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Multiple sclerosis (MS) is the most common chronic inflammatory and neurodegenerative

disease of the central nervous system (CNS). An interesting feature that this debilitating

disease shares with many other inflammatory disorders is that susceptibility is higher in

females than in males, with the risk of MS being three times higher in women compared

to men. Nonetheless, while men have a decreased risk of developing MS, many studies

suggest that males have a worse clinical outcome. MS exhibits an apparent sexual

dimorphism in both the immune response and the pathophysiology of the CNS damage,

ultimately affecting disease susceptibility and progression differently. Overall, women are

predisposed to higher rates of inflammatory relapses than men, but men are more likely

to manifest signs of disease progression and worse CNS damage. The observed sexual

dimorphism in MSmay be due to sex hormones and sex chromosomes, acting in parallel

or combination. In this review, we outline current knowledge on the sexual dimorphism

in MS and discuss the interplay of sex chromosomes, sex hormones, and the immune

system in driving MS disease susceptibility and progression.
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INTRODUCTION

Multiple sclerosis (MS) is a chronic inflammatory and neurodegenerative disease of the central
nervous system (CNS) in which relentless demyelination and neuroaxonal loss are the major cause
of irreversible disability (1, 2). The cause of MS is still obscure, but currently the most accredited
hypothesis is that a dysfunctional (overactive) immune systemmay result in the activation of cross-
reactive immune cells to myelin and oligodendrocyte antigens (3–6). CD4+ T helper 1 (Th1) and
Th17 cells have been principally implicated in MS pathogenesis. However, many other cell types,
including CD8+ T cells, B cells, monocytes, neutrophils, macrophages, and microglia, have also
been proposed as heavily involved in MS pathogenesis (7–12).

MS typically follows either a relapsing-remitting or a progressive disease pattern (13). Relapsing-
remitting MS (RRMS) is characterized by recurrent clinical exacerbations caused by focal
inflammatory and demyelinating lesions in the CNS. RRMS is the most common type of MS,
although up to 65% of these patients eventually transition to a secondary progressive course
(SPMS). Approximately 15% of people with MS are diagnosed with progressive MS from the onset,
in the form of the disease known as primary progressive MS (PPMS). Both PPMS and SPMS are
identified by steadily worsening neurologic functions thought to reflect ongoing neurodegenerative
processes (14, 15).

In MS, the influence of biological sex has been reported on incidence, prevalence, disease
course, severity, and prognosis (1, 16). While MS disproportionally affects more women than
men (1, 16, 17), women more frequently present with a more benign course, with predominantly
sensory symptoms, and fewer inflammatory relapses (1). In contrast, men experience more motor
symptoms, cognitive impairment, and overall worse progression (18). As is the case with other
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immune-mediated diseases, the precise basis of the sex bias inMS
is complex. It potentially involves sex hormones and reproductive
history, sex-related differences in immune responsiveness, and
sex-linked genetic and epigenetic factors [Figure 1; (16, 19–25)].

Current knowledge suggests that the study of the biology
of sex bias may provide valuable insight into pathogenesis
and mechanisms of disease progression in MS. Moreover,
the effects of sex on the clinical expression of MS may be
relevant to the management and treatment of patients. This
review summarizes and evaluates findings from clinical and pre-
clinical studies investigating the impact of biological sex on MS
susceptibility, inflammatory activity, and disease progression.
The aim is to provide neurologists and scientists with a
clearer understanding of how sex differences affect disease
development and progression and to explore how sex differences
can influence the evolution of new therapeutic options for this
debilitating disease.

CLINICAL AND RADIOLOGICAL EVIDENCE
OF SEXUAL DIMORPHISM IN MULTIPLE
SCLEROSIS

It is common knowledge that females and males differ in
manymorphological, physiological, and behavioral features. This
sexual dimorphism also encompasses a wide range of disorders,
including immune-mediated (20, 26), and neurodegenerative
diseases (27–29).

The influence of the biological sex on MS has been
demonstrated in all aspects of the disease, from increased

FIGURE 1 | Mechanisms of sexual dimorphism that underlie sex differences in immune responses, ultimately affecting MS disease susceptibility and progression.

Research regarding sex hormones has extensively been analyzed due to the pre-existing knowledge that hormone receptors affect immune cells. The three primary

sex hormones that have been shown to affect the immune system are estrogen, progesterone, and testosterone. All of these hormones have also been shown to

significantly affect both MS disease susceptibility and clinical outcome. Sex chromosome complement exerts its effect in promoting sexual dimorphism in MS

independent of sex hormones. X-dosage compensation and escape from X-inactivation influence differential gene expression of innate and adaptive immune

molecules. Y chromosome contributions include Y-linked potentially dysregulated immunity loci. Studies evaluating sexual dimorphism in immune responses focus on

the interdependence of these factors, as well as their independent contributions.

susceptibility in women to worsened disease outcomes in men.
The current section specifically focuses on the sex differences
observed in disease susceptibility as well as clinical and
radiological outcome measures in MS. The overview given in
Table 1 suggests a more inflammatory phenotype of the disease
in female patients vs. a more neurodegenerative phenotype in
male patients.

Clinical Differences in Multiple Sclerosis
Women have, on average, a two to four times higher risk of
developing MS than men (58), with a constant increase of
the women-to-man (w/m) ratio over time (59–61). This rapid
increase observed over the last century likely reflects changes in
the lifestyle, environment, or nutrition. Dietary intake, hormonal
therapies, reproductive history, drinking, and smoking habits
have all dramatically changed in the last century, impacting
women differently from men (62). These factors are all known
to influence MS risk and therefore represent potential candidates
for the increasing MS susceptibility among women (63–67).
Additionally, a recent age-period-cohort analysis in Norway
found that social factors varying throughout the years, e.g.,
improved access to MS diagnosis among females, may also
explain the increasing w/m ratio (68).

The female preponderance is observed in all phenotypes of the
disease except for PPMS, in which men seem to be slightly more
affected than women (30, 31). The rate at which patients reach
SPMS is also possibly influenced by sex, with the male sex being
mostly associated with earlier conversion from RRMS to SPMS
(31, 44–46). The w/m ratio also generally declines with increasing
age at onset, showing a female preponderance in RRMS patients
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TABLE 1 | Sex differences in prevalence, clinical outcomes, and radiological

measures in MS.

Females Males References

Prevalence Higher prevalence of

RRMS and SPMS Lower

prevalence of PPMS.

Men slightly more

affected by PPMS

(30, 31)

Earlier onset (age 20–40) Slight preponderance in

patients > age 50

(31, 32)

Clinical

outcome

Slower disease

progression

Higher risk of worsening

when relapse-free

(33–35)

Higher inflammatory

activity (relapses)

(33, 35, 36)

Poorer clinical outcome (25, 36–43)

Faster conversion from

RRMS to SPMS

(31, 44–46)

Radiological

measures

Inflammatory phenotype,

i.e., Gd+ lesions

(47–50)

Neurodegenerative

Phenotype, i.e.,

hypointense T1 lesions

(47, 51)

Higher WM atrophy Higher GM atrophy,

global brain atrophy, and

cortical thickness loss

with age. More cortical

lesions and a faster rate

of microstructural

changes in WM chronic

lesions.

(52–57)

between 20 and 40 years of age but a slight male predominance in
patients over 50 years of age (31, 32). Hence, as a whole, women
show earlier onset of the disease, significantly higher prevalence
of RRMS, a slower disease progression, and a somewhat lower
prevalence of PPMS.

In contrast to the clear sexual dimorphism in MS prevalence,
the role of sex in influencing clinical features is less obvious.
Women overall show higher inflammatory activity and less
disability progression than men (33–35). Women with MS have
about 20% more clinical relapses than men (36), as well as a
higher relapse rate throughout the disease (33). Conversely, many
natural history studies in MS suggest that male sex is generally
associated with a worse clinical outcome (25, 36, 69). Men have
on average a more progressive and severe disease course (37,
38), a faster time to progression (18, 44), and more significant
disability over time (36, 39, 46, 69). Men tend to worsen more in
relapse-free study intervals than women, and clinical relapses do
not seem to influence their sustained Expanded Disability Status
Scale (EDSS) change over time (35). Male sex also associates with
increased occurrence of cerebellar symptoms (40) and higher
incidence and severity of cognitive deficits (39, 41, 42).

Although socio-demographics may play a role in physical
and cognitive disability outcomes, a study comparing disability
progression between men and women with MS found increased
disability among men, even after adjustment for socio-
demographic factors and disease-modifying drugs (DMTs) (70).
Likewise, a recent study on a large cohort of MS patients

demonstrated that male sex, independent of any additional
demographic or psychiatric component, represents a critical risk
factor for the development of cognitive impairment (43).

Studies have additionally explored whether women with MS
respond differently to DMTs than men. Current treatment of MS
consists mainly of anti-inflammatory DMTs, which substantially
reduce inflammatory disease activity and should also slow
down disease progression. Hypothetically women might be
more responsive to these anti-inflammatory therapies, ultimately
resulting in the development of a less progressive disease course
in females compared with males. However, currently, there is
no indication of any sex-differential effect of DMTs in men or
women with MS (71, 72).

Radiological Differences in Multiple
Sclerosis
Sex differences in clinical presentation, severity, and outcome
of MS are also suggested by average group differences on a
variety of magnetic resonance imaging (MRI) measures (38,
47, 48, 73), although this relationship has not always been
confirmed (52, 74–77).

Generally, women present with a higher number of
gadolinium (Gd)-enhancing lesions (47–50) indicative of a
more inflammatory phenotype. Concurrently, men tend to
develop more destructive lesions, i.e., hypointense T1 lesions,
suggesting a more neurodegenerative phenotype in the male
population (47, 51).

Regarding brain atrophy, white matter (WM) atrophy is, on
average, higher in women compared to men with MS (52),
whereas both global brain atrophy (53, 54) and gray matter (GM)
atrophy are higher in men compared to their female counterparts
(52–54). Overall, GM atrophy in men with MS is dominated by
a more substantial amount of deep GM atrophy (54), and it is
correlated with a worse impaired cognition (53). Furthermore,
men show, on average, more cortical lesions than women in all
MS phenotypes (52, 55) as well as a higher cortical thickness loss
with aging compared to women (56). However, it should also be
pointed out that conflicting results have been provided regarding
the progression of GM volume loss over time in men and women
with MS (78, 79).

Magnetization transfer imaging (MTR) studies have shown
no significant differences in submicroscopic diffuse WM and
GM damage between men and women with MS (52). On
the other hand, using diffusion tension imaging (DTI), WM
diffuse, and regional damage, especially in the thalamus, was
higher in men compared to clinically matched women and
controls of both sexes also correlating with a faster worsening of
cognitive functions (54). DTI also demonstrated a faster rate of
microstructural changes in WM chronic lesions of men with MS.
Specifically, a faster increase in both parallel and perpendicular
diffusivity was shown in men with MS over 12 months of follow-
up. In contrast, women demonstrated much smaller changes in
lesional diffusivity over time (57).

The different patterns of sex hormones may provide a possible
explanation for these radiological differences in men and women
across their life span. Early conventional MRI studies have shown
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TABLE 2 | Biology of sex differences in MS: histopathology and immune

responsiveness.

Females Males References

Histopathology Neurodegenerative

phenotype, i.e., chronic

active lesions; axonal

damage

(90–92)

Slightly more pronounced

remyelination

(93)

Immune

responsiveness

More robust peripheral

immune system response

(19, 94–105)

Stronger

neuroinflammation

(106–108)

a correlation between sex hormone levels and disease activity
measured as Gd-enhancing lesions and both T1 and T2 lesions in
RRMS patients of both sexes (49, 73, 80). For example, both male
and female MS patients with high estradiol and low progesterone
levels show, on average, more Gd-enhancing lesions compared to
patients presenting with low levels of these female sex hormones
(73, 80). These hormones may act in concert for synergistic
immune effects, with low estradiol to progesterone ratio exerting
a protective effect on MS disease activity. Notably, during
the third trimester of pregnancy, i.e., when clinical and MRI
disease activity is suppressed (81–84), the progesterone/estradiol
ratio appears low to reduce the risks of an adverse pregnancy
outcome (85, 86). Likewise, a negative correlation was observed
between concentrations of the male hormone testosterone and
both tissue damage as detected on MRI and neurological
impairment (49, 87–89). Notably, the lowest levels of testosterone
are found in patients with higher numbers of Gd-enhancing
lesions (49).

The picture emerging highlights the differing MS
disease features between men and women. Although
MS is more prevalent and inflammatory in women,
when men develop the disease, it tends to be worse,
being associated with a faster clinical progression and
greater disability.

BIOLOGY OF SEX DIFFERENCES IN
MULTIPLE SCLEROSIS

Sexual dimorphism consists of a phenotypic distinction between
males and females of the same species and is most evident as
differences in outward appearance, i.e., external morphology.
Sexual dimorphism may also occur in internal organs and a
wide range of biological functions, including several aspects
of immunity. This section focuses on the effects of sexual
dimorphism on the pathology and immunology of MS, as
well as those sex-determining factors, i.e., sex hormones and
chromosomes, influencing the degree of sexual size dimorphism
in MS. Results from studies related to these research topics are
summarized in Tables 2–4.

TABLE 3A | Biology of sex differences in MS: sex hormones in males.

Males References

Sex

hormones

Low testosterone Worse Disability (49, 89, 109, 110)

More cognitive decline (34, 39, 89)

Enhanced risk of developing

MS

(111)

High testosterone Protective in the development

of MS

(112–115)

Neuroprotective actions (114, 116, 117)

TABLE 3B | Biology of sex differences in MS: sex hormones in females.

Females References

Sex

hormones

High progesterone

and estrogens

Protective effects (118–121)

Neuroprotective actions (122–124)

Reduction in Relapse Rate

during pregnancy

(81, 84, 125, 126)

Low estrogens Higher risk of developing MS (127)

Fewer relapses and faster

disease progression

(128, 129)

Higher risk of developing

neurodegenerative diseases,

including progressive MS,

during menopause

(128–131)

Resurgence of relapses after

delivery

(82, 132)

TABLE 4 | Biology of sex differences in MS: sex chromosomes.

Sex

chromosomes

Role of the X

chromosome

Increased EAE disease severity

in XX mice

(133)

Susceptibility genes on the X

chromosome

(134–138)

Abnormalities on the X

chromosome, i.e., translocation

and deletions

(139)

Role of the Y

chromosome

Susceptibility genes on the Y

chromosome

(140, 141)

Sex-Related Differences in Histopathology
Not many pathological studies have evaluated sex bias in
MS so far and the few studies that have mostly provided
conflicting results.

By analyzing neocortical lesions and cortical thickness in the
brain tissue obtained from 22MS patients, an early study showed
no differences in number, type, or distribution of cortical lesions
between women and men (142). However, a more recent study
performed on 182MS brain donors and a total of 7562 analyzed
lesions, showed that male patients have a higher incidence
of cortical GM lesions compared to females (90), ultimately
confirming previousMRI studies as described above (52, 55). The
latter study also demonstrated a higher proportion of chronic
active lesions in the male population (90). Similarly, in a previous
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study, these same lesions were reported to be increased in men
with MS, although this finding was only restricted to a 45–55 age
group (91).

In MS, chronic active lesions are characterized by a
hypocellular demyelinated core and a hypercellular edge of
activated microglia related to smoldering inflammation and
axonal degeneration (143). Patients with a more severe disease
have, on average, higher lesion loads compared to patients with
a less severe disease course (90, 144). Chronic active lesions are
also more prominent in progressive MS compared to relapsing
forms of the disease. Therefore, these findings further support the
notion that MS in males is characterized by a more progressive
disease course than in females.

Remyelination is a frequent phenomenon in acute or early
MS lesions (145–147), as well as in chronic lesions (148).
Overall, remyelination is an innate repair function of the
nervous system as an effort to restore function to previously
demyelinated nerve fibers (149). In MS, natural remyelination
becomes impaired over time, possibly resulting in worse disease
progression due to the inability to compensate for the loss of
myelin and oligodendrocytes. In patients with MS, slightly more
pronounced remyelination is observed in women compared with
men (93), an outcome possibly linked to the differential effects
of sex hormones on both the oligodendrocyte lineage and the
neuroinflammatory processes (150). These findings, however,
should be taken with caution, as the data highly relates to disease
duration and usually does not reflect the initial remyelination
capacity in male and female patients.

Concerning axonal damage, evidence was found of
substantially higher nerve fiber density reductions in spinal
pyramidal tracts of male MS patients compared to females (92).
In this study, the nerve fiber density was reduced by 41% at C3
and 42% at T2 in men with MS and only by 19% at both C3
and T2 in women with MS (92). On the other hand, another
study in brain tissue investigating the number of amyloid
precursor protein (APP)-positive axons as a marker of acute
axonal damage, did not detect any significant variation between
sexes (151). However, findings from both these studies have to be
treated with caution because of the small numbers involved.

Sex dimorphism in the CNS of MS patients likely influences
lesion pathogenesis, and consequently, differences in the
prevalence, and course of the disease. Sex dimorphism in CNS
structure and physiology reflect the effects of hormone/receptor
interactions within the CNS resident cells. Previously, it has been
shown that sex steroidogenic enzymes’ expression, as well as
sex hormone receptors signaling, are enhanced in MS lesions
and normal-appearing WM (NAWM) in a sex-specific way
(152). In male MS lesions, estrogen synthesis, and estrogen
receptor beta (ERβ)-mediated signaling are induced, whereas
female MS lesions tend to show an increased progestogen
synthesis (152). Therefore, the balance between local production
of progesterone, estrogen, and androgen seems to differ between
sexes, particularly in the lesional tissue, possibly contributing
to sex differences in lesion development (152). From rodent
studies, there is evidence that the three groups of sex hormones
reduce neuroinflammatory and neurodegenerative processes and
promote remyelination (116, 153–155). Progesterone, estrogen,

and androgen signaling pathways consequently may represent
an endogenous coping mechanism to counteract inflammation,
demyelination, and neurodegeneration in MS, although with
different degrees of protection due to a dimorphic modulation
in males and females.

Sex-Related Differences in Immune
Responsiveness
MS pathology includes focal inflammatory demyelination with
axonal damage (2, 156). Early in the disease course, RRMS
is characterized by repeated inflammatory attacks in the CNS,
resulting in localized damage or lesions in the brain and spinal
cord. These lesions comprise T and B cells, macrophages,
activated microglial cells, and other inflammatory cells (144).
The more sustained immune response generally observed in
women plays a role in the phenotypic differences of MS between
sexes. As aforementioned, women are more likely to develop a
relapsingMS disease course, synonymous with inflammation and
demyelinating lesions (16, 32, 33). In contrast, men with MS
develop, on average, a lower number of inflammatory lesions in
the CNS (33, 36), but a higher number of degenerative lesions
with extensive axonal loss (18, 47, 51, 157).

Sexual Dimorphism of the Peripheral Immune System
Several studies have shown differences in immune system activity
between males and females (16, 19), a factor that may affect the
development and progression of inflammatory diseases like MS.
Generally speaking, females have stronger immune responses
thanmales: females show on average a stronger humoral response
(19, 94, 95), with a higher production of immunoglobulins (Igs),
both IgM and IgG (96, 97), and a higher antibody response
following immunization (19, 95). Females are also characterized
by a more vigorous cell-mediated immune response (94, 95,
98), with increased T cell proliferation and activation (99).
Both in animal models and humans, females are more likely
to develop Th1 proinflammatory responses (95, 98–102), except
during pregnancy when the Th2 anti-inflammatory response is
predominant (100, 101, 158). In general, the ratio of CD4+ to
CD8+ T cells is higher in females than in males (103, 104),
with the relative number of circulating CD8+ T cells being
significantly lower in the female population (100, 104). These
sex-based differences that favor an increase in CD4+ T cells may
provide a partial explanation for the stronger immune response
to exogenous antigens, as observed in females.

Studies have also demonstrated naturally occurring sex
differences in the distribution of peripheral immune cells.
While age-linked variations in lymphocyte subsets have been
reported between males and females (159), the total number
of lymphocytes is similar. Nevertheless, on average, males have
a decreased number of T cells (160), and post-menopausal
women have lower numbers of both B and Th cells (161, 162).
A significant difference was also detected in the percentage
of regulatory T cells (Tregs), with higher percentages reported
in a male vs. female, healthy population (163–165). Tregs in
the male population not only show increased frequencies in
the peripheral blood but also exhibit an enhanced suppressive
and anti-inflammatory capacity compared to Treg cells from
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female donors (165). Lymphocyte subset enumeration in healthy
controls also revealed higher B cells in females (166).

Finally, recent findings indicate a sexual dimorphism in the
activation and regulation of a broad spectrum of peripheral
cytokines and cytokine pathways. Several studies, for example,
have described a more robust monocyte-derived cytokine
production upon ex vivo stimulation with lipopolysaccharides
(LPS) in men than in women (167–169), although others have
found no sex differences (170, 171). Studies in mice also
report that cytokine response of CD4+ T cells generally varies
between males and females, with females displaying the highest
Th1, Th2, and Tregs responses, contingent upon the stage of
infection or type of antigen encountered (172–175). Evidence for
differential cytokine expression in T cell subsets in response to
antigen presentation by B cells and macrophages has also been
demonstrated (176).

Sex Dimorphism of the Neuroimmune System
Biological sex plays an essential role in the normal physiology
of the neuroimmune system as well as in the CNS response
to inflammation. For example, sex differences are evident
in microglia, the nervous system’s primary resident immune
cells. Although data in humans are still missing, recent
studies (106, 107, 177) confirmed earlier research (178–180)
showing differences in the structure, function, activation pattern,
transcriptomic, and proteomic profiles in microglia from male
and female mouse brains, thereby suggesting that microglia
behave very differently in the two sexes. In a recent study,
microglia cells were shown to be larger and more numerous
in the CNS of healthy male mice compared with female mice
(106). Transcriptomic and proteomic profiles of microglia also
discriminated between male and female brains. Importantly
differences were reflected in cell behavior, with male microglia
presenting a higher antigen-presenting capacity and a higher
potential to respond to CNS injury stimulants such as adenosine
triphosphate (ATP) (106).

Similarly, in a second study, healthy male microglia had
increased phagocytic activity and higher reactive oxygen species
(ROS) levels (177). After a moderate-to-severe traumatic brain
injury, microglial activation was shown to be more rapid and
pronounced in males with a prominent activation of a highly
proinflammatory phenotype and a rapid anti-inflammatory
response. In contrast, a slower and less robust microglial
activation was observed in females, also presenting with a
less inflammatory phenotype and a delayed anti-inflammatory
response (107). These findings suggest that microglia are more
active in males and respond more vigorously to CNS injury. As
a consequence of their higher state of alertness, male microglia
may be worse at protecting themselves against CNS injury
because they react more quickly to trigger their cell death
program, thereby boosting the neurodegenerative processes in
males compared to females. This may also apply to MS, a disease
in which the activation of microglia likely plays an essential role
in the effector phase of myelin breakdown and lesions formation
(181, 182).

There are other immunocompetent cells in the CNS
compartment, including astrocytes, and to a lesser extent, mast

cells, myeloid cells, T and B lymphocytes. Although astrocytes
appear to be sexually differentiated in many brain regions (183),
the functional significance of these sex differences for normal
brain and immune function remains an important area of future
inquiry. Similarly, studies on CNS-resident dendritic and mast
cells have been performed only in males thus far (183), so it
remains to be determined whether there are sex differences
in cell numbers or phenotype. No information has also been
acquired concerning CNS-resident B cells. Sex differences were
reported related to the activation and infiltration in the CNS
of proinflammatory myeloid cells, monocytes, and macrophages,
following a moderate to severe controlled cortical impact (CCI).
In CCI male mice, a significant influx of peripheral myeloid
cells was followed by a sustained proliferation of microglia.
In contrast, myeloid infiltration and microglial activation were
substantially lower in female CCI mice (177).

Sex differences in T cell trafficking into the CNS (184), as well
as the number of CNS-resident T cells (185), were also reported.
Sex dimorphism in T cells trafficking from the periphery to
the CNS has been shown by using mice lacking mature T
and B lymphocytes, i.e., RAG-1 knockout (KO) (186). In male
and female RAG-1 KO mice, the adoptive transfer of CD3+

T cells led to substantially more stationary cells in the brain
of the male compared to the female mice (184). This finding
seems to contradict another, more recent study, that found aged
female mice having almost twice as many CD4+ T cells in
the CNS when compared to age-matched male rodents (185).
However, in the latter study, age is a crucial factor that needs
to be taken into consideration. Large numbers of CNS resident
T cells in aged female brains suggest that older females are
more likely to develop higher levels of inflammation and worse
clinical outcomes following CNS damage. Accordingly, previous
work has shown that both aged female mice and aged female
rats exhibit more significant acute injury after ischemic stroke
compared to aged males (187, 188). At present, it is still not
clear whether ovarian hormones affect these sex-related effects,
as all aged female rodents tested in these studies were post-
menopausal, and young females were not investigated. However,
another study from the same group suggested that, in aging
females, T cell numbers in the injured brain negatively correlate
with circulating levels of estradiol, ultimately suggesting that
estrogen could suppress T cell trafficking into the CNS (189).
These findings help to understand why post-menopausal women
are at higher risk for developing progressive forms of MS (128)
and overall neurodegenerative conditions (130).

Sex differences were also demonstrated in the activation
and regulation of a broad network of cytokines. In the CNS,
peripheral injections of lipopolysaccharides (LPS) resulted in
the release of quantitatively and qualitatively distinct patterns
of cytokines in male and female mice (108, 190). Sex-specific
secretion of these cytokines was evident across several families of
cytokines, including the GM-CSF/IL-3/IL-5 family, and the IL-2
family (also called the γ chain cytokine family), along with IL-
10 and IL-13. Usually, males have a more robust production of
cytokines such as CSF1 and CSF2, IFNγ, IL-10, with an overall
stronger activation of the CXCL9 and CXCL10 pathways. In
contrast, females have a higher release of IL-2, IL-15, CCL3,
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CCL5, IL-1α, IL-1β, and IL-4, with stronger activation of CSF3
and CXCL1 pathways (108, 190). Furthermore, females displayed
a faster activation and subsequent resolution of the overall
neuroimmune response, whereas males showed a slower but
more persistent immune activation (108).

Sex Dimorphism of the Immune System in MS
Several investigators have examined sex differences in MS,
revealing sexual dimorphism of the immune system on many
levels. In peripheral blood, a sex bias toward peripheral
proinflammatory Th1 responses to myelin proteins, e.g.,
increased IFNγ and decreased IL-5 levels, was described in
women with MS compared to male patients (191, 192).
Differently, men with MS show IL-5-skewed responses with low
IFNγ (192). There was also evidence for sexual dimorphism in
the peripheral proinflammatory cytokine response, as observed
in a small cohort of RRMS patients. In this latter work, higher
proinflammatory cytokine levels, such as TNFα, were detected in
the males compared to the females (193). However, in another
study, the peripheral cytokine profiles did not differ between
sexes when considering all MS patients as a single group.
Significant sex differences were instead described between disease
subgroups (194). In RRMS patients, proinflammatory cytokine
production was stronger in men than in women. In contrast,
during the progressive phase of the disease, both SPMS and
PPMS, cytokines levels were higher in females compared tomales
(194). Overall, these findings indicate that cytokine production
and sex differences may differ between disease stages, being likely
related to underlying disease mechanisms. However, linking
these findings with the pathophysiology of each MS form is
difficult, as peripheral cytokines levels may reflect either cause or
effect, or a combination of the two, in the underlying pathological
processes of MS.

Sexual dimorphism in MS also exists in the distribution
of peripheral immune cells. In patients with clinically isolated
syndrome (CIS), for example, women tend to present with a
higher percentage of CD4+ Tregs, whereas men display higher
levels of CD8+ Treg lymphocytes (104). The same pattern was
found in the cerebrospinal fluid (CSF) (104).

A recent investigation provided interesting data regarding
sex differences in IL-33 (112), a cytokine that modulates Th2
responses and decreases the differentiation of T cells into highly
proinflammatory Th17 cells (195, 196). IL-33 expression is
increased in NAWM and lesions of MS patients (197), implying
that this cytokine may be part of a compensatory response
to detrimental inflammation. Using the experimental allergic
encephalomyelitis (EAE) model of MS, Russi et al. discovered
that testosterone promptsmeningeal mast cells to secrete IL-33 in
the males, therefore blocking the development of Th17 immune
cells (112). IL-33 expression was low in the lymph nodes, and
CNS of healthy control mice and showed significant increases
in expression in male but not female EAE mice (112). Since
the male hormone testosterone directly induces IL-33 (112), the
hypothesis to be still tested in humans is that with low levels of
circulating testosterone, IL-33 is not adequately induced, thus
leading to a predominant Th17 response in the absence of any
detectable Th2 response. Reduced testosterone levels and a weak

IL-33 response may also explain the increased MS and EAE
susceptibility, as observed in aging males (99, 198).

In summary, in females, MS tends to provoke a greater
Th1 and Th17 proinflammatory immune response, both in the
peripheral blood and in the CNS. On the contrary, in males,
MS causes the cells to adopt a Th2-type response and to
suppress Th1/Th17 proinflammatory responses. Such a sexual
dimorphism in the immune system of MS patients may explain
the more inflammatory disease phenotype observed in the female
compared to the male population.

The Effect of Sex Hormones in MS
There is compelling evidence that sex hormones are essential
in shaping the sex bias of the immune system and immune-
mediated diseases, including MS (20, 21, 26, 113). Sex hormones
such as estrogen, progesterone, prolactin, and testosterone have
significant effects on both the immune and nervous systems,
and most sex differences in MS may be revealed as a direct
consequence of their actions.

According to several studies, low testosterone levels in patients
with MS are linked to an increased risk of disability (49, 89).
Therefore, testosterone therapy may slow disease progression
and cognitive decline in men with MS (87). A second clinical
observation on sex hormones in MS regards the effects of
female hormones, namely estrogens, progesterone, and prolactin.
High levels of estrogens and progesterone are protective in
women with MS (118, 119), whereas higher levels of prolactin
are generally associated with increased risk of developing the
disease (199–202) and clinical relapses (201, 203), even though
contrasting data have been published (204, 205).

Testosterone
Puberty, a time in life associated with increasing levels of sex
steroids, is a pivotal time for MS and its sexual dimorphism
(Figure 2). Sex bias observed in post-pubertal cases is absent
in pre-pubertal cases, supporting the concept of puberty as
a critical event for the dimorphic development of MS (127).
Overall, puberty in females is associated with a higher risk
of acquiring MS (206). In contrast, in males, the disease
onset traditionally occurs later (age 30–40), i.e., at a time
coinciding with the decline of the physiological levels of
testosterone (111), the primary male hormone (Figure 2).
Interestingly, the same phenomenon is observed in immune-
mediated diseases other than MS. In rheumatoid arthritis, for
example, the ratio of affected men in different age groups
changes gradually, being four times higher in the older
male population, namely men between 35 and 75 years of
age (207).

Based on previous data showing that testosterone
represents a natural anti-inflammatory hormone, exerting
suppressive effects on both humoral and cellular immune
responses (208), as well as the observation of a different
prevalence of multiple forms of autoimmunity in the male
population (19, 99, 113), it is likely that high levels of
testosterone, usually detected in young men after puberty,
may be protective against immune-mediated diseases. In
MS, these high testosterone levels seem to mask an early
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FIGURE 2 | Sex hormone production in men and women in relation to MS risk by sex. The average percentage of estrogen (pink) and testosterone (blue) production

from birth to age 80 years is indicated for female and male healthy individuals, respectively. Aging curves for estrogen and testosterone show a striking similarity to the

MS incidence and clinical course. Hormone-related physiological conditions in women such as puberty and menopause exert significant influence both on disease

prevalence and clinical outcomes. On the other hand, men are diagnosed with MS more frequently after puberty, just as their testosterone levels begin to drop.

disease onset, explaining the higher MS disease prevalence
observed in older men, i.e., when the hormone levels tend to
decrease physiologically.

Testosterone was also hypothesized to be protective in
the sexually dimorphic development of MS (114, 115). Low
testosterone levels associate with worse disability (49, 89) and
more cognitive decline in MS patients (39, 89). Testosterone
was shown to be neuroprotective in neuronal cultures (209), in
MS animal models (116, 117, 210) and humans with MS (114,
115). In an in vitro system, for example, testosterone protected
neuroblastoma cells from oxidative stress (209), whereas in
the EAE model of MS, treatment with testosterone decreased
clinical scores of disability, cognitive decline, inflammation,
and demyelination (34, 109, 116, 210). Likewise, findings
in two small clinical trials in men with RRMS suggest a
neuroprotective effect of testosterone based on the measurement
of improvements in the cognitive performance and slowing of
brain atrophy, a finding which warrants further investigation
(114, 115).

Testosterone effects in MS were tested in preclinical and
clinical studies at doses within a safe and therapeutic range
(Table 5).

Estrogens and Progesterone
Pregnancy, a physiological phenomenon typically correlated
with sharp hormonal changes, profoundly affects the course of
MS (Figure 3). Natural course studies in MS have shown that
pregnancy positively affects the short-term course of the disease,
being associated with up to a 70% reduction in relapse rates in
the third trimester (81, 84, 125, 126). A marked resurgence of
relapses is, in contrast, reported within the first 3 months after
delivery (82, 132). Conversely, the long-term progression of MS
is probably not influenced by pregnancy, since parous women
with MS show no signs of increased disability over their lifetime
compared with nulliparous women (132, 211–213). Pregnancy,
however, may accelerate the rate of transition to SPMS (213),
although a different study suggested that parous women with
RRMS may be less likely to develop a progressive course of the
disease (214).

The short-term protective effect of pregnancy on MS
is most likely associated with an immunological shift that
occurs during gestation. Indeed, during pregnancy, cell-mediated
immunity is depressed to avoid fetal rejection (Figure 3), whereas
humoral immune responses, promoting the transfer of maternal
antibodies to the fetus, are increased (215–218). The primary

Frontiers in Neurology | www.frontiersin.org 8 July 2020 | Volume 11 | Article 616

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Gilli et al. Sex Dimorphism in Multiple Sclerosis

TABLE 5 | Hormonal dosages used in preclinical and clinical studies as well as routine clinical practice.

Hormone EAE/TMEV-IDD MS Clinical practice

Progesterone 100–200 mg/14 or 60 days (pellet implant) 10–100 mg/day (oral route) 3–200 mg/day (Oral route)

Estradiol 2.5 mg/60 days (pellet implant) 0.02–0.04 mg/day (Oral route) 0.02–0.5 mg/day (Oral route)

Estriol 5 mg/60 day (pellet implant) 8 mg/day (oral route) 4–5 mg/day (Oral route)

Testosterone 100 mg/60 days (pellet implant) 100 mg/day (topical gel) 12.5–100 mg/day (topical gel)

Local inflamatory reaction 

to support implantation 

and placenta development

Anti-inflammatory modulation 

to preserve the

 feto-amnio-placental complex

Inflammatory reaction 

to induce labor

- Increased Treg, Th2 and Breg cells

- Increased anti-inflammatory cytokines

- Reduced pro-inflammatory cytokines

- Reduced NK and Th1 cells

- Reduced microglia activation

Nadir: Third Trimester

Up to 70% reduction in 

relapse rate

Successful delivery or 

miscarriage worsen 

MS symptoms

Breastfeeding
0   1          2          3          4          5          6          7          8          9        10        11        12
Conception                            Months of pregnancy                            Delivery

hCG

Progesterone

Estrogens

Prolactin

FIGURE 3 | During pregnancy, it is evolutionarily advantageous for inflammatory immune responses that might lead to fetal rejection to be reduced and

anti-inflammatory responses that promote the transfer of maternal antibodies to the fetus to be increased. Hormones modulate the immunological shift that occurs

during pregnancy. Estrogens and progesterone increase throughout pregnancy and affect transcriptional signaling of inflammatory immune responses at the

maternal-fetal interface and systemically. Levels of estrogen, progesterone, and human chorionic gonadotropin (hCG) throughout pregnancy are shown. Such

alterations in the maternal hormonal and immune system ameliorate MS during pregnancy, especially during the third trimester, when hormones reach their peak. MS

can flare up within a few months after giving birth.

hormones supporting pregnancy are estrogens and progesterone
(219) that increase throughout gestation and alter the immune
responses both systemically and at the maternal-fetal interface
(215). This bidirectional interaction between hormones and
the immune system contributes first to pregnancy outcomes,
e.g., full-term or preterm birth, and spontaneous abortion, and
secondly, to a lowered relapse rate in women with MS (Figure 3).

Estrogen levels, i.e., estradiol, estriol, and estrone rise through
the entire pregnancy, peaking in the third trimester (Figure 3).

Estrogen receptors act by regulating cells and pathways in the
innate and adaptive immune system, also participating in the
development of immune cells (220, 221). Physiological levels of
estrogens, or the amount in birth control pills, do not seem to
have significant effects on the immune system. However, at high
pregnancy levels, estrogens suppress the activity of natural killer
(NK) cells (222), inflammatory microglia (223), and Th1 cells as
well as the production of proinflammatory cytokines (224, 225).
Concurrently, estrogens increase the activity of Tregs, Th2 cells,
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and the production of anti-inflammatory cytokines (225, 226).
Estrogens also have a significant impact on the development and
function of B cells by triggering the expansion and activation of
regulatory B cells (Breg), a specific subset of B lymphocytes with
immunosuppressive functions (227).

Preclinical studies of MS confirmed that treatment with
estrogens has anti-inflammatory properties. Estradiol, for
example, was shown to yield a reduction in severity and
frequency of two clinically different MS disease models, EAE
(228–230) and Theiler’s virus-induced demyelinating disease
(TMEV-IDD) (231). Likewise, treating EAE mice with estriol
protects them from disease activity (110, 232). Also, in a small
phase 2, single-arm, crossover clinical trial of estriol treatment
in women with RRMS, patients showed significant reductions
in Gd-enhancing lesions as well as an increased expression of
peripheral anti-inflammatory cytokines, e.g., IL-5 and IL-10,
and a concurrent decrease of the proinflammatory TNFα (233,
234). In 2015, an additional study demonstrated that combined
estrogen-progestin oral contraceptives, with high dose estrogens
and in combination with IFNβ-1a therapy, significantly boost
the overall anti-inflammatory activity of IFNβ in RRMS patients
treated with the cytokine (235). Similarly, estriol, when added
to glatiramer acetate, reduced relapses in a significantly broader
cohort of women with RRMS (236).

Along with its immunomodulatory and anti-inflammatory
roles via its effects on immune cells, estrogens also have
neuroprotective effects (122–124). These effects are mainly
supported by the observation that marked reduction in the
circulating estrogens in women after menopause is associated
with the development of neurodegenerative diseases such as
Alzheimer’s disease (AD) [Figure 2; (130)]. This concept is
further reinforced by the finding of a reduced risk of AD
and improved cognitive function in post-menopausal women
treated with 17β-estradiol (237, 238). According to these
observations, studies in MS showed that after menopause,
the disease progresses more quickly (128, 129, 131), even
though women have fewer relapses (129). As younger women
with MS who underwent oophorectomy also found their
disease getting worse after the procedure (128, 131), this
worsening of MS in natural or induced post-menopausal
women is likely linked to the dropping of estrogen levels.
Thus, hormone replacement therapy, defined as the use of
various types of estrogens alone or in conjunction with
progestins, has been studied as a possible prophylactic against
MS disease progression and neurodegeneration. Although
treatment with systemic estrogen with or without progestin
was associated with a better quality of life in post-menopausal
women with MS (239), further studies are still necessary to
investigate causality.

Progesterone, another female hormone, also has receptors
on immune cells. The primary immune effects of progesterone
are suppression of CD4+ T-cell differentiation, modulation
of the Th1/Th2 balance, increase in Tregs production (240),
and the downregulation of IFNγ and NK cells (241). Besides,
progesterone has neuroprotective effects as it increases the
proliferation of oligodendrocyte progenitor cells (OPCs) and
promoting (re)myelination (153, 242).

Progesterone and synthetic progestins have been shown
in animal models, i.e., EAE and the cuprizone model of
demyelination, to diminish myelin damage, reduce clinical
severity, modulate neuroinflammation, and partially reverse the
age-dependent decline in remyelination (120, 121, 242, 243).
Nevertheless, no protective effect was observed in women with
MS, when progesterone was administered to prevent post-
partum exacerbations (244).

Hormonal effects that are potentially clinically relevant in MS
were adequately characterized in preclinical and clinical studies
using doses up to the maximum tolerated dose (MTD) and
within the dosing ranges to routine clinical practice and route of
administration (Table 5).

Prolactin
Prolactin, also known as luteotropic hormone or luteotropin,
is a hormone produced in the pituitary gland. Besides its
primary roles in mammary gland development and lactation,
prolactin is supposed to be involved in many alternative
functions, including immune modulation promoting B cell
maturation and autoreactivity (245), and cell proliferation
boosting remyelination (205, 246).

The effect of prolactin on MS is disputed as some studies
showed higher levels of this hormone in MS patients (199–
202), especially during relapses (201, 203), while other studies
have challenged this view (204, 205). Similar contrasting results
have been found in preclinical studies. In the EAE model, for
example, prolactin administered at a low dose did not exacerbate
the disease when administered neither prophylactically nor
therapeutically, but the high dose did (203). Also, bromocriptine,
a prolactin suppressor, was shown to inhibit lymphocyte
proliferation, implying that prolactin is detrimental in MS
(247). Nevertheless, prolactin was also shown to induce the
proliferation of OPCs, ultimately promoting (re)myelination
(205). Overall, prolactin seems to exert a dual effect in MS and,
therefore, at this time, it cannot be recommended as a therapeutic
agent in MS.

Gender Identity Disorder and MS Susceptibility
Also known as gender dysphoria, gender identity disorder (GID)
refers to a condition wherein patients have a significant level of
discontent with their birth-assigned sex. Hormonal interventions
are being increasingly used to treat people with GID, but the
influence of the high-dose hormone treatments on MS risk and
disease course remains largely uncharacterized.

In a recent study, it has been reported that men with
GID under transgender hormone therapy of the male-to-
female (MTF) type showed nearly 7-fold higher risk of
developing MS compared to men without GID (248). In this
male population, an altered balance of sex hormones, both
constitutional and secondary to hormonal treatments, which
generally comprises estrogen and anti-androgens along with
sex reassignment surgery, likely increases MS risk. This finding
supports the postulated link between low testosterone levels and
MS susceptibility (49, 89, 113) and highlights a need for further
research on the effects of feminizing sex hormones therapies on
MS disease susceptibility.
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The use of testosterone in female patients diagnosed with
MS as a transgender hormone therapy of the female-to-male
(FTM) type, also remains unclear. Testosterone dosage levels
for cross-sex hormone therapy often differ in amount compared
to those used in clinical trials (115, 117, 249). A previous
case study presented a fully transitioned FTM transgender male
with RRMS, in whom clinical exacerbations and progressive
disability were still evident after surgical intervention and long-
term testosterone therapy (250). However, it is still unclear
whether steady doses of testosterone, both before and after
FTM transition, aggravated disease activity, and precipitated
disability progression.

The Effect of Sex Chromosomes
Sexual dimorphism ultimately arises from sex chromosomes,
either directly from sex-linked transcriptional products or
secondarily from sex hormones produced after the differentiation
of female- or male-specific reproductive tissues.

Genes encoded on the sex chromosomes initiate all biological
sex differences. An essential gene on the Y chromosome is Sry
for Sex-determining Region Y (251, 252). This gene induces the
undifferentiated gonad to differentiate into testes rather than
ovaries. Once formed, testes secrete distinct hormones, e.g.,
testosterone, that generate sex differences at diverse non-gonadal
tissues, organs and systems, including the external genitalia, the
immune system, the nervous system, the cardiovascular system,
and the skeletal system (252).

Besides these hormonal and meta-hormonal determinants of
sexual dimorphism, there are also direct genetic divergences
arising from the difference in sex chromosomes complement
that could also contribute to the phenotypic sexual dimorphism.
An innovative mouse model system, known as Four Core
Genotype (FCG), has been recently established to study the
sex chromosomes effects without the confounding action of a
specific gonadal type (251, 253). In this model, the Sry gene has
been knocked out from the Y chromosome, resulting in Sry-
deficient mice, i.e., XX and XY− phenotypic gonadal females
(XXf and XYf). Further, the insertion of Sry as a transgene onto
an autosome generates XX and XY phenotypic gonadal male
mice (XXm and XYm). Experiments in the FCG model allow
for the testing of sex chromosome effects in two different sex-
specific hormonal conditions, i.e., XXf vs. XYf and XXm vs. XYm

(251, 253).
In a recent study in EAE (133), comparisons between XX

and XY FCG mice uncovered a previously underestimated effect
of sex chromosomes not confounded by gonadal hormones.
Gonadectomized (Gdx) XXm or XYm mice had EAE induced
with the myelin proteolipid protein peptide PLP139−151. Clinical
signs and disease course were overall more severe in XXm

mice, as compared to XYm mice (133). A similar difference
in disease severity was evident after comparing Gdx XXf vs.
Gdx XYf mice (133). To ascertain whether the observed sex
chromosome effect in EAEwas a consequence of the influence sex
chromosome complement has on the immune system, authors
adoptively transferred autoantigen-stimulated lymph node cells
(LNCs) from Gdx and PLP139−151-immunized XXf or XYf mice
into wild-type female mice. LNCs derived from Gdx XXf mice,

as compared with those collected from XYf rodents, promoted
the development of a more severe form of EAE (133). These
observations demonstrate for the first time, sex chromosomes
affect the induction of encephalitogenic immune responses
following EAE immunization inmice. The authors also examined
the underlying mechanisms by which the XX sex chromosome
complement may promote the development of EAE, ultimately
highlighting an augmented release of anti-inflammatory Th2
cytokines from cells derived from XYf mice (133). Interestingly,
Th2 cytokines, such as IL-13, IL-4, and IL-10, had previously been
associated with reduced susceptibility and disease severity in EAE
(254–256). As such, the enhanced Th2 cytokine activity in XYf

mice may protect from severe EAE as compared with XXf mice.
Overall, this study has provided the first evidence that the XX sex
chromosome complement likely results in a greater susceptibility
to MS. Sex chromosome divergences that may explain this sexual
dimorphism include (1) the potentially double genomic dose of
X genes in XX cells, (2) the presence of Y genes only in male cells,
and (3) the presence of paternal genomic imprinting on the X
chromosome arising only in females.

The X Chromosome
Typically, females inherit two copies of the X chromosome,
one from each parent, whereas males inherit one maternal
X chromosome and one paternal Y chromosome. To prevent
females from having twice as many X-linked genes on their sex
chromosomes as males, one of the X chromosomes is randomly
inactivated during embryogenesis. Once an X chromosome
becomes genetically inactive and untranscribed, it remains so
throughout life. The process of X chromosome inactivation
results in a phenomenon known as cellular mosaicism, which is
most advantageous in females since it ameliorates the deleterious
effects of X-linked mutations (23). However, there are some
exceptions: most of the genes have homologous regions on the
Y chromosome, and certain genes can escape X chromosome
inactivation at variable frequencies (257). In this case, a female
ends up with too many active copies of a particular gene.
Considering the critical role played by the majority of the
X chromosome gene products in the immune response, this
phenomenon may be of relevance in terms of the over-reactive
immune system and generally immune-mediated diseases.

A second molecular mechanism of X inactivation that could
also contribute to the sex bias in immune-mediated diseases
is called “skewed X chromosome inactivation.” A skewed X-
inactivation happens when cells show a preferential inactivation
of one X chromosome over the other, leading to an uneven
number of cells with the same X chromosome inactivated (23).
While there may be random X inactivation in most tissues,
locally skewed X-inactivation may exist in the thymus leading to
inadequate thymic deletion (24). T cells tolerized to self-antigens
encoded by one of the two X chromosomes may be reactive
to self-antigens encoded by the other X chromosome when
encountered in peripheral tissues (24). This specific mechanism
was correlated with some immune-mediated diseases with female
predominances, such as autoimmune thyroid disease (ATD) and
scleroderma (258, 259). Nevertheless, skewed X inactivation has
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not been found in the cases of other, more frequent, immune-
mediated diseases, including lupus erythematosus systemic (LES)
(260), type 1 diabetes (24), and MS (261, 262). Thus, currently,
there is still too much conflicting evidence of an association
between an increased frequency of skewed X-chromosome
inactivation and diseases driven by the immune system.

The X chromosome is known to carry the highest number of
immune-related genes and has been implicated in sex differences
in immune-mediated diseases (257). Thus, the X chromosome
has become a research topic of great interest, and many studies
recently sought to understand the role of X-linked genes in the
development and progression of MS and generally immune-
mediated diseases (257). Notably, three X chromosome candidate
genes have been at the forefront of genetic association studies
in MS: PLP (located on Xq22) (134), cytochrome b-245 β chain
(CYBB or NOX2, Xp21) (263), and gamma-aminobutyric acid
ionotropic type A receptor (GABRA3, Xq28) (135). Although
these studies did produce some evidence for association with
MS, none of these genes was actually identified in genome-
wide association studies (GWAS) (264, 265). It should be noted,
however, that the X chromosome is usually excluded fromGWAS
analyses despite being assayed on all current GWAS platforms.
The most recent and possibly more extensive meta-analysis on
genome-wide MS data to date (266), identifies a total of 233
loci significantly associated with MS, only one being mapped
on the X chromosome. This may sound suspicious, given the
strong sex-specific component of the disease. However, the lack
of association between the X chromosome and complex genetic
traits is not uncommon. Although the X chromosome contains
only 5% of all human genes, almost 10% of Mendelian disorders
have been assigned to the X chromosome (267). Yet, only 0.5%
of the associations identified by GWAS have been ultimately
reported on the X chromosome (268, 269). Several different
reasons may explain this lag in X chromosome GWAS findings,
including the omission of the X chromosome from most GWAS
analyses and the lack of specific pipelines for X-wide (XWAS)
association studies.

More recently, a fourth X-linked gene has been associated
with MS (136). UTX [ubiquitously transcribed X chromosome
tetratricopeptide repeat protein, also known as Kdm6a lysine (K)-
specific demethylase 6A] is a gene that encodes a protein that
functions in the catalysis of the demethylation of tri/dimethylated
histone H3. UTX is heavily implicated in modulating a broad
range of immune responses such as the proinflammatory
response of macrophages (270), Th cell differentiation, and
indirectly the maturation of IgG-secreting plasma cells (271).
UTX is an X-linked gene with evidence of homologous regions on
the Y chromosome, and, therefore, it escapes from X inactivation
(257), likely contributing to higher UTX expression in the female
population relative to the male population (272). A recent study
examined the effect of UTX on EAE, specifically focusing onmice
lacking theUTX gene in their CD4+ T cells (136). Thesemice had
reduced clinical symptoms compared with mice with intact UTX.
There was evidence of reduced inflammation and axonal damage
in the spinal cord, therefore suggesting the deletion or inhibition
of the UTX gene has a protective effect in EAE and possibly in
MS. To date, however, UTX was not associated to MS in any

GWAS analysis, possibly because of the lack of studies focusing
on the X chromosome.

Another study involving the X chromosome, a cytogenetic
analysis in patients withMS, identified abnormal X chromosomes
in 50% of the study cohort. Abnormalities were premature
centromere division and structural aberrations that could imply
a preferential clustering of chromosomal breakpoints (139).
Correlation between clinical and cytogenetic data also showed
that cytogenetic abnormalities were prevalent in patients with a
high relapse frequency or with progressive forms of the disease
(139). To our knowledge, such cytogenetic analyses have not
been repeated in subsequent studies. It is therefore not clear
what the significance of these findings may be, nor whether these
chromosomal aberrations directly cause the disease instead of
being just a consequence of the disease activity.

The Y Chromosome
Fewer studies have analyzed the role of the Y chromosome in
MS. Y chromosomes have long been characterized as “genetic
wastelands,” whose primary role was to trigger the development
of the male sex. This view has been challenged in recent
years with the identification of a new unforeseen association
between the Y chromosome and the immune system (140).
Similar to the X chromosome, also the Y chromosome seems
to significantly influence inflammatory responses in males,
resulting in genetic susceptibility or protection to complex
immune-mediated diseases (140). Notably, the Ubiquitously
Transcribed Tetratricopeptide Repeat Containing, Y-Linked
(UTY) gene appears to be a promising candidate underlying the
association between the Y-chromosome and the immune-related
susceptibility to diseases like MS. Interestingly, UTY is the Y
chromosome homolog of the UTX gene mentioned above, which
was recently linked to EAE and possibly MS (136).

Further support for the Y chromosome as a potential
dysregulated immunity locus derives from studies in animal
disease models. In EAE, for example, experiments on consomic
strains of rodents demonstrated that the Y chromosome heavily
influences the susceptibility to EAE as well as its severity (141).
Also, the transcriptomic analysis performed in macrophages and
CD4+ T cells revealed a large number of differentially expressed
Y-chromosome genes, whenmore susceptible mouse strains were
compared to less susceptible strains (141). Data were confirmed
in humans by an analysis of the CD4+ T cell transcriptome in
male patients with CIS vs. healthy male donors (141). A large
proportion of the same Y-linked genes identified in the mouse
model were showed differentially expressed in CD4+ T cells from
the CIS patients vs. healthy controls, providing further evidence
for an evolutionarily conserved mechanism of gene regulation by
the Y chromosome (141).

CONCLUSIONS

It is widely recognized that understanding sex differences
in diseases is essential for discovering sex-biasing factors
that predispose or protect from diseases and for developing
optimal monitoring strategies and therapies for women and
men. Accordingly, the National Institutes of Health (NIH) has
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acknowledged the critical implications of sex differences in
science (273), ultimately implementing, in 2016, new guidelines
for NIH grants that prevent sex bias in basic, preclinical, and
clinical research (274).

Sex-specific medicine is aimed at considering the individual
characteristics of male and female biology, taking into equal
consideration the interest of both sexes. Thus, women should
receive more considerable attention when specific data on
women’s health is lacking, while men should receive more
attention when data on men’s health is lacking. For example,
more data on women may be needed regarding RRMS as
women outnumber men three to one in this form of the
disease. In contrast, more data on men are urgently needed
in progressive MS since male sex is associated with faster and
worse disease progression. Nevertheless, despite our knowledge
of the differences between males and females, there is still no
sex-specific health care in MS, and the prevention, management,
and treatment do not reflect the most evident and essential risk
factor for patients, i.e., biological sex. This omission is delaying
a more efficient health care system, as sex-specific therapies and
monitoring strategies may be more effective than a “standard of
care” determined by averaging responses across large cohorts of
patients and would equally benefit patients of both sexes.

MS exhibits an evident sexual dimorphism in both disease
susceptibility and progression: MS is more common in women,
but the severity of the disease course is worse in men (36, 39,
57, 58). The increased incidence of the disease among women
has been widely explored, with differences between male and
female attributed to the more active immune system, e.g., higher
numbers and stronger proliferative capacity of circulating T-
cells (16, 95, 98, 102), stronger cellular immune responses to
antigen (95, 98), as well as higher levels of B cells (166), and
circulating antibodies (95, 105), observed in females compared
to males. Such a stronger peripheral immune response of females
may explain why women with MS display a more inflammatory
phenotype of the disease, as characterized by a higher number of
inflammatory exacerbations and Gd-enhancing lesions on MRI.

Conversely, it is still unclear, why men have a faster
and worse disability progression, despite their “weaker”
peripheral inflammatory responses. Generally, the gradual
accumulation of disability in MS patients results from a
variety of mechanisms, including inflammatory reactions
confined to the CNS such as leukocytes infiltrates contributing
to demyelination and axonal/neuronal damage (275, 276),

microglial activation associated with the development of
cortical lesions (277), and other complex immune responses
resulting in inflammatory secretory products in the CSF
space (278). Interestingly, inflammatory responses in the CNS
appear more rapid and pronounced in males. Female and
male microglial cells, for example, display differences in the
structure, function, transcriptomic, and proteomic profiles,
and responses to CNS injury (106, 107). Overall, basal male
microglia were shown to have a higher antigen-presenting
capacity, as well as a higher potential to respond to CNS
injury stimuli (106). In parallel, CNS injury triggers a rapid
and substantial microglia activation in males with a more
inflammatory phenotype that produced a rapid, single-phase,
and sustained peak. In contrast, CNS injury triggers a less robust
microglia phenotype in females with biphasic proinflammatory
response peaks, and a delayed anti-inflammatory peak (107).
Altogether these observations challenge the paradigm that
females always have stronger immune responses than males
by suggesting that male patients with MS have quantitatively
higher amounts of CNS inflammation compared to their
female counterparts and providing a causal explanation of
the worse clinical outcome observed in males compared
to females.

Historically, it was argued that sex differences in MS are
primarily due to sex hormones. Nonetheless, emerging evidence
demonstrates that sex differences may also be mediated by
mechanisms other than hormones, and in particular, by X
and/or Y chromosome gene products (134–139, 141, 261, 262).
Possibly, genes on the X and Y chromosomes contribute to MS
susceptibility and progression in a polygenic fashion. However,
no X and/or Y specific chromosome loci have yet been identified
in MS.
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