
to M2 macrophages and exert an immunosuppressive effect in

TME, and more, CAFs can secret cytokines and chemokines to
interact with various immune cells in the tumor environment,
contributing to the malignant transformation of tumors and
resistance to treatment (Linares et al., 2020). Therefore, secretion
factors from CAFs are promising indicators for tumor diagnosis
and prognosis, and as drug targets.

Previous evidence indicates that CCL2 in the glioma
microenvironment promotes the recruitment of Tregs and
myeloid-derived suppressor cells (MDSCs) (Chang et al., 2016).
On the other hand, CD70+ CAFs are independent markers for
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FIGURE 7 | The role of risk signature in immune microenvironment and immunotherapy. (A) Expression of immune cell exhaustion marker genes in the high- and
low-risk subtypes. (B,C) Correlation between representative macrophage chemokines and risk score, CGGA dataset (B), TCGA dataset (C). M1 macrophage
chemokines (TNF, HMGB1), M2 macrophage chemokines (IL10, IL13, CSF1, TGFB1, TGFB2, and TGFB3). (D) Cytokines secreted by CAFs high expression in the
high-risk subtype. (E) Predicting response to immunotherapy (anti-PD-1 and anti-CTLA4) in the high-and low-risk subtype based on the Submap algorithms.

poor prognosis in invasive colorectal cancer, they potentially
increase the infiltration of Tregs and promote the immune
escape of tumor cells (Jacobs et al., 2018). Immunosuppression
mediated by high expression of PD-L1 in gliomas has been
demonstrated to be potentially associated with the infiltration
of TAMs and M2 polarization (Zhu et al., 2020). Studies have
also shown that the differentiation and survival of macrophages
are dependent on the colony-stimulating Factor-1 (CSF-1), and
IL6 and the granulocyte-macrophage colony-stimulating factor
(GM-CSF) secreted by CAFs, which promote the differentiation
of monocytes into M2-like TAMs (Cho et al., 2018). Consistently,
Pyonteck et al. (2013) found that targeting TAMs with the CSF-
1R inhibitor significantly improves the survival rate of GBM
mice. These pieces of evidence indicate that CAFs and their
secreted factors orchestrate with the immune cells in the TME
to promote glioma progression.

Increasing evidence has shown that T cell dysfunction
contributes to tumor immune escape in patients with gliomas
(Mirzaei et al., 2017; Woroniecka et al., 2018). In the presence
of adenosine, activation of CD8+ T cells effectuates a decrease
in the expression of IFN-γ and tumor necrosis factor-α (TNF-
α), thereby inhibiting anti-tumor response (Takenaka et al.,

2019). Moreover, CD8+ T cells during tumorigenesis mediate
the immune editing of immunogenic tumor clones, contributing
to immune escape in murine glioma (Kane et al., 2020). The
present study, based on the six-gene signature of CAFs, reported
a higher expression of immune checkpoint molecules in high-
risk subtype tumors. It was notable that the functions of
CAFs rely on immune checkpoint activation, which induces
the loss of antigen specificity in CD8+ T cells and blocks the
activity of T cells (Lakins et al., 2018). Furthermore, evidence
indicates that to inhibit CD8+ T cells, CAFs can secrete high
levels of IL-6, which remodel the immunosuppressive TME
(Kato et al., 2018). Previous researchers also demonstrated that
CAFs can recruit and balance CD4+ effector T cell subsets
(Th1 and Th2), promoting the recruitment and differentiation
of Tregs, and facilitate the transformation of macrophages to
the M2 phenotype through frequent interactions with TAMs.
Additionally, CAFs can inhibit the ability of CD8+ T cells to
kill tumor cells. To achieve this, CAFs reduce T cell infiltration,
blocking both the cytotoxic activity of T cells and T-cell
communication in the TME (An et al., 2020; Baker et al.,
2021). Taken together, these findings support the view that CAFs
potentially inhibit CD8+ T function, promote the formation of
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MDSC, and establish an immunosuppressive TME to facilitate
the immune escape of tumor cells.

Additionally, the present work revealed the activation of
the inflammation-promoting function, type I IFN response,
and type II IFN response in the high-risk subtype (Figure
6B and Supplementary Figure 7C). The expression levels of
immune checkpoint-related genes were also higher in the high-
risk subtype (Figure 7A), demonstrating that immunosuppressed
patients in the high-risk category may respond to immune
checkpoint blockers. By predicting the response and resistance of
different risk subtypes to immune checkpoint blockers therapy,
it was intriguing that patients with high-risk scores showed
higher responses to anti-PD-1 therapy (Figure 7E). As such,
patients in the high-risk subtype are likely to be more responsive
to immunotherapy. These results demonstrate that the risk
score based on the expression of the six CAFs-related genes
is promising as a novel and reliable method for evaluating
the prognosis and clinical response to immunotherapy of
glioma patients.

More evidence shows that CAFs-induced inhibition of
immunosuppression may further enhance the response of
tumors to immunotherapy. Current evidence shows several
therapeutic strategies that target CAFs, including (i) targeting
cytokines and chemokines (such as TGF-β or IL6) through
immunotherapy, directly consuming CAFs (such as FAP-DNA
vaccine) via cell surface labeling; (ii) targeting CAFs through
the elimination of endothelial progenitors using bevacizumab,
normalizing activated CAFs (e.g., using VDR ligand calcipotriol);
(iii) targeting CAFs-derived extracellular matrix proteins or their
related signal transduction in animal models (Chen and Song,
2019; Liu et al., 2019a). Moreover, selectively targeting CAFs
using nanomedicine has been revealed to enhance the infiltration
of cytotoxic T cells and inhibits tumor growth (Zhen et al., 2017).
More importantly, the synergistic effect of blocking immune
checkpoint molecules and targeting CAFs can be achieved
by remodeling the immunosuppressive microenvironment and
achieving an immunotherapeutic response (Feig et al., 2013).
Normalization of CAFs may eliminate the tumor-promoting
effect and increase the sensitivity of treatment (Öhlund
et al., 2014; Vennin et al., 2019). Collectively, CAFs secrete
cytokines in the TME during glioma progression, interact with
immune cells, mediate the formation of the immunosuppressive
microenvironment and induce the transformation to the
malignant phenotype. Therefore, an improved understanding of
the interaction of CAFs with anti-tumor immunity is crucial in
establishing effective immunotherapy. In this regard, approaches
such as spatial transcriptomics, single-cell RNA sequencing
(Moncada et al., 2020), and organoids (Xu et al., 2021) can be
employed to comprehensively understand the Spatio-temporal
dynamics of CAFs as they interact with tumor and immune cells
and their role in TME of gliomas.

To the best of our knowledge, this is the first study to explore
the clinical features of CAFs in gliomas and establish a prognostic
signature, based on CAFs for predicting the survival outcome
of glioma patients and immunotherapy efficacy. The results are
based on public data sets analysis, therefore, more exploration is
warranted on heterogeneity in different patient groups, including

intertumoral or intratumoral heterogeneity. Also, the biological
functions of six CAFs-related genes as a prognostic signature
should be explored deeply. Notably, the roles of CAFs vary
in different patients given the complex and diverse immune
microenvironment of gliomas. Thus, the precise effects of CAFs
and their interaction with tumor cells and immune cells deserve
further clarification.

CONCLUSION

Increased CAFs infiltration in gliomas is significantly correlated
with older age, high tumor grade, IDH status, 1p/19q status
and MGMT promoter status, tumor purity, immune score,
stromal score, ESTIMATE score, stemness score, and patient
prognosis. The established risk prediction model, based on the
expression of six CAFs-related genes, has application prospects
as an independent prognostic indicator. The risk model holds
great promise in predict prognosis and immunotherapy response
in glioma patients.
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