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ABSTRACT ARTICLE HISTORY
Early identification of neonatal jaundice (NJ) appears to be essential to avoid bilirubin Received 7 March 2024
encephalopathy and neurological sequelae. The interaction between gut microbiota and Revised 9 July 2024
metabolites plays an important role in early life. It is unclear whether the composition of Accepted 31 July 2024
the gut microbiota and metabolites can be used as an early indicator of NJ or to aid clinical KEYWORDS
decision-making. This study involved a total of 196 neonates and conducted two rounds of Neonatal jaundice; 165 rRNA
“discovery-validation” research on the gut microbiome-metabolome. It utilized methods of gene sequencing; LC-MS/MS;
machine learning, causal inference, and clinical prediction model evaluation to assess the Lasso; causal inference
significance of gut microbiota and metabolites in classifying neonatal jaundice (NJ), as well as

the potential causal relationships between corresponding clinical variables and NJ. In the

discovery stage, NJ-associated gut microbiota, network modules, and metabolite composition

were identified by gut microbiome-metabolome association analysis. The NJ-associated gut

microbiota was closely related to bile acid metabolites. By Lasso machine learning assess-

ment, we found that the gut bacteria were associated with abnormal bile acid metabolism.

The machine learning-causal inference approach revealed that gut bacteria affected serum

total bilirubin and NJ by influencing bile acid metabolism. NJ-associated gut bile acids are

potential biomarkers of NJ, and clinical prediction models constructed based on these

biomarkers have some clinical effects and the model may be used for disease risk prediction.

In the validation stage, it was found that intestinal metabolites can predict NJ, and the

machine learning-causal inference approach revealed that bile acid metabolites affected NJ

itself by affecting the total bilirubin content. Intestinal bile acid metabolites are potential

biomarkers of NJ. By applying machine learning-causal inference methods to gut micro-

biome-metabolome association studies, we found NJ-associated intestinal bacteria and their

network modules and bile acid metabolite composition. The important role of intestinal

bacteria and bile acid metabolites in NJ was determined, which can predict the risk of NJ.
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HIGHLIGHT

Potential biomarkers

® Association analysis of the intestinal microbiome-metabolome found that neonatal jaundice
(NJ)-related intestinal microbiota, network modules and metabolite composition, and the
intestinal microbiota are closely related to bile acid metabolites.

® Gut bacteria were found to affect serum total bilirubin (TBIL) and NJ by influencing bile acid
metabolism through a machine learning-causal inference approach, and bile acid metabolites

affected NJ itself by affecting the TBIL content.

e NJ-associated gut bacteria and bile acids are potential biomarkers of NJ, and clinical decision-
making models based on these biomarkers have some clinical effects for disease risk prediction.

Introduction

Neonatal jaundice (NJ), also known as neonatal
hyperbilirubinemia, is clinically characterized by ele-
vated total bilirubin (TBIL) levels in serum and is
a common clinical presentation during the neonatal
period. In most cases, jaundice resolves sponta-
neously. However, a small percentage of infants
may develop severe hyperbilirubinemia or bilirubin
encephalopathy, which can lead to brain damage or
death if not diagnosed and treated promptly."* Early
identification of NJ is essential to avoid bilirubin
encephalopathy.’ Causes of NJ are complicated.
After birth, excess red blood cells are destroyed,
leading to excessive bilirubin production. In addi-
tion, the metabolic function of the newborn is
underdeveloped, resulting in slower and less effi-
cient bilirubin metabolism. Finally, factors such as
infection, hypoxia, hemorrhage, and gut dysbiosis
can contribute to elevated TBIL levels,"*”

The gut microbiota plays an important role in
human health, and disruptions in this microbiota
during the newborn stage may have major implica-
tions on the development of the immune system
and adult health.>” NJ is characterized by elevated
TBIL levels in serum, which are associated with
abnormalities in bilirubin intestinal and hepatic
circulation. The gut microbiota plays an important
role in the excretion of bilirubin.*® Research found
that the serum TBIL levels in germ-free mice were
higher than in non-germ-free mice.'’ According to
related research, downregulating Bifidobacterium
species, including B. adolescentis, B. bifidum, and
B. longum, was linked to higher serum TBIL levels.
It is suggested that the gut microbiota may be
involved in bilirubin metabolism."" The current
understanding is that the gut microbiota and hepa-
tointestinal signal transduction directly participate
in the metabolism and excretion of bilirubin. That
is, unconjugated bilirubin, which is produced when



red blood cells are destroyed, enters the liver first
and is discharged from the liver by combining with
UDP-glucuronic acid to form conjugated bilirubin
(glucuronic acid ester). Most of the conjugated
bilirubin excreted out of the liver enters the biliary
tract, where the conjugated bilirubin is broken
down by intestinal bacteria and reduced to urinary
bilirubin and excreted in the feces.'>">

We previously conducted a metagenomic asso-
ciation study on neonates with breast milk jaundice
and cholestatic jaundice, and found that the
changes in the gut microbiota of these neonates
were related to an increase in serum bilirubin.
The neonates with jaundice exhibited significantly
lower abundance of Bifidobacterium bacteria and
genes related to galactose metabolism, which was
negatively correlated with serum TBIL levels.

It is known that Bifidobacterium is directly
involved in the utilization of galactooligosacchar-
ide (GOS)' and converts GOS to galactose and
UDP-glucose via the galactose metabolism path-
way. Considering that UDP-glucose, the product
of galactose metabolism, is the precursor of
UDPGA, and UDPGA is directly involved in the
formation of direct bilirubin, we hypothesized that
the gut microbiota and metabolites may play an
important role in the development of jaundice. We
also studied the metabonomics of gut metabolites
in neonates with jaundice and healthy controls.
Based on machine learning and a causal inference
approach, we found that gut metabolites can dis-
tinguish jaundice from healthy neonates, and the
change in gut metabolites in neonates with jaun-
dice showed that branched-chain amino acids were
positively correlated with serum TBIL."> This
further confirmed that intestinal metabolites play
an important role in the occurrence and develop-
ment of jaundice.

An accurate disease risk prediction model is
important for identifying low-risk and high-risk
individuals with respect to NJ. This is due to the
fact that, if neonates belong to the high-risk cate-
gory, targeted screening and interventions can be
provided to address their risk of disease, and if they
fall into the low-risk category, unnecessary screen-
ing and intervention can be avoided. The observa-
tional relationship between suspected risk factors
and results does not always indicate that the inter-
vention of risk factors will have a causal
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relationship with the results (correlation is not
causality).'® The causal inference method is used
to find the potential causal relationship from the
correlation results.'”” We previously used multi-
omics bioinformatics analysis of the metagenome-
metabolome to capture key bacteria involved in
critical glutamate metabolism in the gut microbiota
of individuals with autism, and discovered the
increase in the bile acid-metabolizing bacterium
Eggerthella lenta and its interaction with glutamate
metabolism.'® The recent development of causal
science research methods has also accelerated the
process of using multi-omics techniques to reveal
the potential pathogenesis of complex diseases.'”*’

In this study, we explore the bacteriome-
metabolome data landscape of NJ through
a “multi-omics” approach, and utilize the causal
effect evaluation method of machine learning to
gain a comprehensive understanding of the gut
microbiota and metabolite composition that affects
NJ, and to validate these findings with the expecta-
tion of discovering key bacterial and metabolite
molecules for the early diagnosis of NJ.

Methods
Participants and sample collection

This study included 98 NJ newborns and 98 healthy
control (HC) newborns. The study was divided into
two stages: the discovery stage and the validation
stage. In total, 68 NJ newborns and 68 HC newborns
were included in the discovery stage, and 30 NJ
newborns and 30 HC newborns were included in
the validation stage. NJ, also known as neonatal
hyperbilirubinemia, was diagnosed with reference
to the American Academy of Pediatrics
Intervention Guidelines for Neonatal Jaundice®!
and the Expert Consensus on the Diagnosis and
Treatment of Neonatal Hyperbilirubinemia of
Neonatal Group of Neonatology of the Pediatrics
Branch of the Chinese Medical Association.”” The
inclusion and exclusion criteria are detailed in the
Supplementary Appendix. The neonates were cate-
gorized as either NJ or HC based on their serum
bilirubin level (total bilirubin, TBIL), which was
measured using a Beckman Coulter automatic bio-
chemistry analyzer during their hospitalization
(Beckman Coulter, CA, USA).
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The researchers wore masks and gloves, and
used sterilized disposable fecal sampling tubes to
collect the feces excluded from newborns after
birth, so as to avoid artificial pollution. Then
transported on ice overnight to our laboratory,
then immediately dispensed at 3-5g/tube and
stored at -80°C. The hospital’s medical ethics
committee approved the study methodology,
which followed the Declaration of Helsinki, and
the parents of each newborn provided written
informed consent.

Gut microbiome analysis

Refer to our published articles,”> ** for detailed
methodology on 16S rRNA gene sequencing and
bioinformatic  analyses (detailed in the
Supplementary Appendix).

Gut metabolome analysis

Refer to previously published articles'®*°"*® for

detailed methodology on the analysis of NJ-
associated gut metabolites. Fecal bile acids were
detected and analyzed by targeted metabonomics
and UPLC-QQ-MS/MS (detailed in the
Supplementary Appendix).

Gut microbiome-metabolome association

Network module analysis

First, the corAndPvalue function in the
R package WGNCA (version 1.72-1) was used
to calculate the correlation coefficient of species.
Then, the R-package multitest (version 2.54.0)
was used to correct the statistically significant
p value derived from the Benjamini - Hochberg
procedure, and the corrected p value was less
than 0.001 and the absolute value of the corre-
lation coefficient was greater than 0.8, which is
defined as a significant co-occurrence network.
Then, the R package igraph (version 1.5.1) was
used to visualize the network structure. Finally,
the linear correlation analysis of species abun-
dance with clinical variables and metabolites of
the top four network modules was completed by
the geom_smooth and stat_cor functions in
ggplot2 (version 3.4.4) of the R package.

Mantel test

First, based on all or well-grouped species variables
and environmental variables matrices, the
Mantel_test function in R package linkET (version
0.0.7.4) was used to perform a mantel test to deter-
mine the correlation between the two matrices.
Then, the correlation function in R package
linkET was used to determine the correlation coef-
ficient matrix between environmental variables.
Finally, qcorrplot in the R package linkET was
used to visually show the correlation between the
two matrices.

Procrustes analysis

Procrustes analysis is a method of comparing
the consistency of two sets of data by analyzing
the shape distribution. The principle is least-
squares orthogonal mapping, which means
finding the canonical shape by constant itera-
tion, and using the least-squares method to
determine the affine variation in each object
shape compared with the standard shape.
Procrustes analysis was completed using the
R package vegan, with reference to a previous
publication.* First, principal component analy-
sis (PCA) dimensionality reduction was per-
formed through the rda function on the two
datasets separately and the coordinates of the
feature axes (which represent linear combina-
tions of the sets of variables) were extracted for
comparison. Then, through the procrustes
function, and using the parameters: permuta-
tions = how, nperm =999, we obtained the
deviation sum of squares M2 statistic and the
p value after a 999 permutations test. Finally,
images were displayed through the R package

ggplot2.

Survival analysis

A Kaplan - Meier survival curve was constructed
using the KaplanMeierFitter function of the
Lifelines package (version 0.26.4) of Python soft-
ware (version Python 3.7.6). When conducting
univariate survival analysis, we first set up the
time variable and the event variable, then com-
pared the differences. Statistical significance was
achieved by the logrank_test function of the statis-
tics module of the lifelines package, and a p value of
less than 0.05 was regarded as significant.



Multivariate survival analysis was conducted
through the lifelines package CoxPHFittert
function.

Causal inference analysis

Causal mediation analysis

The principle of causal mediation analysis was
to identify and explain the causal link between
the independent variable (X) and the dependent
variable (Y) by introducing a mediating variable
(M). We carried out causal mediation analysis as
described in the Supplementary Appendix, in
accordance with our earlier research.?®

Structural equation model (SEM)

First, based on either gut microbiota genus level
data (profile) or gut bile acid data (profile), the
vegdist and pcoa functions in the R package
Vegan (version 2.6-4) were used to count the
Bray - Curtis distances and perform principal co-
ordinates analysis (PCoA), respectively, and the
resulting first axis (PC1) was used to represent
the microbial community or bile acid beta-
diversity. Second, for the data of PC1 and the vari-
ables to be studied, the scale in the R package base
(version 4.2.3) was used to standardize the data,
and a set of structural equations of “Y~X” was
constructed. The sem function in the R package
lavaan (0.6-16) was used to fit the model. The
parameter estimates function in the R package
lavaan was used to obtain the model’s partial
regression coefficients (estimate), the execution
intervals, and the p value. The fitMeasures function
in the R package lavaan was used to assess the
reliability of the model parameters, with p > 0.05
implying the reliability of the model, i.e., the model
predictions were not significantly different from
the actual observations. Finally, the semPaths func-
tion in the R package semPlot (version 1.1.6) pro-
vided an alternate visual presentation of the
structural equation model.

Machine learning-causal inference

As per our prior research studies and as
explained in the Supplementary Appendix, causal
inference based on machine learning was com-
pleted through the Microsoft DoWhy library

16,30
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(https://github.com/microsoft/dowhy.) and the
EconML library (https://github.com/econml/).

Clinical predictive modeling evaluation

A clinical prediction model for NJ was constructed
through accuracy assessment, clinical effect assess-
ment, and risk prediction (as detailed in the
Supplementary Appendix).

Machine learning models

Lasso machine learning, the lasso+xgboost model,
and the random forest model were adopted. For
details, refer to previously published articles®”*'
and the Supplementary Appendix.

Other analysis

To evaluate the correlation between the clinical
manifestations and gut microbiota composition/
metabolites with significant differences between
groups, the Im function in the R software was
used to construct the logistic regression model,
and the p value and coefficient of determination
(R-squared) of the logistic regression model were
obtained through the summary function. The
R package beeswarm was used to draw boxplots
and scatterplots, and p values with significant dif-
ferences were obtained by referring to the wilcox.
test function. A ridgeline plot was completed using
the R package ggplot2 and a personalized script.
Species diversity analysis (Shannon index) and
radar diagrams were constructed using persona-
lized scripts. The correlation heatmap was com-
pleted by the labeledHeatmap function in the
R package WGCNA, and significance was set to
an absolute value of Spearman’s correlation coeffi-
cient greater than 0.3 and a p value less than 0.05.

Results
Participant information and composition

This study included 98 NJ and 98 HC neonates. Of
these, 68 NJ and 68 HC neonates were included in
the discovery stage, and 30 NJ and 30 HC neonates
were included in the validation stage. The overall
study design is shown in Figure 1. Comparison of
the characteristics between the NJ and HC groups
in the discovery stage, revealed 73 males (38 in the
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Figure 1. Flow chart of the study design. A total of 98 neonates with neonatal jaundice (NJ) and 98 healthy control (HC) neonates were
included in this study, which was divided into two stages: the discovery stage and the validation stage. We collected initial feces
samples from 68 neonates with NJ and 68 HC neonates in the discovery stage, and 30 neonates with NJ and 30 HC newborns in the
validation stage. In the discovery stage, 16S rRNA gene sequencing technology was used to obtain the gut microbiota composition of
each sample, and with the same batch of samples, liquid chromatography with tandem mass spectrometry (LC-MS/MS) was used to
obtain the metabolome composition of each sample. Then, gut microbiota association analysis was used to obtain the nj-associated
gut microbiota composition, while metabolome association analysis was used to obtain the nj-associated metabolite composition. Gut
microbiome-metabolome association analysis was employed to discover NJ/clinical indices-associated gut bacteria and bile acids. To
further understand the association of gut bacteria/bile acids with NJ, we assessed the key bacteria and bile acids with causal effects on
NJ/clinical indices based on causal mediation analysis. Then, we constructed a causal model based on a machine learning-causal
inference method. Finally, clinical prediction models based on gut bacteria and bile acids were constructed and used for clinical effect
assessment and risk prediction, while random forest machine learning methods were used to assess the clinical diagnostic potential of
gut bacteria and bile acids. In the validation stage, we used targeted metabonomics detection to determine the composition of
intestinal metabolites. The machine learning method was used to evaluate the importance of metabolites in the classification of NJ,
and a clinical prediction model was constructed for NJ based on intestinal metabolites.

NJ group and 35 in the HCs), 20 preterm newborns
(4 in the NJ group and 16 in the HCs), and 99
vaginal deliveries (55 in the NJ group and 44 in the
HCs), as shown in Figure 2(a). The statistical ana-
lyses was shown in Supplementary Appendix.

NJ-associated gut bacteria network module

Comparing the gut microbial diversities between
the groups revealed significantly lower Shannon
diversity indices in the NJ group than in HCs
(Figure 2(b)). Non-metric multidimensional scal-
ing (NMDS) analysis showed significant cluster-
ing between the intestinal flora of the NJ and HC
groups (Figure 2(c)). Anosim analysis confirmed
differences between the two subgroups (Figure 2
(d)). Then, we used 16S rRNA sequencing-based
molecular ecological networks (MENs) and visua-
lization tools to reveal the interrelationships

among gut microbes between groups. The results
revealed a gut microbial interaction network of
798 nodes (operational taxonomic units, OTUs)
and 19,791 links (interactions) for the NJ group,
compared with 788 nodes and 29,462 links (inter-
actions) for the preterm infant group. While
more nodes but fewer links were observed in
the networks constructed by the HC and term
infant groups (Figure 2(e)). Based on the differ-
ences in sex and the use of antibiotics, we also
used MENSs to reveal the relationship between the
two groups of intestinal microorganisms. The
results showed that in the antibiotic use group,
fewer nodes but more links were observed. By
contrast, more nodes but fewer links were
observed for male newborns than female new-
borns (Figure S1A). We used a chord diagram
to visually analyze the gut microbial composition
between the NJ and HC groups, and both groups
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Figure 2. Nj-associated gut bacteria network module. (a) Comparison of clinical phenotypes between the NJ and HC groups; (b)
diversity of fecal microorganisms in both groups. The vertical coordinate represents the Shannon index, with larger values indicating
a higher response biodiversity (i.e.,, more species indicates that the samples were more evenly distributed). The gut microbiota
diversity was significantly lower in neonates with jaundice than in the controls, ***p value < 0.001; (c) NMDS analyses between the NJ
and HC groups; (d) anosim analysis showed differences between the two subgroups (R=0.1647, p=0.001); (e) visualization of
molecular ecological networks (MENs) constructed based on the structure of the gut microbiota. Large modules with =5 nodes are
shown in different colors, and smaller modules are shown in gray; (f) the gut microbiota composition of the NJ and HC groups as
shown in chord diagrams; (g) relative abundance of the gut microbiota in the NJ and HC groups at the phylum level; (h) module
diagram based on the construction of the gut microbiota; (i) comparison of the relationship between modules with different gut

microbiota abundances and TBIL levels.

were found to be dominated by the phyla
Firmicutes and Proteobacteria (Figure 2(f)).
Then, we further analyzed the gut microbiota
composition between the NJ and HC groups at
the phylum level, and a higher percentage of
Proteobacteria was detected in the NJ group
than the HC group, and a lower ratio of
Firmicutes was detected in the NJ group than
the HC group (Figure 2(g)). The different gut
microbiotas were then categorized into four mod-
ules based on their abundance (Figure 2(h)), with
the highest abundance of Firmicutes in Module 1,
the highest abundance of Proteobacteria in
Modules 2 and 3, and the highest abundance of

Bacteroidetes and Firmicutes in Module 4. Then,
we compared the relationship between modules
with different gut microbiota abundance and
TBIL, and a significant negative correlation was
detected between all of the modules and TBIL
(Figure 2(i)).

Gut microbiome-metabolome association analysis

In the discovery stage, considering the same batch of
samples, we determined the composition of the gut
microbiota by 16S rRNA gene sequencing and deter-
mined the composition of metabolites by metabolo-
mics detection by liquid chromatography and
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tandem mass spectrometry (LC-MS/MS). We then
performed gut microbiome-metabolome association
analysis.

Based on the microbiome association analy-
sis, we identified 68 significantly different
members of the gut microbiota based on com-
position, the vast majority of which (59/68)
were enriched in the HC group. Only nine
bacteria showed significant enrichment in the
NJ  group, namely Erysipelotrichaceae,
Erysipelotrichales, Erysipelotrichia, Escherichia
coli, Gammaproteobacteria, Staphylococcaceae,
Staphylococcus, Staphylococcus warneri, and
unidentified Enterobacteriaceae (Table S1).

Association analysis based on metabonomics
revealed 48 different compositions of gut meta-
bolites, most of which (28/48) were enriched in
the HC group, with 20 metabolites significantly
enriched in the NJ group (Table S2).

We assessed whether the NJ-associated gut micro-
biota could distinguish between the NJ and HC
groups by PLSDA analysis, and the results showed
that it was able to distinguish between the groups to
some extent. Plsdal could explain 18.61% of the
compositional variance of the gut microbiota and
the samples were well separated along the plsdal
axis, whereas plsda2 could explain 7.6% of the gut
microbiota compositional variation (Figure 3(a)).
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Figure 3. Analysis of the nj-associated gut microbiota and metabolites. (a) Results of PLSDA analysis indicate that the nj-associated gut
microbiota can distinguish between the NJ and HC groups to some extent; (b) results of PLSDA analysis indicate that nj-associated gut
metabolites can distinguish between the NJ and HC groups; (c,d) results of PLSDA analysis indicate that nj-associated gut bile acids
can distinguish between the NJ and HC groups in the discovery and validation stages; (e) a strong correlation between nj-associated
gut microbiota composition and metabolite composition was found by procrustes analysis; (ff NMDS analysis shows significant
clustering of intestinal bile acids TCA and CA between the NJ and HC groups; (g) correlations between bile acids and genus-level gut
microbiota, as determined by CCA analysis; (H) mantel analysis shows a strong correlation between intestinal bacteria and bile acids;
(I) a radar chart reveals differences in the contents of intestinal bacteria and bile acids between the two groups in the discovery and

validation stages.



Additionally, we evaluated whether NJ-associated gut
metabolites could distinguish between the NJ and HC
groups by PLSDA analysis, and the results demon-
strated that they were able to distinguish between the
groups. Plsdal and plsda2 explained 27.52% and
5.18% of the variation in the gut microbiota composi-
tion, respectively, and the samples were well separated
along the plsdal axis (Figure 3(b)). Then, we evalu-
ated whether NJ-associated gut bile acids could dis-
tinguish between the NJ and HC groups by PLSDA
analysis, and the results demonstrated that they could
distinguish between the groups. Plsdal and plsda2
explained 42.14% and 16.91% of the variation in the
gut microbiota composition in the discovery stage,
respectively (Figure 3(c)), and 35.77% and 11.45% of
the variation in the gut microbiota composition in the
validation stage, respectively (Figure 3(d)).
Furthermore, we used Procrustes analysis, a method
of assessing the consistency of two sets of data via
analysis of the shape distribution, to further under-
stand the association between NJ-associated changes
in gut metabolites and the NJ-associated gut micro-
biota. We found that NJ-associated gut microbiota
composition and metabolite composition were
strongly correlated (Figure 3(e)).

To further asses the differences in the gut bile
acids between the two groups, we used NMDS
analysis of the Bray - Curtis distance matrix gen-
erated from genus-level abundance. This revealed
a significant difference in the intestinal bile acids
TCA and CA between the NJ and HC groups at the
genus level (p <0.0001) (Figure 3(f)), as well as
significant differences in the bile acids TUDCA,
DCA, NutriaCA, and PHCA between the two
groups (Figure S1B).

Gut microbiota may be more relevant to bile
acid metabolites, so bile acid metabolites were
used as environmental variables and correlations
between bile acids and the gut microbiota were
found by canonical correspondence analysis
(CCA), as shown in Figure 3(g). Redundancy ana-
lysis (RDA) revealed a correlation between the gut
microbiota and bile acid markers (Figure S1C).
Mantel analysis of all gut bacteria with bile acid
markers confirmed a significant correlation (Figure
S1D), and furthermore revealed a strong correla-
tion between intestinal bacteria markers and bile
acids (Figure 3(h)). We further compared each bile
acid level between the two groups and found that
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there was a significant difference in bile acids
between the two groups, as shown in Figure S2.
The radar chart revealed that there were differences
in the contents of intestinal bacteria and bile acids
between the two groups in the discovery and vali-
dation stages (Figure 3(i)).

The length of an environmental parameter
arrow indicates the strength of the environmental
parameter with regard to the overall gut micro-
biota. The results showed that there was
a significant correlation between these seven bile
acids and the gut microbiota. We performed
a biological pathway enrichment study on NJ-
associated metabolites to gain a deeper under-
standing of their biological significance. The results
showed enrichment of the pathway linked to bile
acids (Figure S3A). We also carried out enrichment
analysis according to the type of disease, and found
that enrichment was linked to recurrent
Clostridium difficile infection, with the metabolites
involved being the metabolites of bile acids
(Figure S3B).

To further understand the correlation between
NJ-associated gut metabolites and bile acids, we
performed Procrustes analysis and found a strong
association between NJ-associated gut metabolite
composition and bile acids (Figure S4A). We
further analyzed the correlation between NJ-
associated gut bacteria and bile acids, and the
results confirmed this correlation (Figure S4B).

Machine learning approach discovers bacteria
associated with bile acids

Considering that NJ-related metabolites are
enriched to bile acid-related pathways, we next
focused on bile acid metabolites and investigated
bacteria associated with bile acid metabolites by the
Lasso machine learning method. Among the enter-
obacteria, Lactobacillus reuteri had a positive effect
on gut taurodeoxycholic acid (Figure S4C),
Rikenellaceae  and  Ruminococcaceae  had
a negative effect on gut 1beta hydroxycholic acid,
and Staphylococcus had a positive effect on lbeta
hydroxycholic acid (Figure S4D). The enterobac-
teria positively affecting gut butylcholic acid were
Gammaproteobacteria and  Erysipelotrichales,
whereas Ruminococcaceae had a negative effect on
cholic acid (Figure S4E). The gut bacterium
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positively affecting deoxycholic acid was
Gammaproteobacteria, whereas Rikenellaceae and
Ruminococcaceae had a negative effect on deoxy-
cholic acid (Figure S4F). Two other bile-related
acid derivatives, glycerophosphocholine and
nutriacholic acid, were also affected by intestinal
bacteria, with Alistipes and Acidobacteria positively
affecting intestinal glycerophosphocholine (Figure
$4G) and E. coli positively affecting nutriacholic
acid (Figure S4H).

Further, we evaluated the potential of Lasso
machine learning to assess the gut microbiota
abundance for predicting the content of gut bile
acids, and found that in addition to the content of
gut bile acids 1beta hydroxycholic acid and nutria-
cholic acid being predicted based on the gut bac-
teria (Figure S41, J), NJ can also be predicted based
on the gut bacteria (considering NJ to be 1 and HC
to be 0) (Figure S4K). We focused on five bacteria
(Acinetobacter, Alistipes, L. reuteri, Rikenellaceae,
Ruminococcaceae) (Figure S5A — E) with signifi-
cant decreases in abundance in the NJ group and
one bacterium that significantly increased in abun-
dance in the NJ group (Gammaproteobacteria)
(Figure S5F), to learn more about the connection
between bile acids and the intestinal bacteria linked
with NJ.

Using the networkx software for network rela-
tionship analysis, it was possible to observe the
complicated network link between the bacteria in
the gut and bile acids associated with NJ in the
discovery and validation stages (Figure S6A, B).

We also assessed the linear relationship between
NJ-associated gut microbiota and bile acids. It was
discovered that the quantity of intestinal bacterial
Rikenellaceae and the content of intestinal bile acid
(taurocholic acid) and its product, glyceropho-
sphocholine, were positively correlated. The abun-
dance of enteric bacteria Alistipes was positively
correlated with gut bile acid derivative glyceropho-
sphocholine, and the gut bile acid taurodeoxycholic
acid showed a positive relationship with the abun-
dance of gut bacterium L. reuteri (Figure S6C - F).

NJ-associated bacterial/bile acid metabolites
correlate with serum TBIL levels

To understand the clinical significance of NJ-
associated bacterial and bile acid metabolites, we

performed a heatmap correlation analysis of NJ-
associated gut bacterial/bile acid metabolites with
clinical indicators in the discovery and validation
stages (Figure 4(a,b)). The results showed that NJ-
associated gut bacteria/bile acids were positively/
negatively correlated with TBIL to varying degrees.
At the same time, we analyzed the content of bile
acids at different TBIL levels using a ridgeline plot
(Figure 4(c,d)). We also analyzed the distribution
of bile acids in the NJ and HC groups at different
breastfeeding durations and at different white
blood cell levels using a ridgeline plot (Figure
S7A, B).

Then, we correlated NJ-associated bile acid
metabolites with clinical indicators and the results
showed that the NJ-associated intestinal primary
bile acid taurocholic acid and the bile acid deriva-
tive glycerophosphocholine were significantly
negatively correlated with serum TBIL levels
(Figure 4(e)). Moreover, there was a negative rela-
tionship between serum TBIL levels and the sec-
ondary bile acid tauroursodeoxycholic acid.
Meanwhile, we correlated the abundance of gut
bacteria with clinical indicators and showed that
the abundance of gut bacteria Acinetobacter,
Alistipes, Rikenellaceae, and Ruminococcaceae,
which affect bile acid levels, was negatively corre-
lated with serum TBIL levels (Figure S7C). We also
analyzed other clinical indicators, which showed
that gut bacteria and bile acid levels were less
affected by mode of delivery between groups with
different modes of delivery in the discovery and
validation stage (Figure S8).

We assessed the relationship between TBIL
and NJ-associated intestinal bacteria and metabo-
lites using survival analysis, and discovered that
there was a significant difference in the increase
in TBIL between the NJ and HC groups, with the
NJ group experiencing a greater increase as the
abundance of the intestinal bacteria
Acinetobacter, L. reuteri, and Rikenellaceae
decreased. With the rise in the gut bile acid
derivative nutriacholic acid, the increase in
TBIL was significantly different between the NJ
and HC groups, with a greater increase in the NJ
group (Figure S9A). As the intestinal primary bile
acid cholic acid increased and the secondary bile
acid tauroursodeoxycholic acid decreased, there
was a significant difference in the magnitude of
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Figure 4. Correlation between nj-related intestinal bacteria and bile acids and clinical phenotype. (a,b) correlation heatmap between
nj-related intestinal bacteria and bile acids and clinical phenotype in the discovery (a) and validation (b) phases; (c,d) nj-related bile
acids are correlated with TBIL in the discovery (c) and validation (d) phases; (e) nj-related bile acid TCA and bile acid derivative
glycerophosphocholine were negatively correlated with TBIL in the discovery stage; (f) nj-related bile acid TCA was negatively
correlated with TBIL in the validation stage; (g,h) survival analysis to assess the relationship between nj-associated gut bacteria and
bile acid metabolites and TBIL in the discovery (g) and validation (H) stages.

the rise in TBIL between the NJ and HC groups,
with a greater rise in the NJ group (Figure 4G).
In the validation stage, as the gut bile acids
NorCA and THDCA decreased, there was
a significant difference in the magnitude of the

rise in TBIL between the NJ and HC groups, with
a greater rise in the NJ group (Figure 4(h)). As
the intestinal bile acids THDCA, THCA, TDCH,
and TPMCA declined, the difference in the mag-
nitude of TBIL increase between the NJ and HC
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groups was significant, with a greater increase in
the NJ group (Figure S9B).

Potential causal effects of NJ-associated bacterial/
bile acid metabolites with NJ

Considering the correlation between NJ-associated
bacteria/bile acid metabolites and serum TBIL
levels of NJ and clinical indicators, we used causal
mediator analysis to assess the causal relationships
between bile acid-associated bacteria, bile acids,
and core clinical indicators to better understand
whether NJ-associated bacteria impact on bile
acid metabolism, serum TBIL levels, and clinical
indicators.

The results of the causal mediator analysis
showed that intestinal bacteria not only affect the
concentrations of TBIL, serum direct bilirubin
(DBIL), and alanine aminotransferase (ALT)
(Figure S10), which are the clinical markers of NJ,

(a)
Causal Mediation Analysis
NJ

Acinetobacter betaHCA

1 No
Alistipes CA
. s s
E_coli ,\: b DCA
Gammaproteobacteria
o GPC
L_reuteri A ke
RO i Yes
Rikenellaceae - . - -
Ruminococcaceae .. TEA
S_warneri TUDCA
treatment_name mediator_names ACME_sig

()

chisq = 0.930106675
df = 1; pvalue: 0.334835207

but also affect NJ itself by affecting the levels of bile
acids (Figure 5(a)). Furthermore, intestinal bile
acid metabolites affect NJ by influencing TBIL
levels in the validation stage (Figure 5(b)). We
further tested the causal model using structural
equation modeling (SEM), and a p value > 0.05
suggested that the model was reliable, as shown in
Figure 5(c,d).

Construction of a clinical prediction model based on
NJ-related bacterial/bile acid metabolites

To understand the potential clinical applications of
NJ-related bacterial/bile acid metabolites, we
further screened gut bacterial and bile acid vari-
ables affecting NJ using Lasso machine learning.
We found nine significant variables (Figure 6(a)),
including three bacteria and six bile acids (Figure 6
(b)). The optimal model formulas and evaluations
are shown in Figure S11A. Taurocholic acid,

(b) validation
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alpha-MCA
DCA No
GCDCA
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T-beta-MCA =
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d
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df = 1; pvalue: 0.180664072
(]

Figure 5. Assessment of the potential causal effects of bile acid-related bacteria and bile acids with NJ and clinical indicators. (a,b)
causal inference analysis indicates that gut bacteria affect NJ by influencing bile acid levels in the discovery stage (a), and bile acids
affect NJ by influencing TBIL levels in the validation stage (b); (c,d) the causal inference model was tested by SEM and found to be

reliable (p > 0.05 indicates that the model is reliable).
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Figure 6. Construction of a clinical prediction model for jaundice. (a) LASSO machine learning method to filter the optimal variables for
NJ classification; (b) heatmap of the correlation of important variables, the asterisk represents a significant correlation; (c) calibration
curve, the calibration of the clinical prediction model, is an important indicator to evaluate the accuracy of a disease risk model to
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Acinetobacter, and tauroursodeoxycholic acid had
the most significant impact on the model.

Based on the nine important variables, we con-
structed clinical prediction models for the top three
important variables (top3), the top six important
variables (top6), and all important variables (all),
considering the ranking of important variables
obtained based on Lasso analysis. To assess
whether the model-predicted risks were in good
agreement with the actual occurrence risks, we
performed calibration of the clinical prediction
models and found that all models predicted risks
in good agreement with the actual occurrence risks.
The clinical prediction models based on all impor-
tant variables (all) had the highest Brier scores and
AUCs (Figure 6(c)). Given that determining
whether a patient has a particular disease using
a particular biomarker will inevitably result in
false positives and false negatives, depending on
the situation, it is sometimes preferable to avoid
false positives and sometimes preferable to avoid
false negatives.

Since neither situation can be avoided, we tried
to find a model with the largest net benefit by
decision curve analysis (DCA). As shown in
Figure 6(d), clinical decision model based on the
composition of all important clinical variables has
a certain clinical effect (net benefit). By using the
clinical impact curve to assess the clinical effect of
the model with all variables included, we were able
to determine that intervening at a threshold of <
0.6 can decrease damage and improve the benefit
(Figure 6(e)). After building a logistic regression
model for NJ prediction of risk by considering all
variables, we were able to display the model using
a column-line diagram (Figure 6(f)). This demon-
strated that the model was more accurate in pre-
dicting the risk of severe NJ (SFigure S11B, SC).

To evaluate the potential of gut bile acids for the
early diagnosis of NJ, we constructed classifiers

based on the random forest model. The first three
intestinal bile acids (i.e., TUDCA, TCA, DCA) had
an AUC value of 0.909 for NJ classification and the
AUC value for the first five intestinal bile acids
used for NJ classification was 0.921, suggesting
that gut bile acids are potential biomarkers for NJ
(Figure 6(g)). To evaluate the potential of intestinal
bile acids for the early diagnosis of NJ, a classifier
was constructed based on the random forest model.
The AUC value of the first three bile acids (i.e.,
TCA, THCA, NorCA) for NJ classification was
0.993 (Figure 6(h)), suggesting that intestinal bile
acids are potential biomarkers of NJ.

Discussion

It is uncertain how early-life interactions between
the human gut microbiota and the metabolome
contribute to human disease. It is essential to gain
a comprehensive understanding of the bacteria
engaged in bile acid metabolism in the gut since
the gut microbiota is both impacted by and impli-
cated in bile acid metabolism. Bile acids are steroid
molecules derived from cholesterol that play an
important role in energy balance, host metabolism,
and maintenance of innate immunity through
G protein-coupled receptors and/or nuclear
receptors.”” There are complex interactions between
the gut microbiota and bile acids. Bile acids promote
the growth of bile acid-metabolizing bacteria and
inhibit the growth of other bile-sensitive bacteria to
reshape the gut microbiota. Additionally, the gut
microbiota can modify primary bile acids into sec-
ondary bile acids by producing a variety of enzymes,
such as bile salt hydrolase and hydroxysteroid dehy-
drogenase, to influence the metabolism of bile acids
and the composition of the bile acid pool, further
degrading the bile acids by other enzymatic mechan-
isms, thus helping to maintain cholesterol
homeostasis.>

jaundice, and the vertical coordinate is the net benefit (NB) after subtracting the positives from the negatives. It can be seen that the
clinical decision model consisting of important variables has some clinical effect; (e) clinical impact curve, using a model consisting of
all variables to predict the risk stratification of 1,000 individuals, showing the “loss:benefit” axis, assigned to eight scales, the red curve
(number of high risk) indicates the risk stratification at each blue curve (number of high risk with outcome) is the number of true
positives at each threshold probability. From the graph it can be seen that intervention at a threshold of < 0.6 can reduce injury and
increase benefit. The number of individuals classified as positive (high risk) by the model under the rate; (f) the risk of NJ occurrence
can be predicted based on the clinical prediction model; (g,h) nj-associated bile acids are potential biomarkers for NJ in the discovery

and validation stages.



In this study, we investigated the composition of
the gut microbiota during NJ by means of
a network visualization and analysis method. We
discovered that the composition of the intestinal
flora of jaundiced newborns was significantly less
diverse than that of HC neonates.

It is well-established that the gut microbiota plays
an important role in human health by participating in
bile acid metabolism. We identified the NJ-associated
gut microbiota and metabolite composition by gut
microbiome-metabolome association analysis, and
found that the NJ-associated gut microbial composi-
tion is closely related to metabolite composition.

It is a challenging task to identify the important
gut microbes, metabolites, and phenotypic charac-
teristics from high-throughput multi-omics data,
such as microbiome and metabolome data, and
host phenotypic characteristics. In this study, we
identified NJ-associated gut microbiota and meta-
bolites by gut microbiome-metabolome association
analysis. The gut microbiota is directly involved in
the process of bile acid metabolism. It is known
that cholesterol is catalyzed by hydroxylase in the
liver to produce primary bile acids, which are
transformed into secondary bile acids under the
action of intestinal bacteria after entering the intes-
tine. The majority (>95%) of bile acids in the intes-
tine can be reabsorbed back into the liver through
the enterohepatic circulation, and only a small pro-
portion (5%) are excreted through feces.”
Alterations in the structure and function of the
intestinal flora may directly affect the enterohepatic
circulation of bile acids. We found that the
decreased abundance of bacteria such as
Acinetobacter, L. reuteri, and Rikenellaceae in the
intestinal tract of newborns with NJ was closely
associated with abnormalities in bile acid metabo-
lism. Related studies have found that disturbances
in bile acid metabolism mediated by the gut micro-
biota play an important role in human liver disease.
An altered gut microbiota and bile acid composi-
tion in patients with primary sclerosing cholangitis,
and loss of negative feedback control of bile acid
synthesis mediated by intestinal flora leads to
increased hepatic bile acid concentrations and dis-
ruption of bile duct barrier function, which lead to
fatal liver damage.’® Studies have demonstrated
functional interactions between bile acid composi-
tion, gut microbiota, and metabolic phenotypes.
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We constructed a clinical prediction model for
NJ based on machine learning, which enabled the
accurate prediction of high-risk individuals. Gut
microbiome-metabolome association analysis
identifies many gut microbiota and metabolites
related to NJ; however, the challenge is filtering
out the important variables. Lasso offers advan-
tages in the screening of important clinical vari-
ables related to disease. Our previous study was
based on the LASSO method combined with meta-
bonomic analysis of serum and cerebrospinal fluid
and we identified metabolic markers associated
with neonatal sepsis in meningoencephalitis.>” In
the current study, we employed the LASSO
machine learning approach and identified nine
variables that contribute significantly to NJ.
Notably, five of these variables correlate closely
with bile acid metabolism. Furthermore, a clinical
prediction model utilizing these nine clinical vari-
ables was developed and showed promising clinical
effects in accurately predicting high-risk indivi-
duals for NJ.

Through a machine learning-causal inference
approach, we found that gut bacteria affected TBIL
levels and NJ by affecting bile acid metabolism.
Human intestinal microorganisms may encode
enzymes involved in bilirubin metabolism,”” thereby
reducing bilirubin to urobilinogen and promoting its
excretion. In addition, gut microbiota can also pro-
duce B-glucuronidase, which converts conjugated
bilirubin into free bilirubin, leading to an increase in
free bilirubin levels and thus affecting the occurrence
of neonatal hyperbilirubinemia.’**” In addition,
intestinal microorganisms can also produce hydroly-
tic enzymes that act on bile acid metabolism. It can be
seen that gut microbiota may affect bile acid metabo-
lism and bilirubin metabolism by affecting the activity
of microbial enzymes, and there is a certain correla-
tion between them. However, a correlation does not
necessarily imply causation, and evidence of causality
usually requires a combination of animal models or
clinical randomized controlled trials, which are time-
consuming and laborious. However, newly developed
machine learning methods can be used to identify
potential causal relationships from correlation results.
We have previously used the causal inference methods
of machine learning to identify oral bacteria with
a potential causal connection to autism from oral
microbiome data on autism.”
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The innovation in our study is that, first, we uti-
lized a microbiome-metabolome multi-omics
approach as opposed to a single-omics approach, as
well as causal mediation analysis and a causal infer-
ence method of machine learning to target the com-
position of the gut microbiota that influences the
metabolism of bile acids. However, our study had
some limitations. Considering the limited funds avail-
able, we used 16S rRNA gene sequencing but were
unable to obtain the functional composition of the
gut microbiota, especially the bile acid metabolizing
enzyme gene composition. Furthermore, validation
of the gut microbiota was lacking, and the causal
model requires further validation and functional
research, which will be addressed in future studies.

Conclusion

Gut microbiome-metabolome association analysis
revealed the gut microbiota and metabolite composi-
tions associated with NJ. NJ is characterized by
abnormal bile acid metabolism and is affected by
the decreased abundance of gut bacteria such as
Acinetobacter, L. reuteri, and Rikenellaceae. NJ-
associated gut bacteria and bile acids are potential
biomarkers of NJ, and the clinical prediction model
developed in this study has certain clinical effects and
can be used to predict disease risk.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This project was supported by Natural Science Foundation of
Guangdong Province, China (No. 2024A1515010590),
Shenzhen Science Technology and Innovation Commission
(No. JCYJ20220530154601004), National Natural Science
Foundation of China (No. 82071733), Longgang Science
Technology and Innovation Commission of Shenzhen
(LGKCYLWS2021000006), Fund for postdoc who stay
(come) Shenzhen (2022 batch 2), by start-up fund project of
Longgang District Maternity & Child Healthcare Hospital of
Shenzhen City (No. Y2024001), start-up fund project of
Longgang Central Hospital of Shenzhen (Shujuan Zeng),
and Sichuan Natural Science Foundation (2023NSFSC1604).
We truly appreciate the cooperation and understanding of the
infants and their parents who took part in this study, without
them, it would not have been possible.

ORCID

Mingbang Wang () http://orcid.org/0000-0002-5989-5377

Author contributions

All authors designed and executed the study and wrote the
manuscript. All authors read and approved the final manuscript.

Data availability statement

The original data of the manuscript and the scripts used for
data analysis will be made public after the manuscript is
accepted.

Ethics statement

The research was authorized by the Ethics Committee of
Longgang Central Hospital of Shenzhen (No. 2019ECYJ026).

References

1. Okolie F, South-Paul JE, Watchko JF. Combating the
hidden health disparity of kernicterus in black infants: a
review. JAMA Pediatr. 2020;174(12):1199-1205. doi:10.
1001/jamapediatrics.2020.1767.

2. Lai NM, Gerard JP, Ngim CF, Kamar AA, Chen K-H.
The association between serum bilirubin and kernic-
terus spectrum disorder: a systematic review and
meta-analysis. Neonatology. 2021;118(6):654-664.
doi:10.1159/000519497.

3. Olusanya BO, Teeple S, Kassebaum NJ. The contribu-
tion of neonatal jaundice to global child mortality:
findings from the GBD 2016 study. Pediatrics.
2018;141(2). doi:10.1542/peds.2017-1471.

4. Romero HM, Ringer C, Leu MG, Beardsley E, Kelly K,
Fesinmeyer MD, Haaland WL, Johnson JB, Migita D.
Neonatal jaundice: improved quality and cost savings
after implementation of a standard pathway. Pediatrics.
2018;141(3). doi:10.1542/peds.2016-1472.

5. Zhou SM, Wang ZX, He FS, Qiu H, Wang Y, Wang H,
Zhou ], Zhou J, Cheng G, Zhou W, et al. Association of
serum bilirubin in newborns affected by jaundice with
gut microbiota dysbiosis. ] Nutr Biochem.
2019;63:54-61. doi:10.1016/j.jnutbio.2018.09.016.

6. Mueller NT, Bakacs E, Combellick J, Grigoryan Z,
Dominguez-Bello MG. The infant microbiome devel-
opment: mom matters. Trends Mol Med. 2015;21
(2):109-117. doi:10.1016/j.molmed.2014.12.002.

7. Bolte EE, Moorshead D, Aagaard KM. Maternal and
early life exposures and their potential to influence
development of the microbiome. Genome Med.
2022;14(1):4. doi:10.1186/s13073-021-01005-7.


https://doi.org/10.1001/jamapediatrics.2020.1767
https://doi.org/10.1001/jamapediatrics.2020.1767
https://doi.org/10.1159/000519497
https://doi.org/10.1542/peds.2017-1471
https://doi.org/10.1542/peds.2016-1472
https://doi.org/10.1016/j.jnutbio.2018.09.016
https://doi.org/10.1016/j.molmed.2014.12.002
https://doi.org/10.1186/s13073-021-01005-7

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Poland RL, Odell GB. Physiologic jaundice: the enter-
ohepatic circulation of bilirubin. N Engl ] Med.
1971;284(1):1-6. doi:10.1056/NEJM197101072840101.
Dennery PA, Seidman DS, Stevenson DK, Wood AJ].
Neonatal hyperbilirubinemia. N Engl ] Med. 2001;344
(8):581-590. d0i:10.1056/NEJM200102223440807.
Tabibian JH, O’Hara SP, Trussoni CE, Tietz PS,
Splinter PL, Mounajjed T, Hagey LR, LaRusso NF.
Absence of the intestinal microbiota exacerbates hepa-
tobiliary disease in a murine model of primary scleros-
ing cholangitis. Hepatology. 2016;63(1):185-196.
doi:10.1002/hep.27927.

Tuzun F, Kumral A, Duman N, Ozkan H. Breast milk
jaundice: effect of bacteria present in breast milk and
infant feces. J Pediatr Gastroenterol Nutr. 2013;56
(3):328-332. d0i:10.1097/MPG.0b013e31827a964b.
Billing BH. Twenty-five years of progress in bilirubin
metabolism  (1952-77). Gut. 1978;19(6):481-491.
doi:10.1136/gut.19.6.481.

Hamoud AR, Weaver L, Stec DE, Hinds TD. Bilirubin in
the liver—gut signaling axis. Trends Endocrinol Metab.
2018;29(3):140-150. doi:10.1016/j.tem.2018.01.002.
Thongaram T, Hoeflinger JL, Chow ], Miller M]J.
Prebiotic galactooligosaccharide metabolism by probio-
tic lactobacilli and bifidobacteria. ] Agric Food Chem.
2017;65(20):4184-4192. doi:10.1021/acs.jafc.7b00851.
Zeng S], Wang ZX, Zhang P, Yin Z, Huang X, Tang X,
Shi L, Guo K, Liu T, Wang M, et al. Machine learning
approach identifies meconium metabolites as potential
biomarkers of neonatal hyperbilirubinemia. Comput
Struct Biotechnol J. 2022;20:1778-1784. doi:10.1016/j.
sbj.2022.03.039.

Burgess S, Foley CN, Zuber V. Inferring causal relation-
ships between risk factors and outcomes from
genome-wide association study data. Annu Rev
Genomics Hum Genet. 2018;19(1):303-327. doi:10.
1146/annurev-genom-083117-021731.

Reay WR, Cairns MJ. Advancing the use of genome-wide
association studies for drug repurposing. Nat Rev Genet.
2021;22(10):658-671. doi:10.1038/541576-021-00387-z.
Wang MB, Wan ], Rong H, He F, Wang H, Zhou ],
Cai C, Wang Y, Xu R, Yin Z, et al. Alterations in gut
glutamate metabolism associated with changes in gut
microbiota composition in children with autism spec-
trum disorder. mSystems. 2019;4(1). doi:10.1128/
mSystems.00321-18.

Liu HM, Lin X, Meng XH, Zhao Q, Shen ], Xiao H-M,
Deng H-W. Integrated metagenome and metabolome
analyses of blood pressure studies in early postmeno-
pausal Chinese women. ] Hypertens. 2021;39
(9):1800-1809. doi:10.1097/HJH.0000000000002832.
Lv BM, Quan Y, Zhang HY. Causal inference in micro-
biome medicine: principles and applications. Trends
Microbiol. 2021;29(8):736-746. doi:10.1016/j.tim.2021.
03.015.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

GUT MICROBES (&) 17

AAoPso H. Management of hyperbilirubinemia in the
newborn infant 35 or more weeks of gestation.
Pediatrics. 2004;114(1):297-316.

Subspecialty Group of Neonatology TSoP, Chinese
Medical Association. [The experts consensus on the
management of neonatal hyperbilirubinemia].
Zhonghua Er Ke Za Zhi. 2014;52(10):745-748.

Liu J, Wang MB, Chen WM, Ma ], Peng Y, Zhang M,
Wang C, Yan G, Lu G. Altered Gut Microbiota
Taxonomic Compositions of Patients With Sepsis in
a Pediatric Intensive Care Unit. Front Pediatr.
2021;9:645060. doi:10.3389/fped.2021.645060.

Li Z, Lu G, Luo E, Wu B, Li Z, Guo J, Xia Z, Zheng C,
Su Q, Zeng Y, et al. Oral, Nasal, and Gut Microbiota in
Parkinson’s Disease. Neuroscience. 2022;480:65-78.
doi:10.1016/j.neuroscience.2021.10.011.

Su YJ, Shadike Q, Wang MB, Jiang H, Liu W, Liu J,
Tuerdi R, Zhou W, Li L. A low abundance of genus
Bacteroides in gut microbiota is negatively correlated
with blood phenylalanine levels in Uygur patients with
phenylketonuria. Transl Pediatr. 2021510
(10):2521-2532. d0i:10.21037/tp-21-426.

Liu AP, Zhou W, Qu LH, He F, Wang H, Wang Y, Cai C,
Li X, Zhou W, Wang M. Altered Urinary Amino Acids in
Children With Autism Spectrum Disorders. Front Cell
Neurosci. 2019;13:7. doi:10.3389/fncel.2019.00007.
Zhang P, Wang ZX, Qiu HX, Zhou W, Wang M, Cheng G.
Machine learning applied to serum and cerebrospinal fluid
metabolomes revealed altered arginine metabolism in neo-
natal sepsis with meningoencephalitis. Comput Struct
Biotechnol J. 2021;19:3284-3292. doi:10.1016/j.csbj.2021.
05.024.

Wang T, Wang MB, Liu LM, Xie F, Wu X, Li L, Ji ],
Wu D. Lower serum branched-chain amino acid cata-
bolic intermediates are predictive signatures specific to
patients with diabetic foot. Nutr Res. 2023;119:33-42.
doi:10.1016/j.nutres.2023.08.009.

Zhao RX, Feng ], Liu J, Fu W, Li X, Li B. Deciphering of
microbial community and antibiotic resistance genes in
activated sludge reactors under high selective pressure
of different antibiotics. Water Res. 2019;151:388-402.
doi:10.1016/j.watres.2018.12.034.

Qiao Y, Gong W, Li B, Xu R, Wang M, Shen L, Shi H,
Li Y. Oral Microbiota Changes Contribute to Autism
Spectrum Disorder in Mice. ] Dent Res. 2022;101
(7):821-831. doi:10.1177/00220345211070470.

Wang MB, Doenyas C, Wan J, Zeng S, Cai C, Zhou J,
Liu Y, Yin Z, Zhou W. Virulence factor-related gut
microbiota genes and immunoglobulin A levels as
novel markers for machine learning-based classification
of autism spectrum disorder. Comput Struct Biotechnol
J. 2021;19:545-554. d0i:10.1016/j.csbj.2020.12.012.

Hu JP, Wang CK, Huang XY, Yi S, Pan S, Zhang Y,
Yuan G, Cao Q, Ye X, Li H. Gut microbiota-mediated
secondary bile acids regulate dendritic cells to attenuate


https://doi.org/10.1056/NEJM197101072840101
https://doi.org/10.1056/NEJM200102223440807
https://doi.org/10.1002/hep.27927
https://doi.org/10.1097/MPG.0b013e31827a964b
https://doi.org/10.1136/gut.19.6.481
https://doi.org/10.1016/j.tem.2018.01.002
https://doi.org/10.1021/acs.jafc.7b00851
https://doi.org/10.1016/j.csbj.2022.03.039
https://doi.org/10.1016/j.csbj.2022.03.039
https://doi.org/10.1146/annurev-genom-083117-021731
https://doi.org/10.1146/annurev-genom-083117-021731
https://doi.org/10.1038/s41576-021-00387-z
https://doi.org/10.1128/mSystems.00321-18
https://doi.org/10.1128/mSystems.00321-18
https://doi.org/10.1097/HJH.0000000000002832
https://doi.org/10.1016/j.tim.2021.03.015
https://doi.org/10.1016/j.tim.2021.03.015
https://doi.org/10.3389/fped.2021.645060
https://doi.org/10.1016/j.neuroscience.2021.10.011
https://doi.org/10.21037/tp-21-426
https://doi.org/10.3389/fncel.2019.00007
https://doi.org/10.1016/j.csbj.2021.05.024
https://doi.org/10.1016/j.csbj.2021.05.024
https://doi.org/10.1016/j.nutres.2023.08.009
https://doi.org/10.1016/j.watres.2018.12.034
https://doi.org/10.1177/00220345211070470
https://doi.org/10.1016/j.csbj.2020.12.012

18 W. CHEN ET AL.

33.

34.

35.

autoimmune uveitis through TGR5 signaling. Cell Rep.
2021;36(12):109726. doi:10.1016/j.celrep.2021.109726.
Wabhlstrom A, Sayin SI, Marschall HU, Backhed F.
Intestinal Crosstalk between Bile Acids and Microbiota
and Its Impact on Host Metabolism. Cell Metab. 2016;24
(1):41-50. doi:10.1016/j.cmet.2016.05.005.

Schneider KM, Candels LS, Hov JR, Myllys M, Hassan R,
Schneider CV, Wahlstrom A, Mohs A, Ziihlke S, Liao L,
et al. Gut microbiota depletion exacerbates cholestatic
liver injury via loss of FXR signalling. Nat Metab. 2021;3
(9):1228-1241. doi:10.1038/s42255-021-00452-1.

Hall B, Levy S, Dufault-Thompson K, Arp G, Zhong A,
Ndjite GM, Weiss A, Braccia D, Jenkins C, Grant MR,

36.

37.

et al. BilR is a gut microbial enzyme that reduces bilir-
ubin to urobilinogen. Nat Microbiol. 2024;9(1:173-184.
doi:10.1038/s41564-023-01549-x.

Pollet RM, D’Agostino EH, Walton WG, Xu Y, Little MS,
Biernat KA, Pellock SJ, Patterson LM, Creekmore BC,
Isenberg HN, et al. An Atlas of B-Glucuronidases in the
Human Intestinal Microbiome. Structure. 2017;2017
(7):967-977.€965. doi:10.1016/j.str.2017.05.003.

Tang W, Lu HY, Sun Q, Xu W-M. [Characteristics of
gut microbiota and its association with the activity of p-
glucuronidase in neonates with hyperbilirubinemia].
Zhongguo Dang Dai Er Ke Za Zhi. 2021;23
(7):677-683. doi:10.7499/j.issn.1008-8830.2102039.


https://doi.org/10.1016/j.celrep.2021.109726
https://doi.org/10.1016/j.cmet.2016.05.005
https://doi.org/10.1038/s42255-021-00452-1
https://doi.org/10.1038/s41564-023-01549-x
https://doi.org/10.1016/j.str.2017.05.003
https://doi.org/10.7499/j.issn.1008-8830.2102039

	Abstract
	Abstract
	Introduction
	Methods
	Participants and sample collection
	Gut microbiome analysis
	Gut metabolome analysis
	Gut microbiome-metabolome association
	Network module analysis
	Mantel test
	Procrustes analysis
	Survival analysis

	Causal inference analysis
	Causal mediation analysis
	Structural equation model (SEM)
	Machine learning-causal inference
	Clinical predictive modeling evaluation
	Machine learning models

	Other analysis

	Results
	Participant information and composition
	NJ-associated gut bacteria network module
	Gut microbiome-metabolome association analysis
	Machine learning approach discovers bacteria associated with bile acids
	NJ-associated bacterial/bile acid metabolites correlate with serum TBIL levels
	Potential causal effects of NJ-associated bacterial/bile acid metabolites with NJ
	Construction of a clinical prediction model based on NJ-related bacterial/bile acid metabolites

	Discussion
	Conclusion
	Disclosure statement
	Funding
	ORCID
	Author contributions
	Data availability statement
	Ethics statement
	References

