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Background: Abnormal accumulation of copper could induce cell death and tumor growth, and affect 
tumor immune escape by regulating programmed cell death ligand 1 (PD-L1) expression. This study 
aims to establish and verify a risk signature based on cuproptosis- and immune-related genes (CIRGs) for 
hepatocellular carcinoma (HCC) management.
Methods: HCC RNA-seq and clinical data were obtained from open databases. Least absolute shrinkage 
and selection operator (LASSO) and Cox regression analyses were utilized to screen CIRGs and develop a 
risk signature. The signature’s value for clinical applications, functional enrichment, tumor mutation burden 
(TMB), and immune profile analyses were investigated systematically.
Results: A risk signature was developed utilizing seven CIRGs, and it performed well in predicting the 
prognosis of HCC patients in both the training and external validation cohorts. The model’s risk score was 
discovered to be related to important clinical features. Top 15 mutated genes in HCC were significantly 
different among different risk groups. High-risk patients showed higher TMB, and high TMB was closely 
identified with a poorer prognosis. Immune profile analyses showed that immune infiltration level was 
higher in low-risk patients than high-risk patients, and the level of immune checkpoint genes expression 
varied significantly between patients in two different risk groups. Low-risk patients responded well to 
immunotherapy treatment, whereas high-risk patients were more sensitive to sorafenib, doxorubicin, 
gemcitabine and AKT (also known as protein kinase B) inhibitors.
Conclusions: The established risk signature based on CIRGs can not only well predict the prognosis of 
HCC patients but is also promising in evaluating TMB and treatment response to immunotherapy, targeted 
therapy and chemotherapy, which has the potential to assist in the clinical management of HCC.
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Introduction

Cell metabolism is crucial in tumor development. Tumor 
cells differ from normal cells in several ways, including 
autonomous proliferation. To meet the energy and material 
basis required for rapid proliferation, tumor metabolism is 
abnormally active and undergoes metabolic reprogramming 
in glucose, amino acid, and lipid metabolism, which is 
considered one of the hallmarks of cancer (1). Copper 
works as a cofactor for numerous essential enzymes and 
is engaged in a variety of physiological activities, such as 
oxidative stress and energy metabolism. Copper ions are 
present in low concentrations and maintain equilibrium 
in organisms under normal conditions; however, when 
abnormal accumulation of copper occurs, cell death and 
tumor growth can be induced (2). Cuproptosis is a new 
nonprogrammed cell death mechanism that differentiates 
from the well-known apoptosis, pyroptosis, necroptosis, 
and ferroptosis mechanisms. Tsvetkov et al. (3) discovered 
that copper acts by binding to the lipoylation elements of 
the tricarboxylic acid (TCA) cycle, causing the aggregation 

and disorder of these proteins, thereby blocking TCA 
cycle, triggering proteotoxic stress, and inducing cell death. 
Notably, this study identified ten cuproptosis-related 
genes (CRGs) through genome-wide analysis, providing a 
reference for research on cuproptosis.

Hepatocellular carcinoma (HCC) is the fourth leading 
cause of cancer deaths worldwide and the second leading 
cause of cancer deaths in China (4,5). HCC develops 
insidiously, and most patients are identified at a late stage. 
Patients with advanced HCC often show terrible survival 
outlook, with a median survival of only 1–2 years (6), and 
systemic therapy is a critical treatment alternative for 
these HCC patients. Plenty of studies, represented by the 
IMbrave150 phase III clinical trial (7), have confirmed 
that immunotherapy combined with targeted therapy 
provides significant benefit to HCC patients and becomes 
the primary option for HCC patients at an advanced stage. 
Currently, immunotherapy has become a hot topic in 
oncology research; however, one major issue confronting 
the field is the lack of effective biomarkers or risk models 
to guide medication and optimize individualized chronic 
management for HCC patients. It has been demonstrated 
that copper ions within tumors can affect immune escape 
by regulating programmed cell death ligand 1 (PD-L1) 
expression (8); nevertheless, the role of cuproptosis- and 
immune-related genes (CIRGs) in HCC is still unknown. 
Therefore, we intended to establish and verify a risk 
signature based on CIRGs through bioinformatics to predict 
HCC patients’ prognosis, immunotherapy, targeted therapy, 
and chemotherapy response. We present this article in 
accordance with the TRIPOD reporting checklist (available 
at https://tcr.amegroups.com/article/view/10.21037/tcr-23-
2182/rc).

Methods

Data processing and candidate CIRGs recognition

The Cancer Genome Atlas (TCGA) (https://portal.gdc.
cancer.gov/) was used to access RNA-seq and clinical data 
of HCC patients. Figure S1 depicts the analysis process. 
According to a previous study, ten CRGs (FDX1, LIAS, 
LIPT1, DLD, DLAT, PDHA1, PDHB, MTF1, GLS, and 
CDKN2A) were gained (3). Data on immune-related genes 
(IRGs) were obtained from IMMPORT (https://www.
immport.org/). To identify CIRGs, we utilized Pearson 
correlation analysis, with |coefficient| >0.1 and P<0.05 as 
screening requirements.

Highlight box

Key findings
• This study innovatively developed a hepatocellular carcinoma 

(HCC) risk signature based on cuproptosis- and immune-related 
genes (CIRGs). 

• The signature performed well in predicting the prognosis of HCC 
patients in both the training and external validation cohorts. 

• Remarkable differences in the immune profiles between the high- 
and low-risk groups were observed. 

• The signature is promising in evaluating tumor mutation burden 
(TMB) and treatment response to immunotherapy, targeted 
therapy and chemotherapy.

What is known and what is new? 
• Cuproptosis-related genes play an essential role in the development 

of multiple tumors.
• This study constructed and validated a risk signature in HCC 

based on CIRGs.

What is the implication, and what should change now? 
• This study constructed and validated a risk signature in HCC 

based on CIRGs and further explored systematically the value of 
the signature for clinical applications and stratification research, 
focusing on functional enrichment analysis, tumor mutation 
burden analysis, immune profiles analysis, and drug sensitivity 
analysis. We can envision that combined with other accepted 
clinicopathological features, the signature could significantly help 
oncologists tailor more efficient treatment strategies for HCC 
patients.

https://tcr.amegroups.com/article/view/10.21037/tcr-23-2182/rc
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Validation data in our study were from the International 
Cancer Genome Consortium (ICGC) (https://dcc.icgc.org/) 
and GSE14520 dataset in the Gene Expression Omnibus 
(GEO) (http://www.ncbi.nlm.nih.gov/geo/). The study was 
conducted in accordance with the Declaration of Helsinki (as 
revised in 2013).

Construction of the CIRG signature

The CIRGs associated with HCC patients’ survival were 
filtered using univariate Cox regression analysis. For 
systematic analysis, total samples were randomly classified 
into two categories in a one: one ratio, including training 
and testing groups. The training set was then applied to 
build a CIRG signature using least absolute shrinkage 
and selection operator (LASSO) and multivariate Cox 
regression analyses. Multivariate Cox relapse coefficients (β) 
were employed to calculate risk scores, and the formula was 
as follows: 

1
  = 

n

i
Risk score coefi Xi

=

×∑  [1]

Each CIRG’s coefficient and expression level are 
represented by “Coefi” and “Xi”, respectively. Depending 
on the median risk score, the training group’ samples were 
classified into two different risk groups. The R package 
“pheatmap” was employed to evaluate patients’ risk scores 
and survival time distributions, as well as the expression 
of seven CIRGs in the risk signature. Kaplan-Meier  
(K-M) survival curves were plotted utilizing the R package 
“survival”, and risk scores were included in Cox regression 
analysis to determine if risk scores could independently 
affect HCC patients’ survival. Plotting time-dependent 
receiver operating characteristic (ROC) curves with R 
package “timeROC” was performed to evaluate the model’s 
predictive reliability.

Validation of the CIRG signature

The samples’ risk scores were calculated employing the 
above formula in the testing group, the entire group, 
the ICGC database, and GSE14520 dataset. In different 
validation cohorts, the risk signature’s prognostic value 
was validated comprehensively through a series of survival 
analyses.

Evaluation of correlation between the signature and HCC 
clinicopathological characteristics

We investigated the link among the signature and HCC 
clinicopathological characteristics utilizing the R package 
“ComplexHeatmap”, and we also mapped the proportion of 
clinicopathological factors in different risk groups, as well 
as K-M survival curves in clinical subgroups.

Principal component and differentially expressed genes 
(DEGs) enrichment analyses

We employed the R package “scatterplot3d” for principal 
component analysis. Genes that were differentially 
expressed in various risk groups were screened utilizing R 
package “limma”, with the screening criteria being |logFC| 
>1 and false discovery rate (FDR) <0.05. Following that, 
Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) enrichment studies were carried 
out by DEGs, and the R package “gplot2” was applied to 
visualize the results.

This study was conducted using the R package 
“clusterProfiler” for gene set enrichment analysis (GSEA), 
and the reference dataset was obtained from the MSigDB 
database (http://www.gsea-msigdb.org/gsea/msigdb/index.
jsp), and FDR <0.25, adjusted P<0.05 and |normalized 
enrichment score (NES)| >1 were considered as significant 
enrichment, and R package “ggplot2” was used for 
visualization.

Assessment of tumor mutation burden (TMB) between 
different risk groups

The R package “maftools” was employed to draft the 
waterfall maps of the top 15 mutated genes of HCC 
patients. We calculated TMB, compared TMB discrepancies 
between two risk groups, and examined at the impact of 
TMB on overall survival (OS) utilizing the R packages 
“limma” and “ggpubr”.

Comparison of immune profiles among different risk 
groups

The ESTIMATE algorithm was applied to evaluate immune 
score, stromal score, as well as tumor purity of HCC 

https://dcc.icgc.org/
http://www.ncbi.nlm.nih.gov/geo/
http://www.gsea-msigdb.org/gsea/msigdb/index.jsp
http://www.gsea-msigdb.org/gsea/msigdb/index.jsp


Cheng et al. CIRGs-based predictive signature in HCC2632

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2024;13(6):2629-2646 | https://dx.doi.org/10.21037/tcr-23-2182

samples in tumor immune microenvironment (TIME). The 
ESTIMATE analysis was carried out on cancer samples 
by making use of transcriptional profiles in estimating the 
number of tumor cells, immune cells, and stromal cells that 
had infiltrated tumor. The “estimateScore” function was 
utilized in order to assess immune score, stromal score and 
tumor purity (P<0.05). Then, using a single-sample GSEA 
approach, we assessed various immune cell subgroups, 
associated functions, and pathways. In addition, we 
compared a series of immune checkpoint genes’ expression 
in HCC patients with different risk.

Prediction of treatment benefits between different risk 
groups

The immunophenoscore (IPS) was employed to forecast 
immunotherapy sensitivity. The immune status of samples 
was determined using the IPS function. IPS quantified 
and visualized four different immunophenotypes in every 
sample by using immune response or immune tolerance 
markers (antigen presentation, effector cells, suppressor 
cells and checkpoint markers), which produced a z score 
that summarized the above four types. TCIA (https://
www.cancerimagingarchive.net/) was applied to obtain IPS 
data from The Cancer Genome Atlas-liver hepatocellular 
carcinoma (TCGA-LIHC) samples. The 50% inhibitory 
concentration (IC50) values of several familiar medicines 
for HCC patients with different risk were then calculated 
employing the R packages “pRRophetic” and “ggplot2”.

Statistical analysis

The t test or the Wilcoxon test was employed to compare 
two groups. For the purpose of comparing proportionate 
variations, Chi-squared test was utilized. Survival curves 
for subgroups were generated for per dataset using K-M 
plotters, and the log-rank test was performed to examine 
whether the discrepancies were noteworthy. P<0.05 was 
deemed statistically significance. Utilizing the R 4.1.2 
program, all statistical analyses were performed.

Results

Identifying CIRGs in the TCGA database

The TCGA database was exploited to obtain transcriptional 
and clinical data of 374 HCC samples and 50 normal 
samples. As shown in Figure S2, ten CRGs had varying 

levels of expression in HCC and normal tissues, and except 
for FDX1, nine CRGs differed significantly between HCC 
and corresponding paracancerous normal tissues, with 
DLTA, PDHA1, GLS, and CDKN2A thought to have the 
potential to predict HCC patients’ prognosis (all P<0.05). 
In addition, a Sankey diagram demonstrated the strong 
correlation between CRGs and IRGs (Figure 1A), and 939 
IRGs were identified as CIRGs.

Construction of the CIRG signature

After excluding cases with incomplete data, 370 valid 
samples were obtained. Using univariate Cox regression 
analysis, 176 differentially expressed CIRGs associated with 
prognosis were identified. The HCC samples were allocated 
at a ratio of one: one to the training and testing groups, 
and the clinical features of three groups had no obvious 
difference (Table 1). LASSO regression analysis was done to 
determine which model performed the best in the training 
cohort (Figure 1B,1C), and a risk signature based on seven 
CIRGs was developed using multivariate Cox regression 
analysis (Figure 1D). Furthermore, Figure 1E demonstrates 
that the seven CIRGs had high correlations with ten CRGs.

( ) ( )
( ) ( )
( ) ( )
( )

 0.176 1 0.773 1
0.140 2 0.232

         0.321 + 0.409 1

0.864 18

Risk score Exp KLKB Exp PRDX
Exp LECT Exp EPO
Exp LHB Exp GLP R

Exp IL RAP

= − × + ×
− × + ×

+ × ×

− ×

 
[2]

HCC patients were split in half depending on the 
median risk score, and low-risk patients fared superior 
in terms of survival in the training set. Furthermore, the 
high-risk group had high expression levels of PRDX1, 
EPO, LHB, and GLP1R while having low expression levels 
of KLKB1, LECT2, and IL18RAP (Figure 2A). Compared 
to high-risk patients, low-risk patients showed better 
survival outlook (P<0.001, Figure 2B), and according to Cox 
regression analysis, risk score and pathologic stage could 
serve as predictors of HCC patients’ OS independently 
(all P<0.001, Figure 2C,2D). Risk score was found to be the 
most effective in predicting 1-year OS when compared to 
clinicopathological characteristics (Figure 2E), with area 
under the curve (AUC) values of 0.852, 0.858, and 0.820 for 
1-, 3-, and 5-year OS, separately (Figure 2F).

Validation of the CIRG signature

We used the internal and external cohorts to validate the 
risk signature’s accuracy and reliability. Table 2 shows the 
clinicopathological features of the ICGC and GEO databases. 

https://www.cancerimagingarchive.net/
https://www.cancerimagingarchive.net/
https://cdn.amegroups.cn/static/public/TCR-23-2182-Supplementary.pdf
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Figure 1 Identifying CIRGs in TCGA-LIHC cohort. (A) Sankey diagram of ten CRGs and IRGs. (B,C) Screening of candidate CIRGs by 
LASSO regression analysis. (D) Forest plot of seven CIRGs related to the signature. (E) Heatmap of ten CRGs and seven CIRGs. CIRGs, 
cuproptosis- and immune-related genes; TCGA-LIHC, The Cancer Genome Atlas-liver hepatocellular carcinoma; CRGs, cuproptosis-
related genes; IRGs, immune-related genes; LASSO, least absolute shrinkage and selection operator; CI, confidence interval.
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Table 1 Clinical characteristics of patients with HCC in a TCGA cohort

Characteristics Train (n=185) Test (n=185) Total (n=370) P

Age (years) 0.75

≤65 114 (61.62) 118 (63.78) 232 (62.7)

>65 71 (38.38) 67 (36.22) 138 (37.3)

Gender 0.12

Female 53 (28.65) 68 (36.76) 121 (32.7)

Male 132 (71.35) 117 (63.24) 249 (67.3)

Histologic grade 0.67

G1 29 (15.68) 26 (14.05) 55 (14.86)

G2 84 (45.41) 93 (50.27) 177 (47.84)

G3 65 (35.14) 56 (30.27) 121 (32.7)

G4 7 (3.78) 5 (2.70) 12 (3.24)

Unknown 0 (0.00) 5 (2.70) 5 (1.35)

Pathologic stage 0.89

I 81 (43.78) 90 (48.65) 171 (46.22)

II 42 (22.7) 43 (23.24) 85 (22.97)

III 44 (23.78) 41 (22.16) 85 (22.97)

IV 2 (1.08) 3 (1.62) 5 (1.35)

Unknown 16 (8.65) 8 (4.32) 24 (6.49)

T 0.81

T1 90 (48.65) 91 (49.19) 181 (48.92)

T2 48 (25.95) 45 (24.32) 93 (25.14)

T3 42 (22.70) 38 (20.54) 80 (21.62)

T4 5 (2.70) 8 (4.32) 13 (3.51)

Unknown 0 3 (1.62) 3 (0.81)

N 0.11

N0 119 (64.32) 52 (28.11) 252 (68.11)

N1 4 (2.16) 133 (71.89) 4 (1.08)

Unknown 62 (33.51) 0 114 (30.81)

M 0.61

M0 134 (72.43) 132 (71.35) 266 (71.89)

M1 1 (0.54) 3 (1.62) 4 (1.08)

Unknown 50 (27.03) 50 (27.03) 100 (27.03)

HCC, hepatocellular carcinoma; TCGA, The Cancer Genome Atlas.
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Figure 2 Construction of a CIRG risk signature in the training group. (A) Risk score and survival time distribution of patients as well as 
seven CIRGs expression in the risk signature. (B) K-M survival curves of two different risk groups. (C, D) Univariate and multivariate Cox 
regression analyses correlated with survival. (E) The AUC values of risk scores and clinicopathological characteristics. (F) The AUC values 
of risk score for forecasting 1-, 3-, and 5-year OS. CIRG, cuproptosis- and immune-related gene; K-M, Kaplan-Meier; AUC, area under the 
curve; OS, overall survival; CI, confidence interval.
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Different validation cohorts produced results resembled the 
training dataset. Low-risk patients fared superior in terms 
of survival, and risk score could independently affect HCC 
patients’ OS (all P<0.05, Figures 3,4).

Correlation among the signature with HCC clinical features

Figure 5 shows that histological grade, pathological stage and 
T stage were relevant to risk score (all P<0.01). Moreover, 
risk score was still a dependable prognostic marker in 
multiple clinical subgroups (all P<0.05, Figure S3). In 
addition, samples in N1 and M1 subgroups were too small 
to perform survival analysis.

Principal component and DEGs enrichment analyses

According to principal component analysis, the high- and 
low-risk groups were optimally differentiated in terms 
of the seven CIRGs (Figure 6A-6D). The GO functional 
enrichment results discovered that the DEGs were mainly 
mapped to GO terms related to genetic material synthesis 
and cell division (Figure 6E,6F). DEGs were also used in 
KEGG functional enrichment analyses, and we discovered 

that DEGs were largely enriched pathways associated with 
cancer, including the cell cycle and P53 signaling pathways 
(Figure 6G,6H).

GSEA revealed that the model could possibly engage in 
HCC metabolism via drug metabolism cytochrome P450, 
drug metabolism other enzymes, fatty acid metabolism, 
alanine aspartate and glutamate metabolism, glycine 
serine and threonine metabolism, histidine metabolism, 
tryptophan metabolism, tyrosine metabolism, arginine and 
proline metabolism (all P<0.05, Figure S4).

Correlation among the risk signature with TMB

The mutagenesis outlook of the top 15 mutated genes 
in two risk groups was depicted using waterfall plots, 
with TP53 showing notably more mutations in high-
risk patients (Figure 7A,7B). Further study discovered 
that link among TMB with risk score was positive, with 
TMB markedly lower in the low-risk group (P=0.0061,  
Figure 7C). Then, low-TMB group had a greater survival, 
and low-risk combination with the low-TMB group had the 
best prognosis (all P<0.05, Figure 7D,7E).

The risk signature’s immune profiles

The assessment of the correlations among the signature 
with TIME showed that the immune score (P=0.0076,  
Figure 8A), stromal score (P=6.8e−07, Figure 8B), and 
ESTIMATE score (P=0.0001, Figure 8C) were markedly 
higher in low-risk patients, whereas tumor purity (P=0.0001, 
Figure 8D) demonstrated the opposite results. Figure 8E 
depicts discrepancies in immune cell infiltration levels from 
two risk subgroups. It was discovered that the low-risk 
group had high infiltration levels of B cells, CD8+ T cells, 
DCs, Mast cells, Neutrophils, NK cells, pDCs, T helper 
cells, Th1 cells, and TIL, while having low infiltration levels 
of Macrophages. In addition, we looked at discrepancies in 
immune function among two risk subgroups and uncovered 
that low-risk group had high scores of cytolytic activity, 
HLA, inflammation promoting, T cell co-inhibition, T 
cell co-stimulation, and type II IFN response (all P<0.05,  
Figure 8F). Given that immune checkpoint inhibitors are 
widely used in clinical practice and effectively improve 
HCC patients’ survival, we found that the low-risk 
group had high expression levels of IDO2, BTLA, IDO1, 
CD48, TMIGD2, CD40LG, and KIR3DL1 while having 
low expression levels of VTCN1, TNFSF9, TNFRSF4, 
HHLA2, LAIR1, TNFSF15, TNFSF4 CD276, HAVCR2, 

Table 2 Clinical characteristics of patients with HCC in ICGC and 
GEO databases

Characteristics ICGC (n=231) GEO (n=221)

Age (years)

≤65 89 (38.53) 200 (90.50)

>65 142 (61.47) 21 (9.50)

Gender

Female 61 (26.41) 30 (13.57)

Male 170 (73.59) 191 (86.43)

Pathologic stage

I 36 (15.58) 95 (42.99)

II 105 (45.45) 77 (34.84)

III 71 (30.74) 49 (22.17)

IV 19 (8.23) 0

Cirrhosis

Yes – 203 (91.86)

No – 18 (8.14)

HCC, hepatocellular carcinoma; ICGC, International Cancer 
Genome Consortium; GEO, Gene Expression Omnibus.

https://cdn.amegroups.cn/static/public/TCR-23-2182-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-23-2182-Supplementary.pdf
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Figure 3 Validation of the CIRG risk signature in the testing and entire groups. (A,B) Risk score and survival time distribution of patients as 
well as seven CIRGs expression in the risk signature in the testing and entire groups. (C,D) K-M survival curves of two different risk groups 
in the testing and entire groups. (E-H) Univariate and multivariate Cox regression analyses correlated with survival in the testing and entire 
groups. CIRG, cuproptosis- and immune-related gene; K-M, Kaplan-Meier; CI, confidence interval.
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Figure 4 Validation of the CIRG risk signature in the ICGC and GEO databases. (A,B) Risk score and survival time distribution of patients 
as well as seven CIRGs expression in the risk signature in the ICGC and GEO databases. (C,D) K-M survival curves of two different risk 
groups in the ICGC and GEO databases. (E-H) Univariate and multivariate Cox regression analyses correlated with survival in the ICGC 
and GEO databases. CIRG, cuproptosis- and immune-related gene; ICGC, International Cancer Genome Consortium; GEO, Gene 
Expression Omnibus; K-M, Kaplan-Meier.
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Figure 5 Correlations among the CIRG prognostic signature with clinicopathological characteristics. (A) Heatmap of associations among 
the signature and clinicopathological characteristics. (B-H) Histograms of clinicopathological characteristics in different risk groups. **, 
P<0.01; ***, P<0.001. CIRG, cuproptosis- and immune-related gene.
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Figure 6 Principal component and DEGs enrichment analyses. (A-D) Principal component analysis of all genes, ten CRGs, all CIRGs, and 
seven CIRGs constructing the signature. (E,F) The representative results of GO enrichment analysis. (G,H) The representative results of 
KEGG enrichment analysis. DEGs, differentially expressed genes; CRGs, cuproptosis-related genes; CIRGs, cuproptosis- and immune-
related genes; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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Figure 7 Correlation among the HCC risk signature with TMB. (A,B) Oncoplots of the top 15 mutated genes in different risk groups. (C) 
Differences in TMB in different risk groups. (D) K-M survival curve of different TMB groups. (E) The effect of TMB levels combined with 
risk scores on the HCC patients’ prognosis. HCC, hepatocellular carcinoma; TMB, tumor mutation burden; K-M, Kaplan-Meier.

CD80, LGALS9, TNFRSF18, and TNFRSF14 (all P<0.05,  
Figure 8G).

Prediction of sensitivity to different kinds of drugs and 
potential small-molecule inhibitors

Finally, we evaluated whether the risk signature can predict 
the treatment benefits among the two risk groups from 
different kinds of drugs, including immunotherapy, targeted 
therapy, chemotherapy, and small-molecule inhibitors. 
According to the CIRG signature, each HCC patient 
received corresponding risk score and was then classified 
into high- or low-risk group. HCC individuals treated with 
cytotoxic T lymphocyte associated antigen-4 (CTLA4) 
and programmed cell death protein 1 (PD-1) blockers had 
higher IPS in the low-risk group. The higher an IPS’s z score 
is, the more immunogenic the sample (9); therefore, a higher 
IPS often indicates greater odds of being attacked by immune 
system. Our research showed that immunotherapy is most 

effective for low-risk patients (all P<0.05, Figure 9A-9D). 
Next, we evaluated the IC50 values distinctions among the 
two risk groups for sorafenib, two familiar chemotherapeutic 
drugs (doxorubicin and gemcitabine), and AKT (also known 
as protein kinase B) inhibitors. It was found that high-risk 
patients exhibited low IC50 values for sorafenib (all P<0.05, 
Figure 9E,9F), doxorubicin (all P<0.05, Figure 9G,9H), 
gemcitabine (all P<0.05, Figure 9I,9J), and AKT inhibitors 
(all P<0.05, Figure 9K,9L), indicating higher sensitivities of 
high-risk patients to these drugs or potential drugs. Having 
said all of above, immunotherapy proved more effective for 
low-risk patients than it did for high-risk individuals who 
responded better to targeted therapy, chemotherapy, and 
AKT inhibitors.

Discussion

Copper is an important micronutrient that is required 
by the body, but an imbalance in copper can affect the 
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Figure 8 The risk signature’s immune profiles. (A-D) Violin plots of immune, stromal, and ESTIMATE scores and tumor purity in different 
risk groups. (E-G) Boxplots of immune cells, immune functions and immune checkpoint genes in the different risk groups. *, P<0.05; **, 
P<0.01; ***, P<0.001.

physiological activities of a variety of organs, such as the 
liver, heart, and central nervous system, and vital biological 
processes, such as cell metabolism, drug response, and 
telomere length regulation (10,11). Most importantly, 
copper metabolism has been demonstrated to be closely 
related to tumorigenesis (12,13) and to be involved 

in regulating tumor proliferation and migration and 
promoting cisplatin resistance (14). Currently, some risk 
models developed using CRGs data have already shown to 
be promising as prognostic indicators for patients with a 
wide range of cancers including HCC (15-17). For example, 
Zhang et al. (15) established a cuproptosis-related lncRNAs 
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Figure 9 Prediction of treatment benefits in HCC patients with different risk score. (A-D) Violin plots of the response to PD-1- and 
CTLA4-blocking immunotherapy in different risk groups. (E-L) The IC50 values for sorafenib, doxorubicin, gemcitabine, and AKT 
inhibitors in different risk groups. HCC, hepatocellular carcinoma; PD-1, programmed cell death protein 1; CTLA4, cytotoxic T lymphocyte 
associate protein 4; AKT, protein kinase B.

model in HCC that could predict the survival outlook as 
well as some immune checkpoints expression; however, the 
study did not deeply analyze the immune profiles and the 
predictive value of the risk signature for drugs other than 
immunotherapy. In another study, a signature based on 
CIRGs showed a high performance in predicting treatment 
for HCC patients, but this study did not evaluate the 
correlation between the model and immune landscape, 
such as TIME, immune checkpoint genes and immune 
cells, and the prognostic prediction of the model at 1, 3 and  
5 years remains to be improved (16). Therefore, we 
intended to build a risk signature for HCC based on CIRGs 
and to conduct a comprehensive analysis of immune profiles 
and the risk signature’s predictive value in prognosis, 
responses to different kinds of drugs and even potential 
small-molecule inhibitors.

The risk signature was constructed based on seven CIRGs 
screened from the TCGA database. Several of these CIRGs 

have been shown to be linked to the progression and survival 
of HCC. KLKB1 expression was low in HCC patients, 
and individuals with lower serum KLKB1 levels showed 
significantly poor survival than those with higher expression 
by as demonstrated Che et al. (18). Two studies both found 
that PRDX1 was highly expressed in HCC samples, which 
related to tumor angiogenesis and poor prospects for 
survival (19,20). Several studies have consistently found that 
LECT2 is expressed at low levels in HCC tissues, which was 
found to be markedly related to early recurrence and poor 
prospects for survival in HCC patients (21-23). It has been 
reported that EPO is abundantly expressed in HCC tissues, 
and linked to HCC patients’ terrible survival prospects (24), 
whereas IL18RAP was revealed to be lowly expressed in 
HCC tissues (25). The risk signature based on seven CIRGs 
worked excellently in forecasting survival in the training and 
validation datasets. Besides, the risk score was discovered to 
be associated with important HCC clinical factors such as 
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tumor histological grade, pathological stage, and T stage. 
Therefore, we concluded that the novel risk signature 
proposed in this study exhibited excellent performance in 
predicting HCC prognosis.

GO analysis found that DEGs were primarily abundant 
in the synthesis of genetic material and cell division. 
Considering that exuberant proliferation is an important 
feature of malignancies, the results supported the value of the 
risk signature in identifying HCC malignancy. The research 
conducted by KEGG found that DEGs were largely related 
to cell cycle and p53 signaling pathways. p53 is a classical 
anti-oncogene that encodes a transcription factor controlling 
the initiation of the cell cycle. Abnormalities in p53 are 
associated with the development of diverse cancers, including 
HCC (26). Recently, p53 loss or mutation has been reported 
to have the potential to inhibit immune signaling and allow 
immune evasion by reducing MHC-I delivery and increasing 
MDSC and Treg recruitment (27,28). However, copper can 
alter structure and function of p53 protein, thereby regulating 
the HCC cell cycle (29,30). Therefore, the link between the 
CIRGs identified in this study and the p53 signaling pathway 
deserves further investigation. This study discovered that the 
model was closely associated with multiple metabolism-related 
pathways by GSEA, and it has been proven that cytochrome 
P450 metabolism (31), fatty acid metabolism (32) and amino 
acid metabolism (33) may engage in HCC development, 
further demonstrating that metabolism plays an influential 
role in HCC.

TMB is an indicator to evaluate the frequency of gene 
mutations, and high TMB results in more antigens on the 
cell surface, which can be easily attacked by the immune 
system. Therefore, TMB is considered a predictor of 
immunotherapy sensitivity (34); however, TMB is not 
capable of predicting the response to immunotherapy 
across all cancer types for unidentified reasons (35). This 
study discovered that high-risk patients harbored higher 
mutation frequency and TMB, but showed a poor response 
to immunotherapy, supporting that TMB is an imperfect 
biomarker for evaluating the treatment outcome of 
immunotherapy in HCC. Furthermore, we observed that 
high-TMB patients exhibited worse survival outlook, possibly 
because patients with high TMB tend to carry more mutated 
genes and genetically heterogeneous factors, which may 
mediate drug resistance and tumor evolution (36,37). Current 
findings have shown that sustaining antigen exposure caused 
by TMB causes T-cell dysfunction (38), which may lead to a 
poor survival.

TIME is highly associated with immune cell invasion 

and immunological escape (39,40). Higher immune, 
stromal, and ESTIMATE scores indicated higher contents 
of immune, stromal, and normal cells in the TIME, 
respectively, whereas lower tumor purity scores indicated 
fewer tumor cells. Combined with the findings of this 
study, low-risk patients had fewer tumor cells and stronger 
immune response than high-risk patients, proving the 
signature’s value in predicting HCC risk. The low-risk 
group had high infiltration levels of B cells, CD8+ T cells, 
DCs, Mast cells, Neutrophils, NK cells, pDCs, T helper 
cells, Th1 cells, and TIL, while having low infiltration levels 
of Macrophages. The infiltrated cells in low-risk patients 
were mainly responsible for phagocytosis or related to 
reinforcing the immunoreaction of the host. Macrophages 
are derived mostly from monocytes and can facilitate in the 
initiation and progression of cancer via several different 
mechanisms (41,42); thus, it is not difficult to understand 
that more Macrophages occur in high-risk patients. When 
comparing discrepancies in immune functions among 
different risk groups, it was discovered that immune 
function scores were lower in high-risk patients, which 
matched poorer immunoreaction and lower immune cell 
infiltration levels shown in this group, as described above.

As PD-1 and CTLA4 are the dominant marketable targets 
for immunotherapy, this study classified HCC patients into 
four categories depending on PD-1 and CTLA4 expression 
condition, and discovered that IPS was higher in low-risk 
patients across all four categories, indicating that low-risk 
patients may profit more by immunotherapy than high-risk 
patients. These findings corroborated what TMB, TIME, 
immune cell infiltration, and immune function assessments 
found. We noticed that low-risk patients had higher 
IC50 values for sorafenib, doxorubicin, gemcitabine, and 
AKT inhibitors, indicating that low-risk patients are less 
responsive to the above drugs or potential drugs. Thus, the 
risk signature is not only accurate in assessing HCC survival 
outlook but also benefits in guiding clinical management.

Conclusions

In conclusion, the risk signature based on CIRGs presented 
in this study performed exceptionally well in forecasting 
both prognosis and treatment benefits for HCC patients, 
and it could serve as a good reference and tool in medical 
management of HCC. Nonetheless, this research contains 
a few flaws. The conclusions based on public databases have 
not been confirmed in the cohort of investigator, and its 
applicability in the real world needs to be further verified.
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