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Abstract

Introduction: A learning health system (LHS) must improve care in ways that are

meaningful to patients, integrating patient-centered outcomes (PCOs) into core infra-

structure. PCOs are common following cancer treatment, such as urinary inconti-

nence (UI) following prostatectomy. However, PCOs are not systematically recorded

because they can only be described by the patient, are subjective and captured as

unstructured text in the electronic health record (EHR). Therefore, PCOs pose signifi-

cant challenges for phenotyping patients. Here, we present a natural language

processing (NLP) approach for phenotyping patients with UI to classify their disease

into severity subtypes, which can increase opportunities to provide precision-based

therapy and promote a value-based delivery system.

Methods: Patients undergoing prostate cancer treatment from 2008 to 2018 were

identified at an academic medical center. Using a hybrid NLP pipeline that combines

rule-based and deep learning methodologies, we classified positive UI cases as mild,

moderate, and severe by mining clinical notes.

Results: The rule-based model accurately classified UI into disease severity catego-

ries (accuracy: 0.86), which outperformed the deep learning model (accuracy: 0.73). In

the deep learning model, the recall rates for mild and moderate group were higher

than the precision rate (0.78 and 0.79, respectively). A hybrid model that combined

both methods did not improve the accuracy of the rule-based model but did out-

perform the deep learning model (accuracy: 0.75).

Conclusion: Phenotyping patients based on indication and severity of PCOs is essen-

tial to advance a patient centered LHS. EHRs contain valuable information on PCOs
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and by using NLP methods, it is feasible to accurately and efficiently phenotype PCO

severity. Phenotyping must extend beyond the identification of disease to provide

classification of disease severity that can be used to guide treatment and inform

shared decision-making. Our methods demonstrate a path to a patient centered LHS

that could advance precision medicine.
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1 | INTRODUCTION

In a learning health system (LHS), the patient is at the center of

the delivery system.1 Personalized care is enabled by harnessing

data from all similar patients, which helps to understand and guide

treatment decisions and value-based care. While several health

systems are realizing the promise of continuous learning, the incor-

poration of patient-centered outcomes (PCOs) into the LHS is lim-

ited.2-4 PCOs are difficult to capture because they can only be

described by the patient, are subjective, and often documented

only as unstructured text in the electronic health record (EHR).5

Given these issues and the complexity of PCOs, computerized

methods, including machine learning and natural language

processing (NLP), are necessary to unlock the wealth of informa-

tion buried in unstructured textual notes that often document

PCOs.6,7 In fact, using computational methods for clinical

phenotyping has created opportunities to expand population-wide

assessments of both PCOs and therefore patient-valued care.

Maximizing the use of all data available in the EHR is fundamental

to the creation of LHS and its goal of best care.8

Computational patient phenotyping is a data-driven task of dis-

covering clinical phenotypes in a large patient cohort to assist clinical

representations for patient groups sharing the same set of diseases.9

The majority of data in EHRs are collected as unstructured data, as

caregivers need the flexibility to freely write intuitions, possibilities,

and develop narratives of the patient's disease and progression.10

Fortunately, recent advances in technologies have provided opportu-

nities to use information from EHR unstructured data for PCO

research.11,12 In particular, advanced machine learning and deep learn-

ing-based NLP approaches have demonstrated high accuracy to

extract important PCOs to help streamline the information reported

in the clinical narratives to be utilized for the LHS.6,11,13,14 However,

these methods are limited in that they only provide binary classifica-

tion of symptoms (positive/negative).

PCOs include common side effects of diverse treatment regimens,

which are often not investigated by population level as they are generally

reported in unstructured text. Our group tackles this challenge and has

focused on PCOs surrounding treatments for cancer and particularly

prostate cancer. Many men treated surgically for prostate cancer experi-

ence some level of urinary incontinence (UI) during their treatment jour-

ney.15 While some patients report minimal disruption of their quality of

life due to mild UI, moderate and severe UI often have a significant nega-

tive impact on quality of life.16 Therefore, it is important to quantify the

severity of this symptom to accurately guide treatment—which can range

from surgery for severe UI, to occasional use of protective pads for mild

UI. Severity classification allows for triaging patients in order to identify

those who might benefit from additional medical care, such as medica-

tions or surgical procedures (e.g. artificial urinary sphincter) for severe

urinary symptoms.17 Development of a severity classifier could signifi-

cantly improve patient counseling by allowing both patients and pro-

viders to understand the extent and degree of side effects, such as UI, to

guide treatment choice. However, without population-level studies on

PCO severity, opportunities to personalize the treatment of PCOs, such

as UI, are limited.

2 | QUESTION(S) OF INTEREST OR
RESEARCH INTERESTS

In this study, as an example of extracting PCOs embedded in clinical

text, we propose a NLP pipeline to identify the severity of UI in pros-

tate cancer patients using only free-text clinical notes from EHRs (e.g.

progress notes, nursing notes, oncology notes). We include a

rule-based model, a deep learning model and a hybrid model which

combines traditional rule-based NLP methods with recent advances—

distributed word representations18 and convolutional neural network

(CNN) architecture19 to accurately tackle the challenging task of

classifying notes into various severities of UI. We present the perfor-

mance of both rule-based and deep learning models and compare

these models with the hybrid architecture. This work provides a

framework to augment the LHS by ensuring patients' symptoms are

part of the continuous learning from the health system—keeping the

patient at the center of care.

3 | METHODS

3.1 | Data source

In this study, patients were identified in a prostate cancer clinical data

warehouse (CDW), which is described in detail elsewhere.20 In brief,

data were collected from a tertiary-care academic medical center with
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an Epic EHR system (Epic Systems, Verona, Wisconsin) and managed

in an EHR-based relational database. This study was approved by the

institution's Institutional Review Board.

3.2 | Study cohort

The study included patients diagnosed with prostate cancer (ICD-9-

CM:185 and ICD-10-CM:C61) between 2008 and 2018. The initial

dataset consists of 1.4 million notes across 18 different note types

from 15 218 patients. Patients were excluded if they did not receive

initial treatment for prostate cancer (prostatectomy, radiotherapy,

hormone therapy, or chemotherapy) at our institute. We further

excluded patients who received cystoprostatectomy (ICD-9 procedure

code: 57.71), as these patients had a primary diagnosis of bladder can-

cer with prostate cancer detected incidentally on surgical pathology.

In addition, we excluded patients with less than two encounters

throughout the study period due to limited clinical information avail-

able for these patients.

As a second cohort filtering, we used a previously described

machine learning method to categorize patients into affirmed and

negated classification of UI.6 The present study used only those

notes that were categorized as affirmed UI (0.90 F1 score) by this

algorithm to reduce computation time. This method yielded a total

of 19 213 notes of 3612 patients with predicted affirmed UI

(Figure 1).

3.3 | Manually annotated reference standard data
for UI severity

Since the severity of UI is inherently subjective, rules were con-

structed after consulting with practicing urologists and a urology

nurse. These rules are summarized in Table 1.

Using the rules in Table 1, three researchers (one domain expert

and two research nurses) annotated a set of sentences parsed from

clinical notes based on these constructed rules. Each reviewer was

given ≥200 sentences with 100 of them being common across all

researchers. This enabled the calculation of interrater agreement

scores while maximizing the number of labelled examples retrieved

and minimizing labelling time.

Cohen's Kappa (κ) is a commonly used metric to measure agree-

ment between two raters; a value greater than 0.8 indicates a nearly

perfect agreement. The κ values for each pair of the labelers are

F IGURE 1 Flowchart to select the
final cohort and train-test sets
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shown in Table 2. The high values of κ are likely attributable to the

construction of rules before the analysis stage. Labels for the common

set were combined using majority voting. Labels from the remaining

sentences were concatenated together to form the final dataset. This

method yielded a total of 361 sentences labelled with the three sever-

ities of UI, including 132 mild, 119 severe, and 110 moderate cases.

3.4 | Hybrid deep phenotyping method—
Combination of rule-based and CNN

In order to automatically classify severity of UI using clinical notes, we

developed an NLP pipeline which is a combination of traditional rule-

based methods and deep learning models to build a reliable classifier

(Figure 2).

3.5 | Preprocessing

Notes were preprocessed using standard NLP tools that involve

tokenization of sentences and words using a domain-independent

parser from the NLTK package in Python and removal of the selected

punctuations and extra white spaces. Through this process, a note

corresponded to a list of sentences and a sentence corresponded to a

list of words.

3.6 | Rule-based method

A previously developed dictionary of terms that were associated with

the presence of UI was used as the knowledge base of the rule-based

model.7 The original dictionary contained 64 terms and phrases but

was augmented with the addition of 6 terms for the task of detecting

UI severity.

We next randomly selected a set of 20 clinical notes from the

cohort to develop regular expressions used to capture the clinical con-

cepts in the dictionary of terms. A total of seven regular expressions

were formulated for mild UI, three for moderate, and six for severe.

The ConText algorithm was used to detect negation, discussion of

future risks, and past experiences of UI.21 A sentence was classified as

“mild” if negation was detected as “not severe” or none of the other

rules were matched because all patient in the cohort were already

classified as having some stage of UI. Sentences that matched rules

for two or more severities were systematically classified as the more

severe category. For example, the sentence “He usually uses 2 pads per

day, but recently has been using 4-5 pads” was classified as severe even

though it matches the criteria for both moderate and severe.

3.7 | CNN method

In an attempt to overcome the shortcomings of the rule-based system

(e.g. limited coverage and generalizability), we developed a deep learn-

ing method to classify sentences into the three classes using an

approach that utilizes a variant of max-pooling to standardize the hid-

den representations of sentences to the same dimensionality.19 To

address the limited number of samples for supervised training, we

generated a pretrained embedding layer of the CNN model by training

distributed word vectors using the word2vec algorithm for any word

that appeared more than 100 times in the dataset (all 1.4 million

notes).18 To increase the generalizability of the model and to learn the

complex word semantics, the entire database (prior to any filtering)

was used to train the distributed word vectors. The final vocabulary

included 73 024 tokens. We used the continuous bag-of-words

(CBOW) variant of word2vec to train 300-dimensional word vectors.

CBOW trains a supervised model to predict a central word of a fixed-

sized window using the remaining words in that window. A window

size of 8 was chosen since these hyperparameters have been shown

to work well in other studies utilizing word vectors.6,22 The model

was trained for 10 epochs using the Gensim python library implemen-

tation of word2vec.23 The trained vectors have the desirable property

of assigning semantically similar words close together in Euclidean

space. For instance, the closest token to the word “patient” was “pt,”

TABLE 1 Rules constructed to categorize severity of urinary incontinence

Mild Moderate Severe

Severity based on

pad counts

≤1 pad per day Two to three (inclusive) pads per

day

>3 pads per day

≥1 diaper per day

Frequently used

keywords

“Mild | minimal | occasional | rare | minor | some”
used to describe incontinence

Postvoid dribbling

“Moderate | considerable” used to

describe incontinence

“Severe | total | complete” used to

describe incontinence

Sample sentence For example, “patient is now down to

1 pad/day”
For example, “he continues to

experience moderate stress

urinary incontinence”

For example, “he is totally

incontinent since his surgery last

month”

TABLE 2 Cohen's Kappa values to assess interrater agreement
among pairs of labelers

Rater pair κ

Rater 1, rater 2 0.867

Rater 1, rater 3 0.927

Rater 2, rater 3 0.881
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a commonly used clinical abbreviation, as measured by the cosine dis-

tance. The closest token to the misspelled word “incotninence” was

the correctly spelled word “incontinence.”

The CNN model architecture is depicted in Figure 2. Tokenized

sentences from the training set (n = 288) were the input of the model.

For each word in a sentence, D = 300-dimensional pretrained word

embeddings were concatenated to form the input matrix. The final

model included kernels of sizes 2, 3, and 4. The outputs of these vec-

tors were fed through a rectified linear unit nonlinearity and then

“pooled over time” (ie, the max of each kernel output was taken to

obtain a single number). These pooled vectors were concatenated to

form a 50 × 3 = 150-dimensional vector. Thus, every sentence,

regardless of length, was represented by a single vector with 150

entries. A dropout layer was applied with a drop probability of 0.75.

Finally, the output layer consisted of a softmax nonlinearity applied to

four neurons, one for each severity. The model was trained using a

weighted categorical cross entropy loss function and Adam optimizer

for 10 epochs using the pytorch framework.

Example sentences (n = 361), previously annotated by

researchers, were split into train and test sets in a 70:30 ratio. The

CNN model was trained on the training set with fivefold cross-valida-

tion. The hold out test set was used to evaluate the model

performance.

3.8 | Combination of the models for deep
phenotyping

Both methods were combined to obtain a single model where the tar-

get was to obtain a comprehensive representation of textual

expression. Each regular expression from the rule-based model was

treated as a binary feature: 1 if the pattern matched, all nonmatches

scored 0. A binary vector of 19 features (16 regular expressions, nega-

tion, historical and future context discussion) was concatenated with

the outcome of final hidden layer of the trained CNN model and pass

through the softmax function to predict the labels as described in the

CNN model.

3.9 | Evaluation

All three methods were evaluated on the same test set. Precision,

recall, and F1-score were collected for each class along with an overall

accuracy score. We also displayed the confusion matrix to show inter-

class misclassification rate.

4 | RESULTS

The study consisted of 259 patients with reported UI as mild (n = 87,

33.6%), moderate (n = 79, 30.5%), and severe (n = 93, 35.9%). Models

were trained and tested using this cohort. The test performance met-

rics are summarized in Table 3, which include precision, recall, and F1-

score and a confusion matrix (Figure 3). The rule-based model

achieved an overall accuracy of 0.86, as compared to 0.73 in the CNN

model and 0.75 in the hybrid model.

The rule-based model showed high precision but lower recall for

each severity class. The model performed better in moderate and

severe categories than in the mild category. The confusion matrix is

presented in Figure 3A.

F IGURE 2 The proposed hybrid pipeline with convolutional neural network (CNN) architecture used for sentence classification. N is the
number of tokens in a given sentence, D is the embedding size of 300. K is the size of a particular kernel
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The rule-based method had explicit rules for handling concepts

specifically identified in the domain dictionary, such as the examples

in Table 1. The CNN model's results underperform the rule-based

model on the same test set with an overall accuracy of 0.73.

The performance metrics for the deep learning model are summa-

rized in Table 3 and Figure 3B. Although the number of examples in

the test set was small, the structure of the confusion matrix demon-

strated that the two models had “learned” fundamentally distinct fea-

tures for severity classification. In contrast to the rule-based model,

CNN model's recall rates for mild and moderate group were higher

than the precision rate. In addition, CNN model was less successful at

identifying the “severe” category compared to the mild and moderate

TABLE 3 Test set performance metrics for the rule-based and CNN models

Rule-based model CNN model Hybrid model

Precision Recall F1 Precision Recall F1 Precision Recall F1

Mild 0.91 0.79 0.82 0.72 0.78 0.75 0.73 0.80 0.76

Moderate 0.99 0.88 0.94 0.76 0.79 0.78 0.84 0.79 0.81

Severe 0.97 0.83 0.90 0.69 0.61 0.88 0.74 0.69 0.71

Abbreviation: CNN, convolutional neural network.

F IGURE 3 Normalized confusion matrix for the different models: A, rule-based model; B, convolutional neural network (CNN) model; and C,
combined hybrid model
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UI categories. Combining the rule-based and CNN methods did not

improve the accuracy of rule-based model (Table 3 and Figure 3C) but

did slightly outperform CNN-only model with an overall accuracy

of 0.75.

5 | DISCUSSION

Precision medicine is evolving from a concept under healthcare

reform to a reality under an LHS framework. At the center of an LHS

is evidence to guide patient-centered care, which should include

predicting symptom severity, particularly for PCOs that affect quality

of life, such as UI following surgical treatment for prostate cancer.

While a first step is indeed to identify whether a patient has a specific

symptom or not, the next step requires classifying symptoms based

on their severity to guide treatment options and value-based care.

We previously developed an NLP phenotyping algorithm to identify

the patients with UI documented in the EHR.6,24 Here, we build on

this work by phenotyping patients based on UI severity, which clas-

sifies a positive UI into mild, moderate, and severe incontinence.

Using both rule-based and deep learning NLP methods, we developed

a reliable classifier for UI severity. The successful implementation of

automated PCO stratification models coupled with best practices

could enable a healthcare system that is patient centric and supports

clinical decision-making at the point of care.

Both rule-based and machine learning NLP approaches to lever-

age granular data in EHRs are common and their accuracy has been

demonstrated in many recent studies.5,6,22 In our study, the rule-

based approach depends on human expertise outperformed the

machine learning approach on UI severity extraction task. As reported

in other studies,9,22,23,25-27 the underlying reason for this may be that

the hand-designed rules that precisely capture specific patterns over-

fit with the data. Therefore, such rule-based approaches might not

generalize well to other health care systems or other conditions

because even slight variations from the rules can dramatically erode

performance of the model. On the other hand, while this study does

depend on these subjective rules, it provides a framework for compar-

ing relative severities of UI within a single medical center, and, to a

lesser degree, between medical centers.

The knowledge base of both methods is a domain-specific dictio-

nary. The dictionary must be identified a priori and, unfortunately,

free-text clinical documentation of UI might not be limited to the spe-

cific terms we have included since all clinicians are unlikely to use the

same terms and might have local differences in terminology that could

affect model performance. For example, the word depends can be

used both as a name brand for diapers (ie, the patient wears Depends

for UI) or as a verb (ie, the patient's UI depends on physical activity).

To address this potential shortcoming, we have shared our dictionar-

ies through national repositories (pheKB.org), welcome the addition of

other terms and concepts, and encourage other groups to adapt the

dictionaries to their specific practice settings.

Use of deep learning models for NLP tasks has shown excellent

performance in mining the EHR and can contribute greatly to the

analysis of unstructured text.22,28,29 While recurrent neural network

architectures are commonly used for deep learning tasks involving

text classification, the convolutional approach used in our study is ide-

ally suited for the task of parsing clinical texts as trained kernels to

evaluate the independent impact of small groups of words on the tar-

get label.19,22,29 However, our results showed that the CNN model

showed poorer performance characteristics compared to the rule-

based model for extraction and tabulating UI severity. The lower per-

formance might be attributed to the paucity of training set which

includes less than 100 examples for each class. Limitations of machine

learning methods on small sample set has emerged as a significant

challenge in recent studies, necessarily due to limited population sizes

available is single EHRs where studies are interrogating single dis-

eases, symptoms, or outcomes.30,31 Hence, researchers have gravi-

tated toward create hybrid frameworks using traditional NLP and

machine learning solutions.31

To leverage the advantages of both approaches, we propose a

combination of traditional rule-based methods and recent develop-

ments in deep learning to build reliable classifiers. Although the per-

formance of rule-based system outperforms the other models, as in

the case of phenotyping UI severity, it is possible that the superior

performance might be due to overfitting based on selection of terms

specifically used by providers in our health care system. Our hybrid

NLP pipeline leveraged the complementary strengths of both the rule-

based and the CNN models in classifying the severity of UI and pro-

duced higher performance than CNN only approach. Therefore, we

believe our semiautomated iterative approach might produce optimal

and replicable results in other settings.31 Moreover, since the terms

for UI severity classification in the model are not unique to prostate

cancer patients, the model likely could be used to identify UI and its

severity in men and women. Since UI is a common finding with

increasing age due to pelvic floor disorders in women and benign

prostatic hyperplasia in men our algorithm could have broad

applications.

It has been reported that most patient data resides in unstructured

clinical narratives.32 Harvesting and organizing this valuable data

stream poses significant challenges for knowledge delivery in an LHS.

In addition, utilizing this information plays a significant role in data-

driven and evidence-based decision-making. Fortunately, as we show

in this study, recent advances in NLP methodologies tackle this chal-

lenge and streamline the acquisition of this critical information so that

it can be utilized by the LHS.8,13 For example, Kaggal et al developed

an NLP infrastructure that allows data collection and large-scale analyt-

ics as a part of an LHS cycle that has been used in discrete settings to

provide real-time care recommendations to clinicians at the point of

care.33 Our work, using UI as an example, shows how these discrete

applications can continue to be refined. By identifying and classifying

symptom or disease severity, an LHS can provide recommendations tai-

lored to disease severity. In the case of UI, mild symptoms could elicit

recommendations for behavioral-based therapies (eg, Kegel exercises

or biofeedback) while moderate-severe symptoms might recommend

referral for medical or surgical approaches (eg, anticholinergic medica-

tions, artificial urinary sphincter). Therefore, NLP empowered LHS
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infrastructures have the potential to advance health care by generating

and implementing a seamless patient centered information extraction

framework from entire EHR.

The LHS is a paradigm in which data generated in routine clinical

care can be used for the collaborative healthcare choices of each patient

and provider.34,35 However, to understand the best treatment for any

particular patient, granular details on patients' values and symptoms are

needed. This entails having the knowledge from the patient to personal-

ize care plans that meet individuals' specific needs and values rather than

care plans developed for the average patient. However, to support a

patient-centric learning healthcare system, the systematic extraction of

disease severity and its association with quality of life are essential. Here,

we purpose different NLP methodologies that may be used to improve

the depth of information available from clinical text related to treatment-

related such outcomes. To be useful to providers, the systems must

incorporate relevant features of disease severity in order to personalize

recommendations for management approaches. This will require direct

input from the providers and likely multiple iterations to refine which

information is extracted in order to provide the most useful output for

the clinician. As we move to an LHS, we must be able to phenotype dis-

ease and symptom severity to move data to knowledge and knowledge

to the point of care. Phenotyping the severity of treatment-acquired side

effects following prostate cancer therapy is particularly compelling given

that prostate cancer is the most common cancer among men in the

United States and the majority of men must choose between different

treatment modalities, each with important symptoms attributable to the

therapy selected that affect their quality of life. Furthermore, the ability

to stratify patients based on PCO severity opens opportunities for future

research using biological markers, including anatomic differences

observed on imaging, or DNA variations. Capturing and utilizing data

embedded in clinical narratives for patient phenotyping can enhance

both the rigor and the relevance of evidence in the cycle of LHS. A

future challenge in implementing an LHS will be to develop methods for

shortening the window of iteration that refine which PROs are captured

and how they are quantified to provide more patient specific recommen-

dations to physicians in real time.

5.1 | Limitations

Our study does have limitations. First, the NLP based phenotyping

task was developed at a single academic medical center and, as men-

tioned above, might not be generalizable to other sites and settings

due to differences in terminology. Second, our approach depends

solely on sentence level information to make predictions. While infor-

mation in our dataset tends to be concisely recorded, there are

instances where mentions of UI can span several sentences and would

be missed due to sentence-level tokenization. Therefore, the model

may suffer if labels are aggregated to the note level. If, however, all

sentences referring to UI mention at least one of the terms from the

dictionary, they would be adequately captured by the model we have

developed. Finally, our study is limited by the small number of anno-

tated notes used for training and testing, and our models might miss

some relevant but rare expressions used to identify and characterize

UI in the entire EHR.

6 | CONCLUSION

A successful LHS transforms data from routine care into evidence and

provides optimal care to each individual patient. In order to learn from

patients' outcomes, particularly PCOs, robust patient phenotyping is

needed to classify patients' disease severity. Symptom severity poses

extraordinary challenges for a precision medicine approach, but its classi-

fication is essential to learn through care delivery and can ultimately

improve the care provided to patients. In our study of UI, a rule-based

phenotyping approach outperformed other advanced phenotyping meth-

odologies for severity phenotyping. These results highlight the impor-

tance of understanding the phenotyping challenge and suggest that, for

certain phenotypes, a rule-based approach is the best choice for discrimi-

nating disease severity. We believe that accurate phenotyping using

EHRs is necessary to bring evidence to the point of care and that the

best methodology for phenotyping is dependent on the specific type of

evidence or content under investigation.

ACKNOWLEDGEMENTS

Research reported in this publication was supported by the National

Cancer Institute of the National Institutes of Health under Award

Number R01CA183962. The content is solely the responsibility of the

authors and does not necessarily represent the official views of the

National Institutes of Health.

CONFLICT OF INTEREST

The authors declare no conflicts of interest.

ORCID

Tina Hernandez-Boussard https://orcid.org/0000-0001-6553-3455

REFERENCES

1. Finney Rutten LJ, Alexander A, Embi PJ, et al. Patient-centered net-

work of learning health systems: developing a resource for clinical

translational research. J Clin Transl Sci. 2017;1(1):40-44.

2. Harle CA, Lipori G, Hurley RW. Collecting, integrating, and dissemi-

nating patient-reported outcomes for research in a learning

healthcare system. eGEMs. 2016;4(1):1240.

3. Stephens KA, Osterhage KP, Fiore-Gartland B, Lovins TL, Keppel GA,

Kim KK. Examining the needs of patient stakeholders as research

partners in health data networks for translational research. AMIA Jt

Summits Transl Sci Proc. 2019;2019:363-369.

4. Fagotto E Exchanging Information to Create a Learning Health Sys-

tem; 2019.

5. Hernandez-Boussard T, Tamang S, Blayney D, Brooks J, Shah N. New

paradigms for patient-centered outcomes research in electronic medi-

cal records: an example of detecting urinary incontinence following

prostatectomy. EGEMS. 2016;4(3):1231.

6. Banerjee I, Li K, Seneviratne M, et al. Weakly supervised natural

language processing for assessing patient-centered outcome fol-

lowing prostate cancer treatment. JAMIA Open. 2019;2(1):

150-159.

8 of 9 BOZKURT ET AL.

https://orcid.org/0000-0001-6553-3455
https://orcid.org/0000-0001-6553-3455


7. Parthipan A, Banerjee I, Humphreys K, et al. Predicting inadequate

postoperative pain management in depressed patients: a machine

learning approach. PLoS One. 2019;14(2):e0210575.

8. Maddox TM, Matheny MA. Natural language processing and the

promise of big data: small step forward, but many miles to go. Circ

Cardiovasc Qual Outcomes. 2015;8(5):463-465.

9. Banda JM, Seneviratne M, Hernandez-Boussard T, Shah NH.

Advances in electronic phenotyping: from rule-based definitions to

machine learning models. Annu Rev Biomed Data Sci. 2018;1:53-68.

10. Malmasi S, Ge W, Hosomura N, Turchin A. Comparison of natural lan-

guage processing techniques in analysis of sparse clinical data: insulin

decline by patients. AMIA Jt Summits Transl Sci Proc. 2019;2019:

610-619.

11. Kaggal V. Learning Healthcare System Enabled by Real-Time Knowl-

edge Extraction from Text Data. 2019.

12. Li K, Banerjee I, Magnani CJ, Blayney DW, Brooks JD, Hernandez-

Boussard T. Clinical documentation to predict factors associated with

urinary incontinence following prostatectomy for prostate cancer. Res

Rep Urol. 2020;12:7-14.

13. Afzal N, Mallipeddi VP, Sohn S, et al. Natural language processing of

clinical notes for identification of critical limb ischemia. Int J Med

Inform. 2018;111:83-89.

14. Maddox TM, Albert NM, Borden WB, et al. The learning healthcare

system and cardiovascular care: a scientific statement from the Amer-

ican Heart Association. Circulation. 2017;135(14):e826-e857.

15. Barocas DA, Alvarez J, Resnick MJ, et al. Association between radiation

therapy, surgery, or observation for localized prostate cancer and patient-

reported outcomes after 3 years. Jama. 2017;317(11):1126-1140.

16. Sanda MG, Dunn RL, Michalski J, et al. Quality of life and satisfaction

with outcome among prostate-cancer survivors. New Engl J Med.

2008;358(12):1250-1261.

17. Moore KC, Lucas MG. Management of male urinary incontinence.

Indian J Urol. 2010;26(2):236-244.

18. Turner CA, Jacobs AD, Marques CK, et al. Word2Vec inversion and

traditional text classifiers for phenotyping lupus. BMC Med Inform

Decis Mak. 2017;17(1):126.

19. Kim Y. Convolutional neural networks for sentence classification.

arXiv preprint arXiv:1408.5882. 2014.

20. Seneviratne MG, Seto T, Blayney DW, Brooks JD, Hernandez-

Boussard T. Architecture and implementation of a clinical research

data warehouse for prostate cancer. EGEMS. 2018;6(1):13.

21. Chapman WW, Chu D, Dowling JN. ConText: An algorithm for identi-

fying contextual features from clinical text. Paper presented at: Pro-

ceedings of the workshop on BioNLP 2007: biological, translational,

and clinical language processing; 2007.

22. Coquet J, Bozkurt S, Kan KM, et al. Comparison of orthogonal NLP

methods for clinical phenotyping and assessment of bone scan utiliza-

tion among prostate cancer patients. J Biomed Inform. 2019;94:103184.

23. Zeng Z, Deng Y, Li X, Naumann T, Luo Y. Natural language processing

for EHR-based computational phenotyping. IEEE/ACM Trans Comput

Biol Bioinform. 2019;16(1):139-153.

24. Hernandez-Boussard T, Kourdis PD, Seto T, et al. Mining electronic

health records to extract patient-centered outcomes following pros-

tate cancer treatment. AMIA Annu Symp Proc. 2017;2017:876-882.

25. Nguyen AN, Lawley MJ, Hansen DP, et al. Symbolic rule-based classi-

fication of lung cancer stages from free-text pathology reports. J Am

Med Inform Assoc. 2010;17(4):440-445.

26. Spasi�c I, Livsey J, Keane JA, Nenadi�c G. Text mining of cancer-related

information: review of current status and future directions. Int J Med

Inform. 2014;83(9):605-623.

27. Tan WK, Hassanpour S, Heagerty PJ, et al. Comparison of natural lan-

guage processing rules-based and machine-learning systems to iden-

tify lumbar spine imaging findings related to low back pain. Acad

Radiol. 2018;25:1422-1432.

28. Gupta A, Banerjee I, Rubin DL. Automatic information extraction from

unstructured mammography reports using distributed semantics. J

Biomed Inform. 2018;78:78-86.

29. Gehrmann S, Dernoncourt F, Li Y, et al. Comparing deep learning and

concept extraction based methods for patient phenotyping from clini-

cal narratives. PLoS One. 2018;13(2):e0192360.

30. Sharma H, Mao C, Zhang Y, et al. Developing a portable natural lan-

guage processing based phenotyping system. BMC Med Inform Decis

Mak. 2019;19(Suppl 3):78.

31. Trivedi HM, Panahiazar M, Liang A, et al. Large scale semi-automated

labeling of routine free-text clinical records for deep learning. J Digit

Imaging. 2019;32(1):30-37.

32. Meystre SM, Savova GK, Kipper-Schuler KC, Hurdle JF. Extracting

information from textual documents in the electronic health record: a

review of recent research. Yearb Med Inform 17.01. 2008;128-144.

33. Kaggal VC, Elayavilli RK, Mehrabi S, et al. Toward a learning health-

care system—knowledge delivery at the point of care empowered by

big data and NLP. Biomed Inform Insights. 2016;8(Suppl 1):13-22.

34. Budrionis A, Bellika JG. The learning healthcare system: where are we

now? A systematic review. J Biomed Inform. 2016;64:87-92.

35. Friedman CP, Wong AK, Blumenthal D. Achieving a nationwide learn-

ing health system. Sci Transl Med. 2010;2(57):57cm29.

How to cite this article: Bozkurt S, Paul R, Coquet J, et al.

Phenotyping severity of patient-centered outcomes using

clinical notes: A prostate cancer use case. Learn Health Sys.

2020;4:e10237. https://doi.org/10.1002/lrh2.10237

BOZKURT ET AL. 9 of 9

https://doi.org/10.1002/lrh2.10237

	Phenotyping severity of patient-centered outcomes using clinical notes: A prostate cancer use case
	1  INTRODUCTION
	2  QUESTION(S) OF INTEREST OR RESEARCH INTERESTS
	3  METHODS
	3.1  Data source
	3.2  Study cohort
	3.3  Manually annotated reference standard data for UI severity
	3.4  Hybrid deep phenotyping method-Combination of rule-based and CNN
	3.5  Preprocessing
	3.6  Rule-based method
	3.7  CNN method
	3.8  Combination of the models for deep phenotyping
	3.9  Evaluation

	4  RESULTS
	5  DISCUSSION
	5.1  Limitations

	6  CONCLUSION
	ACKNOWLEDGEMENTS
	  CONFLICT OF INTEREST
	REFERENCES


