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ABSTRACT
Early identification of neonatal jaundice (NJ) appears to be essential to avoid bilirubin 
encephalopathy and neurological sequelae. The interaction between gut microbiota and 
metabolites plays an important role in early life. It is unclear whether the composition of 
the gut microbiota and metabolites can be used as an early indicator of NJ or to aid clinical 
decision-making. This study involved a total of 196 neonates and conducted two rounds of 
“discovery-validation” research on the gut microbiome-metabolome. It utilized methods of 
machine learning, causal inference, and clinical prediction model evaluation to assess the 
significance of gut microbiota and metabolites in classifying neonatal jaundice (NJ), as well as 
the potential causal relationships between corresponding clinical variables and NJ. In the 
discovery stage, NJ-associated gut microbiota, network modules, and metabolite composition 
were identified by gut microbiome-metabolome association analysis. The NJ-associated gut 
microbiota was closely related to bile acid metabolites. By Lasso machine learning assess
ment, we found that the gut bacteria were associated with abnormal bile acid metabolism. 
The machine learning-causal inference approach revealed that gut bacteria affected serum 
total bilirubin and NJ by influencing bile acid metabolism. NJ-associated gut bile acids are 
potential biomarkers of NJ, and clinical prediction models constructed based on these 
biomarkers have some clinical effects and the model may be used for disease risk prediction. 
In the validation stage, it was found that intestinal metabolites can predict NJ, and the 
machine learning-causal inference approach revealed that bile acid metabolites affected NJ 
itself by affecting the total bilirubin content. Intestinal bile acid metabolites are potential 
biomarkers of NJ. By applying machine learning-causal inference methods to gut micro
biome-metabolome association studies, we found NJ-associated intestinal bacteria and their 
network modules and bile acid metabolite composition. The important role of intestinal 
bacteria and bile acid metabolites in NJ was determined, which can predict the risk of NJ.
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HIGHLIGHT
● Association analysis of the intestinal microbiome-metabolome found that neonatal jaundice 

(NJ)-related intestinal microbiota, network modules and metabolite composition, and the 
intestinal microbiota are closely related to bile acid metabolites.

● Gut bacteria were found to affect serum total bilirubin (TBIL) and NJ by influencing bile acid 
metabolism through a machine learning-causal inference approach, and bile acid metabolites 
affected NJ itself by affecting the TBIL content.

● NJ-associated gut bacteria and bile acids are potential biomarkers of NJ, and clinical decision- 
making models based on these biomarkers have some clinical effects for disease risk prediction.

Introduction

Neonatal jaundice (NJ), also known as neonatal 
hyperbilirubinemia, is clinically characterized by ele
vated total bilirubin (TBIL) levels in serum and is 
a common clinical presentation during the neonatal 
period. In most cases, jaundice resolves sponta
neously. However, a small percentage of infants 
may develop severe hyperbilirubinemia or bilirubin 
encephalopathy, which can lead to brain damage or 
death if not diagnosed and treated promptly.1,2 Early 
identification of NJ is essential to avoid bilirubin 
encephalopathy.3 Causes of NJ are complicated. 
After birth, excess red blood cells are destroyed, 
leading to excessive bilirubin production. In addi
tion, the metabolic function of the newborn is 
underdeveloped, resulting in slower and less effi
cient bilirubin metabolism. Finally, factors such as 
infection, hypoxia, hemorrhage, and gut dysbiosis 
can contribute to elevated TBIL levels,1,4,5

The gut microbiota plays an important role in 
human health, and disruptions in this microbiota 
during the newborn stage may have major implica
tions on the development of the immune system 
and adult health.6,7 NJ is characterized by elevated 
TBIL levels in serum, which are associated with 
abnormalities in bilirubin intestinal and hepatic 
circulation. The gut microbiota plays an important 
role in the excretion of bilirubin.8,9 Research found 
that the serum TBIL levels in germ-free mice were 
higher than in non-germ-free mice.10 According to 
related research, downregulating Bifidobacterium 
species, including B. adolescentis, B. bifidum, and 
B. longum, was linked to higher serum TBIL levels. 
It is suggested that the gut microbiota may be 
involved in bilirubin metabolism.11 The current 
understanding is that the gut microbiota and hepa
tointestinal signal transduction directly participate 
in the metabolism and excretion of bilirubin. That 
is, unconjugated bilirubin, which is produced when
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red blood cells are destroyed, enters the liver first 
and is discharged from the liver by combining with 
UDP-glucuronic acid to form conjugated bilirubin 
(glucuronic acid ester). Most of the conjugated 
bilirubin excreted out of the liver enters the biliary 
tract, where the conjugated bilirubin is broken 
down by intestinal bacteria and reduced to urinary 
bilirubin and excreted in the feces.12,13

We previously conducted a metagenomic asso
ciation study on neonates with breast milk jaundice 
and cholestatic jaundice, and found that the 
changes in the gut microbiota of these neonates 
were related to an increase in serum bilirubin. 
The neonates with jaundice exhibited significantly 
lower abundance of Bifidobacterium bacteria and 
genes related to galactose metabolism, which was 
negatively correlated with serum TBIL levels.5

It is known that Bifidobacterium is directly 
involved in the utilization of galactooligosacchar
ide (GOS)14 and converts GOS to galactose and 
UDP-glucose via the galactose metabolism path
way. Considering that UDP-glucose, the product 
of galactose metabolism, is the precursor of 
UDPGA, and UDPGA is directly involved in the 
formation of direct bilirubin, we hypothesized that 
the gut microbiota and metabolites may play an 
important role in the development of jaundice. We 
also studied the metabonomics of gut metabolites 
in neonates with jaundice and healthy controls. 
Based on machine learning and a causal inference 
approach, we found that gut metabolites can dis
tinguish jaundice from healthy neonates, and the 
change in gut metabolites in neonates with jaun
dice showed that branched-chain amino acids were 
positively correlated with serum TBIL.15 This 
further confirmed that intestinal metabolites play 
an important role in the occurrence and develop
ment of jaundice.

An accurate disease risk prediction model is 
important for identifying low-risk and high-risk 
individuals with respect to NJ. This is due to the 
fact that, if neonates belong to the high-risk cate
gory, targeted screening and interventions can be 
provided to address their risk of disease, and if they 
fall into the low-risk category, unnecessary screen
ing and intervention can be avoided. The observa
tional relationship between suspected risk factors 
and results does not always indicate that the inter
vention of risk factors will have a causal 

relationship with the results (correlation is not 
causality).16 The causal inference method is used 
to find the potential causal relationship from the 
correlation results.17 We previously used multi- 
omics bioinformatics analysis of the metagenome- 
metabolome to capture key bacteria involved in 
critical glutamate metabolism in the gut microbiota 
of individuals with autism, and discovered the 
increase in the bile acid-metabolizing bacterium 
Eggerthella lenta and its interaction with glutamate 
metabolism.18 The recent development of causal 
science research methods has also accelerated the 
process of using multi-omics techniques to reveal 
the potential pathogenesis of complex diseases.19,20

In this study, we explore the bacteriome- 
metabolome data landscape of NJ through 
a “multi-omics” approach, and utilize the causal 
effect evaluation method of machine learning to 
gain a comprehensive understanding of the gut 
microbiota and metabolite composition that affects 
NJ, and to validate these findings with the expecta
tion of discovering key bacterial and metabolite 
molecules for the early diagnosis of NJ.

Methods

Participants and sample collection

This study included 98 NJ newborns and 98 healthy 
control (HC) newborns. The study was divided into 
two stages: the discovery stage and the validation 
stage. In total, 68 NJ newborns and 68 HC newborns 
were included in the discovery stage, and 30 NJ 
newborns and 30 HC newborns were included in 
the validation stage. NJ, also known as neonatal 
hyperbilirubinemia, was diagnosed with reference 
to the American Academy of Pediatrics 
Intervention Guidelines for Neonatal Jaundice21 

and the Expert Consensus on the Diagnosis and 
Treatment of Neonatal Hyperbilirubinemia of 
Neonatal Group of Neonatology of the Pediatrics 
Branch of the Chinese Medical Association.22 The 
inclusion and exclusion criteria are detailed in the 
Supplementary Appendix. The neonates were cate
gorized as either NJ or HC based on their serum 
bilirubin level (total bilirubin, TBIL), which was 
measured using a Beckman Coulter automatic bio
chemistry analyzer during their hospitalization 
(Beckman Coulter, CA, USA).
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The researchers wore masks and gloves, and 
used sterilized disposable fecal sampling tubes to 
collect the feces excluded from newborns after 
birth, so as to avoid artificial pollution. Then 
transported on ice overnight to our laboratory, 
then immediately dispensed at 3–5 g/tube and 
stored at ˗80°C. The hospital’s medical ethics 
committee approved the study methodology, 
which followed the Declaration of Helsinki, and 
the parents of each newborn provided written 
informed consent.

Gut microbiome analysis

Refer to our published articles,23–25 for detailed 
methodology on 16S rRNA gene sequencing and 
bioinformatic analyses (detailed in the 
Supplementary Appendix).

Gut metabolome analysis

Refer to previously published articles18,26–28 for 
detailed methodology on the analysis of NJ- 
associated gut metabolites. Fecal bile acids were 
detected and analyzed by targeted metabonomics 
and UPLC-QQ-MS/MS (detailed in the 
Supplementary Appendix).

Gut microbiome-metabolome association

Network module analysis
First, the corAndPvalue function in the 
R package WGNCA (version 1.72–1) was used 
to calculate the correlation coefficient of species. 
Then, the R-package multitest (version 2.54.0) 
was used to correct the statistically significant 
p value derived from the Benjamini – Hochberg 
procedure, and the corrected p value was less 
than 0.001 and the absolute value of the corre
lation coefficient was greater than 0.8, which is 
defined as a significant co-occurrence network. 
Then, the R package igraph (version 1.5.1) was 
used to visualize the network structure. Finally, 
the linear correlation analysis of species abun
dance with clinical variables and metabolites of 
the top four network modules was completed by 
the geom_smooth and stat_cor functions in 
ggplot2 (version 3.4.4) of the R package.

Mantel test
First, based on all or well-grouped species variables 
and environmental variables matrices, the 
Mantel_test function in R package linkET (version 
0.0.7.4) was used to perform a mantel test to deter
mine the correlation between the two matrices. 
Then, the correlation function in R package 
linkET was used to determine the correlation coef
ficient matrix between environmental variables. 
Finally, qcorrplot in the R package linkET was 
used to visually show the correlation between the 
two matrices.

Procrustes analysis
Procrustes analysis is a method of comparing 
the consistency of two sets of data by analyzing 
the shape distribution. The principle is least- 
squares orthogonal mapping, which means 
finding the canonical shape by constant itera
tion, and using the least-squares method to 
determine the affine variation in each object 
shape compared with the standard shape. 
Procrustes analysis was completed using the 
R package vegan, with reference to a previous 
publication.29 First, principal component analy
sis (PCA) dimensionality reduction was per
formed through the rda function on the two 
datasets separately and the coordinates of the 
feature axes (which represent linear combina
tions of the sets of variables) were extracted for 
comparison. Then, through the procrustes 
function, and using the parameters: permuta
tions = how, nperm = 999, we obtained the 
deviation sum of squares M2 statistic and the 
p value after a 999 permutations test. Finally, 
images were displayed through the R package 
ggplot2.

Survival analysis
A Kaplan – Meier survival curve was constructed 
using the KaplanMeierFitter function of the 
Lifelines package (version 0.26.4) of Python soft
ware (version Python 3.7.6). When conducting 
univariate survival analysis, we first set up the 
time variable and the event variable, then com
pared the differences. Statistical significance was 
achieved by the logrank_test function of the statis
tics module of the lifelines package, and a p value of 
less than 0.05 was regarded as significant.
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Multivariate survival analysis was conducted 
through the lifelines package CoxPHFittert 
function.

Causal inference analysis

Causal mediation analysis
The principle of causal mediation analysis was 
to identify and explain the causal link between 
the independent variable (X) and the dependent 
variable (Y) by introducing a mediating variable 
(M). We carried out causal mediation analysis as 
described in the Supplementary Appendix, in 
accordance with our earlier research.28

Structural equation model (SEM)
First, based on either gut microbiota genus level 
data (profile) or gut bile acid data (profile), the 
vegdist and pcoa functions in the R package 
Vegan (version 2.6–4) were used to count the 
Bray – Curtis distances and perform principal co- 
ordinates analysis (PCoA), respectively, and the 
resulting first axis (PC1) was used to represent 
the microbial community or bile acid beta- 
diversity. Second, for the data of PC1 and the vari
ables to be studied, the scale in the R package base 
(version 4.2.3) was used to standardize the data, 
and a set of structural equations of “Y~X” was 
constructed. The sem function in the R package 
lavaan (0.6–16) was used to fit the model. The 
parameter estimates function in the R package 
lavaan was used to obtain the model’s partial 
regression coefficients (estimate), the execution 
intervals, and the p value. The fitMeasures function 
in the R package lavaan was used to assess the 
reliability of the model parameters, with p > 0.05 
implying the reliability of the model, i.e., the model 
predictions were not significantly different from 
the actual observations. Finally, the semPaths func
tion in the R package semPlot (version 1.1.6) pro
vided an alternate visual presentation of the 
structural equation model.

Machine learning-causal inference
As per our prior research studies16,30 and as 
explained in the Supplementary Appendix, causal 
inference based on machine learning was com
pleted through the Microsoft DoWhy library 

(https://github.com/microsoft/dowhy.) and the 
EconML library (https://github.com/econml/).

Clinical predictive modeling evaluation
A clinical prediction model for NJ was constructed 
through accuracy assessment, clinical effect assess
ment, and risk prediction (as detailed in the 
Supplementary Appendix).

Machine learning models
Lasso machine learning, the lasso+xgboost model, 
and the random forest model were adopted. For 
details, refer to previously published articles27,31 

and the Supplementary Appendix.

Other analysis

To evaluate the correlation between the clinical 
manifestations and gut microbiota composition/ 
metabolites with significant differences between 
groups, the lm function in the R software was 
used to construct the logistic regression model, 
and the p value and coefficient of determination 
(R-squared) of the logistic regression model were 
obtained through the summary function. The 
R package beeswarm was used to draw boxplots 
and scatterplots, and p values with significant dif
ferences were obtained by referring to the wilcox. 
test function. A ridgeline plot was completed using 
the R package ggplot2 and a personalized script. 
Species diversity analysis (Shannon index) and 
radar diagrams were constructed using persona
lized scripts. The correlation heatmap was com
pleted by the labeledHeatmap function in the 
R package WGCNA, and significance was set to 
an absolute value of Spearman’s correlation coeffi
cient greater than 0.3 and a p value less than 0.05.

Results

Participant information and composition

This study included 98 NJ and 98 HC neonates. Of 
these, 68 NJ and 68 HC neonates were included in 
the discovery stage, and 30 NJ and 30 HC neonates 
were included in the validation stage. The overall 
study design is shown in Figure 1. Comparison of 
the characteristics between the NJ and HC groups 
in the discovery stage, revealed 73 males (38 in the
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NJ group and 35 in the HCs), 20 preterm newborns 
(4 in the NJ group and 16 in the HCs), and 99 
vaginal deliveries (55 in the NJ group and 44 in the 
HCs), as shown in Figure 2(a). The statistical ana
lyses was shown in Supplementary Appendix.

NJ-associated gut bacteria network module

Comparing the gut microbial diversities between 
the groups revealed significantly lower Shannon 
diversity indices in the NJ group than in HCs 
(Figure 2(b)). Non-metric multidimensional scal
ing (NMDS) analysis showed significant cluster
ing between the intestinal flora of the NJ and HC 
groups (Figure 2(c)). Anosim analysis confirmed 
differences between the two subgroups (Figure 2 
(d)). Then, we used 16S rRNA sequencing-based 
molecular ecological networks (MENs) and visua
lization tools to reveal the interrelationships 

among gut microbes between groups. The results 
revealed a gut microbial interaction network of 
798 nodes (operational taxonomic units, OTUs) 
and 19,791 links (interactions) for the NJ group, 
compared with 788 nodes and 29,462 links (inter
actions) for the preterm infant group. While 
more nodes but fewer links were observed in 
the networks constructed by the HC and term 
infant groups (Figure 2(e)). Based on the differ
ences in sex and the use of antibiotics, we also 
used MENs to reveal the relationship between the 
two groups of intestinal microorganisms. The 
results showed that in the antibiotic use group, 
fewer nodes but more links were observed. By 
contrast, more nodes but fewer links were 
observed for male newborns than female new
borns (Figure S1A). We used a chord diagram 
to visually analyze the gut microbial composition 
between the NJ and HC groups, and both groups

Figure 1. Flow chart of the study design. A total of 98 neonates with neonatal jaundice (NJ) and 98 healthy control (HC) neonates were 
included in this study, which was divided into two stages: the discovery stage and the validation stage. We collected initial feces 
samples from 68 neonates with NJ and 68 HC neonates in the discovery stage, and 30 neonates with NJ and 30 HC newborns in the 
validation stage. In the discovery stage, 16S rRNA gene sequencing technology was used to obtain the gut microbiota composition of 
each sample, and with the same batch of samples, liquid chromatography with tandem mass spectrometry (LC-MS/MS) was used to 
obtain the metabolome composition of each sample. Then, gut microbiota association analysis was used to obtain the nj-associated 
gut microbiota composition, while metabolome association analysis was used to obtain the nj-associated metabolite composition. Gut 
microbiome-metabolome association analysis was employed to discover NJ/clinical indices-associated gut bacteria and bile acids. To 
further understand the association of gut bacteria/bile acids with NJ, we assessed the key bacteria and bile acids with causal effects on 
NJ/clinical indices based on causal mediation analysis. Then, we constructed a causal model based on a machine learning-causal 
inference method. Finally, clinical prediction models based on gut bacteria and bile acids were constructed and used for clinical effect 
assessment and risk prediction, while random forest machine learning methods were used to assess the clinical diagnostic potential of 
gut bacteria and bile acids. In the validation stage, we used targeted metabonomics detection to determine the composition of 
intestinal metabolites. The machine learning method was used to evaluate the importance of metabolites in the classification of NJ, 
and a clinical prediction model was constructed for NJ based on intestinal metabolites.
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were found to be dominated by the phyla 
Firmicutes and Proteobacteria (Figure 2(f)). 
Then, we further analyzed the gut microbiota 
composition between the NJ and HC groups at 
the phylum level, and a higher percentage of 
Proteobacteria was detected in the NJ group 
than the HC group, and a lower ratio of 
Firmicutes was detected in the NJ group than 
the HC group (Figure 2(g)). The different gut 
microbiotas were then categorized into four mod
ules based on their abundance (Figure 2(h)), with 
the highest abundance of Firmicutes in Module 1, 
the highest abundance of Proteobacteria in 
Modules 2 and 3, and the highest abundance of 

Bacteroidetes and Firmicutes in Module 4. Then, 
we compared the relationship between modules 
with different gut microbiota abundance and 
TBIL, and a significant negative correlation was 
detected between all of the modules and TBIL 
(Figure 2(i)).

Gut microbiome-metabolome association analysis

In the discovery stage, considering the same batch of 
samples, we determined the composition of the gut 
microbiota by 16S rRNA gene sequencing and deter
mined the composition of metabolites by metabolo
mics detection by liquid chromatography and

Figure 2. Nj-associated gut bacteria network module. (a) Comparison of clinical phenotypes between the NJ and HC groups; (b) 
diversity of fecal microorganisms in both groups. The vertical coordinate represents the Shannon index, with larger values indicating 
a higher response biodiversity (i.e., more species indicates that the samples were more evenly distributed). The gut microbiota 
diversity was significantly lower in neonates with jaundice than in the controls, ***p value < 0.001; (c) NMDS analyses between the NJ 
and HC groups; (d) anosim analysis showed differences between the two subgroups (R = 0.1647, p = 0.001); (e) visualization of 
molecular ecological networks (MENs) constructed based on the structure of the gut microbiota. Large modules with ≥5 nodes are 
shown in different colors, and smaller modules are shown in gray; (f) the gut microbiota composition of the NJ and HC groups as 
shown in chord diagrams; (g) relative abundance of the gut microbiota in the NJ and HC groups at the phylum level; (h) module 
diagram based on the construction of the gut microbiota; (i) comparison of the relationship between modules with different gut 
microbiota abundances and TBIL levels.
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tandem mass spectrometry (LC-MS/MS). We then 
performed gut microbiome-metabolome association 
analysis.

Based on the microbiome association analy
sis, we identified 68 significantly different 
members of the gut microbiota based on com
position, the vast majority of which (59/68) 
were enriched in the HC group. Only nine 
bacteria showed significant enrichment in the 
NJ group, namely Erysipelotrichaceae, 
Erysipelotrichales, Erysipelotrichia, Escherichia 
coli, Gammaproteobacteria, Staphylococcaceae, 
Staphylococcus, Staphylococcus warneri, and 
unidentified Enterobacteriaceae (Table S1). 

Association analysis based on metabonomics 
revealed 48 different compositions of gut meta
bolites, most of which (28/48) were enriched in 
the HC group, with 20 metabolites significantly 
enriched in the NJ group (Table S2).

We assessed whether the NJ-associated gut micro
biota could distinguish between the NJ and HC 
groups by PLSDA analysis, and the results showed 
that it was able to distinguish between the groups to 
some extent. Plsda1 could explain 18.61% of the 
compositional variance of the gut microbiota and 
the samples were well separated along the plsda1 
axis, whereas plsda2 could explain 7.6% of the gut 
microbiota compositional variation (Figure 3(a)).

Figure 3. Analysis of the nj-associated gut microbiota and metabolites. (a) Results of PLSDA analysis indicate that the nj-associated gut 
microbiota can distinguish between the NJ and HC groups to some extent; (b) results of PLSDA analysis indicate that nj-associated gut 
metabolites can distinguish between the NJ and HC groups; (c,d) results of PLSDA analysis indicate that nj-associated gut bile acids 
can distinguish between the NJ and HC groups in the discovery and validation stages; (e) a strong correlation between nj-associated 
gut microbiota composition and metabolite composition was found by procrustes analysis; (f) NMDS analysis shows significant 
clustering of intestinal bile acids TCA and CA between the NJ and HC groups; (g) correlations between bile acids and genus-level gut 
microbiota, as determined by CCA analysis; (H) mantel analysis shows a strong correlation between intestinal bacteria and bile acids; 
(I) a radar chart reveals differences in the contents of intestinal bacteria and bile acids between the two groups in the discovery and 
validation stages.
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Additionally, we evaluated whether NJ-associated gut 
metabolites could distinguish between the NJ and HC 
groups by PLSDA analysis, and the results demon
strated that they were able to distinguish between the 
groups. Plsda1 and plsda2 explained 27.52% and 
5.18% of the variation in the gut microbiota composi
tion, respectively, and the samples were well separated 
along the plsda1 axis (Figure 3(b)). Then, we evalu
ated whether NJ-associated gut bile acids could dis
tinguish between the NJ and HC groups by PLSDA 
analysis, and the results demonstrated that they could 
distinguish between the groups. Plsda1 and plsda2 
explained 42.14% and 16.91% of the variation in the 
gut microbiota composition in the discovery stage, 
respectively (Figure 3(c)), and 35.77% and 11.45% of 
the variation in the gut microbiota composition in the 
validation stage, respectively (Figure 3(d)). 
Furthermore, we used Procrustes analysis, a method 
of assessing the consistency of two sets of data via 
analysis of the shape distribution, to further under
stand the association between NJ-associated changes 
in gut metabolites and the NJ-associated gut micro
biota. We found that NJ-associated gut microbiota 
composition and metabolite composition were 
strongly correlated (Figure 3(e)).

To further asses the differences in the gut bile 
acids between the two groups, we used NMDS 
analysis of the Bray – Curtis distance matrix gen
erated from genus-level abundance. This revealed 
a significant difference in the intestinal bile acids 
TCA and CA between the NJ and HC groups at the 
genus level (p < 0.0001) (Figure 3(f)), as well as 
significant differences in the bile acids TUDCA, 
DCA, NutriaCA, and βHCA between the two 
groups (Figure S1B).

Gut microbiota may be more relevant to bile 
acid metabolites, so bile acid metabolites were 
used as environmental variables and correlations 
between bile acids and the gut microbiota were 
found by canonical correspondence analysis 
(CCA), as shown in Figure 3(g). Redundancy ana
lysis (RDA) revealed a correlation between the gut 
microbiota and bile acid markers (Figure S1C). 
Mantel analysis of all gut bacteria with bile acid 
markers confirmed a significant correlation (Figure 
S1D), and furthermore revealed a strong correla
tion between intestinal bacteria markers and bile 
acids (Figure 3(h)). We further compared each bile 
acid level between the two groups and found that 

there was a significant difference in bile acids 
between the two groups, as shown in Figure S2. 
The radar chart revealed that there were differences 
in the contents of intestinal bacteria and bile acids 
between the two groups in the discovery and vali
dation stages (Figure 3(i)).

The length of an environmental parameter 
arrow indicates the strength of the environmental 
parameter with regard to the overall gut micro
biota. The results showed that there was 
a significant correlation between these seven bile 
acids and the gut microbiota. We performed 
a biological pathway enrichment study on NJ- 
associated metabolites to gain a deeper under
standing of their biological significance. The results 
showed enrichment of the pathway linked to bile 
acids (Figure S3A). We also carried out enrichment 
analysis according to the type of disease, and found 
that enrichment was linked to recurrent 
Clostridium difficile infection, with the metabolites 
involved being the metabolites of bile acids 
(Figure S3B).

To further understand the correlation between 
NJ-associated gut metabolites and bile acids, we 
performed Procrustes analysis and found a strong 
association between NJ-associated gut metabolite 
composition and bile acids (Figure S4A). We 
further analyzed the correlation between NJ- 
associated gut bacteria and bile acids, and the 
results confirmed this correlation (Figure S4B).

Machine learning approach discovers bacteria 
associated with bile acids

Considering that NJ-related metabolites are 
enriched to bile acid-related pathways, we next 
focused on bile acid metabolites and investigated 
bacteria associated with bile acid metabolites by the 
Lasso machine learning method. Among the enter
obacteria, Lactobacillus reuteri had a positive effect 
on gut taurodeoxycholic acid (Figure S4C), 
Rikenellaceae and Ruminococcaceae had 
a negative effect on gut 1beta hydroxycholic acid, 
and Staphylococcus had a positive effect on 1beta 
hydroxycholic acid (Figure S4D). The enterobac
teria positively affecting gut butylcholic acid were 
Gammaproteobacteria and Erysipelotrichales, 
whereas Ruminococcaceae had a negative effect on 
cholic acid (Figure S4E). The gut bacterium
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positively affecting deoxycholic acid was 
Gammaproteobacteria, whereas Rikenellaceae and 
Ruminococcaceae had a negative effect on deoxy
cholic acid (Figure S4F). Two other bile-related 
acid derivatives, glycerophosphocholine and 
nutriacholic acid, were also affected by intestinal 
bacteria, with Alistipes and Acidobacteria positively 
affecting intestinal glycerophosphocholine (Figure 
S4G) and E. coli positively affecting nutriacholic 
acid (Figure S4H).

Further, we evaluated the potential of Lasso 
machine learning to assess the gut microbiota 
abundance for predicting the content of gut bile 
acids, and found that in addition to the content of 
gut bile acids 1beta hydroxycholic acid and nutria
cholic acid being predicted based on the gut bac
teria (Figure S4I, J), NJ can also be predicted based 
on the gut bacteria (considering NJ to be 1 and HC 
to be 0) (Figure S4K). We focused on five bacteria 
(Acinetobacter, Alistipes, L. reuteri, Rikenellaceae, 
Ruminococcaceae) (Figure S5A – E) with signifi
cant decreases in abundance in the NJ group and 
one bacterium that significantly increased in abun
dance in the NJ group (Gammaproteobacteria) 
(Figure S5F), to learn more about the connection 
between bile acids and the intestinal bacteria linked 
with NJ.

Using the networkx software for network rela
tionship analysis, it was possible to observe the 
complicated network link between the bacteria in 
the gut and bile acids associated with NJ in the 
discovery and validation stages (Figure S6A, B).

We also assessed the linear relationship between 
NJ-associated gut microbiota and bile acids. It was 
discovered that the quantity of intestinal bacterial 
Rikenellaceae and the content of intestinal bile acid 
(taurocholic acid) and its product, glyceropho
sphocholine, were positively correlated. The abun
dance of enteric bacteria Alistipes was positively 
correlated with gut bile acid derivative glyceropho
sphocholine, and the gut bile acid taurodeoxycholic 
acid showed a positive relationship with the abun
dance of gut bacterium L. reuteri (Figure S6C – F).

NJ-associated bacterial/bile acid metabolites 
correlate with serum TBIL levels

To understand the clinical significance of NJ- 
associated bacterial and bile acid metabolites, we 

performed a heatmap correlation analysis of NJ- 
associated gut bacterial/bile acid metabolites with 
clinical indicators in the discovery and validation 
stages (Figure 4(a,b)). The results showed that NJ- 
associated gut bacteria/bile acids were positively/ 
negatively correlated with TBIL to varying degrees. 
At the same time, we analyzed the content of bile 
acids at different TBIL levels using a ridgeline plot 
(Figure 4(c,d)). We also analyzed the distribution 
of bile acids in the NJ and HC groups at different 
breastfeeding durations and at different white 
blood cell levels using a ridgeline plot (Figure 
S7A, B).

Then, we correlated NJ-associated bile acid 
metabolites with clinical indicators and the results 
showed that the NJ-associated intestinal primary 
bile acid taurocholic acid and the bile acid deriva
tive glycerophosphocholine were significantly 
negatively correlated with serum TBIL levels 
(Figure 4(e)). Moreover, there was a negative rela
tionship between serum TBIL levels and the sec
ondary bile acid tauroursodeoxycholic acid. 
Meanwhile, we correlated the abundance of gut 
bacteria with clinical indicators and showed that 
the abundance of gut bacteria Acinetobacter, 
Alistipes, Rikenellaceae, and Ruminococcaceae, 
which affect bile acid levels, was negatively corre
lated with serum TBIL levels (Figure S7C). We also 
analyzed other clinical indicators, which showed 
that gut bacteria and bile acid levels were less 
affected by mode of delivery between groups with 
different modes of delivery in the discovery and 
validation stage (Figure S8).

We assessed the relationship between TBIL 
and NJ-associated intestinal bacteria and metabo
lites using survival analysis, and discovered that 
there was a significant difference in the increase 
in TBIL between the NJ and HC groups, with the 
NJ group experiencing a greater increase as the 
abundance of the intestinal bacteria 
Acinetobacter, L. reuteri, and Rikenellaceae 
decreased. With the rise in the gut bile acid 
derivative nutriacholic acid, the increase in 
TBIL was significantly different between the NJ 
and HC groups, with a greater increase in the NJ 
group (Figure S9A). As the intestinal primary bile 
acid cholic acid increased and the secondary bile 
acid tauroursodeoxycholic acid decreased, there 
was a significant difference in the magnitude of
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the rise in TBIL between the NJ and HC groups, 
with a greater rise in the NJ group (Figure 4G). 
In the validation stage, as the gut bile acids 
NorCA and THDCA decreased, there was 
a significant difference in the magnitude of the 

rise in TBIL between the NJ and HC groups, with 
a greater rise in the NJ group (Figure 4(h)). As 
the intestinal bile acids THDCA, THCA, TDCH, 
and TβMCA declined, the difference in the mag
nitude of TBIL increase between the NJ and HC

Figure 4. Correlation between nj-related intestinal bacteria and bile acids and clinical phenotype. (a,b) correlation heatmap between 
nj-related intestinal bacteria and bile acids and clinical phenotype in the discovery (a) and validation (b) phases; (c,d) nj-related bile 
acids are correlated with TBIL in the discovery (c) and validation (d) phases; (e) nj-related bile acid TCA and bile acid derivative 
glycerophosphocholine were negatively correlated with TBIL in the discovery stage; (f) nj-related bile acid TCA was negatively 
correlated with TBIL in the validation stage; (g,h) survival analysis to assess the relationship between nj-associated gut bacteria and 
bile acid metabolites and TBIL in the discovery (g) and validation (H) stages.
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groups was significant, with a greater increase in 
the NJ group (Figure S9B).

Potential causal effects of NJ-associated bacterial/ 
bile acid metabolites with NJ

Considering the correlation between NJ-associated 
bacteria/bile acid metabolites and serum TBIL 
levels of NJ and clinical indicators, we used causal 
mediator analysis to assess the causal relationships 
between bile acid-associated bacteria, bile acids, 
and core clinical indicators to better understand 
whether NJ-associated bacteria impact on bile 
acid metabolism, serum TBIL levels, and clinical 
indicators.

The results of the causal mediator analysis 
showed that intestinal bacteria not only affect the 
concentrations of TBIL, serum direct bilirubin 
(DBIL), and alanine aminotransferase (ALT) 
(Figure S10), which are the clinical markers of NJ, 

but also affect NJ itself by affecting the levels of bile 
acids (Figure 5(a)). Furthermore, intestinal bile 
acid metabolites affect NJ by influencing TBIL 
levels in the validation stage (Figure 5(b)). We 
further tested the causal model using structural 
equation modeling (SEM), and a p value > 0.05 
suggested that the model was reliable, as shown in 
Figure 5(c,d).

Construction of a clinical prediction model based on 
NJ-related bacterial/bile acid metabolites

To understand the potential clinical applications of 
NJ-related bacterial/bile acid metabolites, we 
further screened gut bacterial and bile acid vari
ables affecting NJ using Lasso machine learning. 
We found nine significant variables (Figure 6(a)), 
including three bacteria and six bile acids (Figure 6 
(b)). The optimal model formulas and evaluations 
are shown in Figure S11A. Taurocholic acid,

Figure 5. Assessment of the potential causal effects of bile acid-related bacteria and bile acids with NJ and clinical indicators. (a,b) 
causal inference analysis indicates that gut bacteria affect NJ by influencing bile acid levels in the discovery stage (a), and bile acids 
affect NJ by influencing TBIL levels in the validation stage (b); (c,d) the causal inference model was tested by SEM and found to be 
reliable (p > 0.05 indicates that the model is reliable).
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Figure 6. Construction of a clinical prediction model for jaundice. (a) LASSO machine learning method to filter the optimal variables for 
NJ classification; (b) heatmap of the correlation of important variables, the asterisk represents a significant correlation; (c) calibration 
curve, the calibration of the clinical prediction model, is an important indicator to evaluate the accuracy of a disease risk model to 
predict the probability of an outcome event in an individual in the future; (d) the horizontal coordinate is the threshold probability, 
when various evaluation methods reach a certain value, the probability of NJ in patient i is recorded as pi, and when pi reaches 
a certain threshold (recorded as Pt), it is defined as positive and some intervention is taken (such as changing the blue light treatment 
plan). Changing the treatment regimen naturally changes the balance between positive and negative clinical indicators and severe 
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Acinetobacter, and tauroursodeoxycholic acid had 
the most significant impact on the model.

Based on the nine important variables, we con
structed clinical prediction models for the top three 
important variables (top3), the top six important 
variables (top6), and all important variables (all), 
considering the ranking of important variables 
obtained based on Lasso analysis. To assess 
whether the model-predicted risks were in good 
agreement with the actual occurrence risks, we 
performed calibration of the clinical prediction 
models and found that all models predicted risks 
in good agreement with the actual occurrence risks. 
The clinical prediction models based on all impor
tant variables (all) had the highest Brier scores and 
AUCs (Figure 6(c)). Given that determining 
whether a patient has a particular disease using 
a particular biomarker will inevitably result in 
false positives and false negatives, depending on 
the situation, it is sometimes preferable to avoid 
false positives and sometimes preferable to avoid 
false negatives.

Since neither situation can be avoided, we tried 
to find a model with the largest net benefit by 
decision curve analysis (DCA). As shown in 
Figure 6(d), clinical decision model based on the 
composition of all important clinical variables has 
a certain clinical effect (net benefit). By using the 
clinical impact curve to assess the clinical effect of 
the model with all variables included, we were able 
to determine that intervening at a threshold of ≤  
0.6 can decrease damage and improve the benefit 
(Figure 6(e)). After building a logistic regression 
model for NJ prediction of risk by considering all 
variables, we were able to display the model using 
a column-line diagram (Figure 6(f)). This demon
strated that the model was more accurate in pre
dicting the risk of severe NJ (SFigure S11B, SC).

To evaluate the potential of gut bile acids for the 
early diagnosis of NJ, we constructed classifiers 

based on the random forest model. The first three 
intestinal bile acids (i.e., TUDCA, TCA, DCA) had 
an AUC value of 0.909 for NJ classification and the 
AUC value for the first five intestinal bile acids 
used for NJ classification was 0.921, suggesting 
that gut bile acids are potential biomarkers for NJ 
(Figure 6(g)). To evaluate the potential of intestinal 
bile acids for the early diagnosis of NJ, a classifier 
was constructed based on the random forest model. 
The AUC value of the first three bile acids (i.e., 
TCA, THCA, NorCA) for NJ classification was 
0.993 (Figure 6(h)), suggesting that intestinal bile 
acids are potential biomarkers of NJ.

Discussion

It is uncertain how early-life interactions between 
the human gut microbiota and the metabolome 
contribute to human disease. It is essential to gain 
a comprehensive understanding of the bacteria 
engaged in bile acid metabolism in the gut since 
the gut microbiota is both impacted by and impli
cated in bile acid metabolism. Bile acids are steroid 
molecules derived from cholesterol that play an 
important role in energy balance, host metabolism, 
and maintenance of innate immunity through 
G protein-coupled receptors and/or nuclear 
receptors.32 There are complex interactions between 
the gut microbiota and bile acids. Bile acids promote 
the growth of bile acid-metabolizing bacteria and 
inhibit the growth of other bile-sensitive bacteria to 
reshape the gut microbiota. Additionally, the gut 
microbiota can modify primary bile acids into sec
ondary bile acids by producing a variety of enzymes, 
such as bile salt hydrolase and hydroxysteroid dehy
drogenase, to influence the metabolism of bile acids 
and the composition of the bile acid pool, further 
degrading the bile acids by other enzymatic mechan
isms, thus helping to maintain cholesterol 
homeostasis.33

jaundice, and the vertical coordinate is the net benefit (NB) after subtracting the positives from the negatives. It can be seen that the 
clinical decision model consisting of important variables has some clinical effect; (e) clinical impact curve, using a model consisting of 
all variables to predict the risk stratification of 1,000 individuals, showing the “loss:benefit” axis, assigned to eight scales, the red curve 
(number of high risk) indicates the risk stratification at each blue curve (number of high risk with outcome) is the number of true 
positives at each threshold probability. From the graph it can be seen that intervention at a threshold of ≤ 0.6 can reduce injury and 
increase benefit. The number of individuals classified as positive (high risk) by the model under the rate; (f) the risk of NJ occurrence 
can be predicted based on the clinical prediction model; (g,h) nj-associated bile acids are potential biomarkers for NJ in the discovery 
and validation stages.
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In this study, we investigated the composition of 
the gut microbiota during NJ by means of 
a network visualization and analysis method. We 
discovered that the composition of the intestinal 
flora of jaundiced newborns was significantly less 
diverse than that of HC neonates.

It is well-established that the gut microbiota plays 
an important role in human health by participating in 
bile acid metabolism. We identified the NJ-associated 
gut microbiota and metabolite composition by gut 
microbiome-metabolome association analysis, and 
found that the NJ-associated gut microbial composi
tion is closely related to metabolite composition.

It is a challenging task to identify the important 
gut microbes, metabolites, and phenotypic charac
teristics from high-throughput multi-omics data, 
such as microbiome and metabolome data, and 
host phenotypic characteristics. In this study, we 
identified NJ-associated gut microbiota and meta
bolites by gut microbiome-metabolome association 
analysis. The gut microbiota is directly involved in 
the process of bile acid metabolism. It is known 
that cholesterol is catalyzed by hydroxylase in the 
liver to produce primary bile acids, which are 
transformed into secondary bile acids under the 
action of intestinal bacteria after entering the intes
tine. The majority (>95%) of bile acids in the intes
tine can be reabsorbed back into the liver through 
the enterohepatic circulation, and only a small pro
portion (5%) are excreted through feces.23 

Alterations in the structure and function of the 
intestinal flora may directly affect the enterohepatic 
circulation of bile acids. We found that the 
decreased abundance of bacteria such as 
Acinetobacter, L. reuteri, and Rikenellaceae in the 
intestinal tract of newborns with NJ was closely 
associated with abnormalities in bile acid metabo
lism. Related studies have found that disturbances 
in bile acid metabolism mediated by the gut micro
biota play an important role in human liver disease. 
An altered gut microbiota and bile acid composi
tion in patients with primary sclerosing cholangitis, 
and loss of negative feedback control of bile acid 
synthesis mediated by intestinal flora leads to 
increased hepatic bile acid concentrations and dis
ruption of bile duct barrier function, which lead to 
fatal liver damage.34 Studies have demonstrated 
functional interactions between bile acid composi
tion, gut microbiota, and metabolic phenotypes.

We constructed a clinical prediction model for 
NJ based on machine learning, which enabled the 
accurate prediction of high-risk individuals. Gut 
microbiome-metabolome association analysis 
identifies many gut microbiota and metabolites 
related to NJ; however, the challenge is filtering 
out the important variables. Lasso offers advan
tages in the screening of important clinical vari
ables related to disease. Our previous study was 
based on the LASSO method combined with meta
bonomic analysis of serum and cerebrospinal fluid 
and we identified metabolic markers associated 
with neonatal sepsis in meningoencephalitis.27 In 
the current study, we employed the LASSO 
machine learning approach and identified nine 
variables that contribute significantly to NJ. 
Notably, five of these variables correlate closely 
with bile acid metabolism. Furthermore, a clinical 
prediction model utilizing these nine clinical vari
ables was developed and showed promising clinical 
effects in accurately predicting high-risk indivi
duals for NJ.

Through a machine learning-causal inference 
approach, we found that gut bacteria affected TBIL 
levels and NJ by affecting bile acid metabolism. 
Human intestinal microorganisms may encode 
enzymes involved in bilirubin metabolism,35 thereby 
reducing bilirubin to urobilinogen and promoting its 
excretion. In addition, gut microbiota can also pro
duce β-glucuronidase, which converts conjugated 
bilirubin into free bilirubin, leading to an increase in 
free bilirubin levels and thus affecting the occurrence 
of neonatal hyperbilirubinemia.36,37 In addition, 
intestinal microorganisms can also produce hydroly
tic enzymes that act on bile acid metabolism. It can be 
seen that gut microbiota may affect bile acid metabo
lism and bilirubin metabolism by affecting the activity 
of microbial enzymes, and there is a certain correla
tion between them. However, a correlation does not 
necessarily imply causation, and evidence of causality 
usually requires a combination of animal models or 
clinical randomized controlled trials, which are time- 
consuming and laborious. However, newly developed 
machine learning methods can be used to identify 
potential causal relationships from correlation results. 
We have previously used the causal inference methods 
of machine learning to identify oral bacteria with 
a potential causal connection to autism from oral 
microbiome data on autism.30
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The innovation in our study is that, first, we uti
lized a microbiome-metabolome multi-omics 
approach as opposed to a single-omics approach, as 
well as causal mediation analysis and a causal infer
ence method of machine learning to target the com
position of the gut microbiota that influences the 
metabolism of bile acids. However, our study had 
some limitations. Considering the limited funds avail
able, we used 16S rRNA gene sequencing but were 
unable to obtain the functional composition of the 
gut microbiota, especially the bile acid metabolizing 
enzyme gene composition. Furthermore, validation 
of the gut microbiota was lacking, and the causal 
model requires further validation and functional 
research, which will be addressed in future studies.

Conclusion

Gut microbiome-metabolome association analysis 
revealed the gut microbiota and metabolite composi
tions associated with NJ. NJ is characterized by 
abnormal bile acid metabolism and is affected by 
the decreased abundance of gut bacteria such as 
Acinetobacter, L. reuteri, and Rikenellaceae. NJ- 
associated gut bacteria and bile acids are potential 
biomarkers of NJ, and the clinical prediction model 
developed in this study has certain clinical effects and 
can be used to predict disease risk.
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