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In the last decade single domain antibodies (nanobodies, VHH) qualified through their
unique characteristics have emerged as accepted and even advantageous alternative to
conventional antibodies and have shown great potential as diagnostic and therapeutic
tools. Currently nanobodies find their main medical application area in the fields of
oncology and neurodegenerative diseases. According to late-breaking information,
nanobodies specific for coronavirus spikes have been generated these days to test
their suitability as useful therapeutics for future outbreaks. Their superior properties such
as chemical stability, high affinity to a broad spectrum of epitopes, low immunogenicity,
ease of their generation, selection and production proved nanobodies also to be
remarkable to investigate their efficacy for passive treatment of type I allergy, an
exaggerated immune reaction to foreign antigens with increasing global prevalence.
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INTRODUCTION

Type I allergy, an IgE antibody mediated hypersensitivity disease, represents a common health
problem affecting almost 30% of the population worldwide (1). The recognition of allergens by
specific IgE antibodies that are generated after sensitization is a key event for the initiation of allergic
inflammation (2). Allergic patients suffer from a variety of allergic symptoms including
rhinoconjunctivitis and asthma (3) but also food allergy and skin inflammation (4). These
clinical manifestations cause a major burden by reducing the quality of life of affected persons
(5). While anti-inflammatory treatment based on pharmacotherapy reduces allergic symptoms and
is the most commonly prescribed medication for treatment of allergic patients (6), only allergen-
specific immunotherapy (AIT) represents a causative treatment of type I allergy. In fact, AIT
induces a protective immunity in allergic patients based on the modification of cellular and humoral
responses to the disease causing allergen (7). Besides the inhibition of IgE binding to their specific
allergen, the immune deviation from a TH2 to TH1 response, and the decreases in numbers of
effector cells in target organs, the generation and maintenance of allergen-specific regulatory T
and B cells and the involvement of their suppressive cytokines are essential for the induction of
allergen tolerance (8–10). Beyond doubt the improvement of allergic symptoms is further caused by
Abbreviations: AIT, Allergen-specific ImmunoTherapy; EBV, Epstein-Barr Virus; Fab, antigen-binding Fragment of
antibodies; HCAb, Heavy Chain-only Antibody; HumAb mice, transgenic mice that produce fully human antibodies; PCA,
Passive Cutaneous Anaphylaxis; scFv, single chain Fragment variable (recombinant derivative of a classical antibody); VHH,
Variable domain of Heavy chain of Heavy chain-only antibodies.
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AIT-induced IgG antibodies found in serum and nasal secretions
(8, 11–14). For many years AIT was conducted with aqueous
natural allergen extracts and patients experienced considerable
side effects due to the unpredictable composition and poor
quality of the injected extracts (1). Recent developments like
next-generation forms of AIT based on molecular approaches
may overcome the limitations of current forms of AIT (15, 16).
The last generation of improved vaccines, i.e. peptide carrier
vaccines, induces an IgG response that targets IgE binding sites
on allergens. Induced IgG antibodies effectively block IgE
binding and are termed blocking antibodies (1, 17).

However, the efficacy of such blocking antibodies was long
questioned because it revealed to be cumbersome to isolate
reproducible defined, i.e. monoclonal allergen-specific
antibodies comprising the capacity to inhibit allergen-induced
allergic reactions.

A recent proof of concept study re-stimulated the idea to
generate monoclonal allergen-specific antibodies and to evaluate
their feasibility for allergy treatment. The authors could show that
a single subcutaneous injection of a mixture of two human
monoclonal allergen-specific IgG4 antibodies significantly
reduced allergic symptoms in allergic patients (18, 19).
Moreover, validated in a PCA mouse model, the mixture of
these two monoclonal antibodies proved to be more potent in
inhibiting mast cell degranulation than IgG antibodies purified
from patients’ sera who underwent successful AIT (18).
Furthermore, these human monoclonal IgG4 antibodies recently
completed the phase II clinical trial in treatment of cat allergic
patients (https://clinicaltrials.gov/ct2/show/NCT03838731). These
results proved for the first time that allergy treatment with
monoclonal allergen-specific antibodies is a well-tolerated, rapid,
and effective approach to reduce allergic inflammation and
rekindled the blocking antibody concept (11, 20, 21).

Nevertheless, the generation and identification of blocking
conventional human or humanized antibodies is connected with
high costs for production, validation and application (22, 23).
Therefore, cost-effective alternatives are currently sought.

The nanobody technology represents such an alternative
implying a significant improvement to the laborious methods
to obtain monoclonal blocking conventional antibodies. Due to
their beneficial properties of small molecules and monoclonal
antibodies, nanobodies in general are an attractive agent for
development of novel therapeutic strategies (24, 25). The ease of
their generation and production, the single domain organization,
their beneficial biochemical properties and their feature to
recognize small cavities on the surface of antigens and hence
bind to epitopes inaccessible for conventional antibodies (26)
have raised the particular interest of allergologists recently.

Can the nanobody technology provide enhanced opportunity
to generate a panel of antigen-binding molecules with various
epitope specificities for certain allergens different to conventional
antibodies? Will these identified allergen-specific nanobodies be
more efficient in blocking than conventional IgG antibodies due
to their pronounced cleft recognition? Will it be possible with
this technology to find single nanobodies that are able to
abrogate IgE-mediated allergic inflammation? These questions
Frontiers in Immunology | www.frontiersin.org 2
and our wish to answer these questions attracted our attention.
Within this review, we focus on the powerful nanobody
technology to generate allergen-specific nanobodies and report
on their evaluation for prospective application for passive
allergy treatment.
THE COMPLEX AND LABORIOUS
APPROACH TO IDENTIFY EFFECTIVE,
PROTECTIVE ALLERGEN-SPECIFIC
MONOCLONAL ANTIBODIES

If allergologists are asked why the search for effective protective
allergen-specific monoclonal antibodies is complex and
laborious, they will describe this issue by the typical quest for a
needle in a haystack. Through intense and precise molecular and
immunological exploration of available allergen-specific
monoclonal antibodies in the past it was proven that epitope
specificity and affinity are decisive for their inhibitory potential
to block IgE binding and thus IgE-mediated reactions (21, 27–
29). The commitment to find and isolate monoclonal antibodies
with specificity and high affinity for certain allergens and
even more for certain epitopes always started with several
fundamental decisions. Amongst them the choice for the
perfect source to gain DNA coding for antibodies and the
applied technology to generate allergen-specific antibodies are
two of the most critical ones. Regarding the DNA source both
animals, mainly mice, and humans served as blood, spleen,
tonsils and even bone marrow donors in the last decades to
isolate B cells or plasma cells and thus DNA coding for
antibodies (30–32). For the proof of principle, murine IgG
antibodies overlapping with human IgE binding sites are
valuable tools to investigate the effects to inhibit IgE
epitope recognition on allergens and consequently to
contribute to the design of hypoallergenic derivatives suitable
for AIT (33). However, the direct therapeutic use of these murine
monoclones in humans is limited by the high incidence
of harmful immune responses against these administered
foreign proteins (34). To mitigate this limitation numerous
murine monoclonal antibodies have been re-engineered by
chimerization and humanization technologies. These expensive
procedures are justified for fatal diseases like different forms of
cancer but were barely applied for allergen-specific murine
antibodies so far with a few exceptions (35, 36). This was one
of the main reasons why allergologists in the recent past
endeavour to focus on human donors including allergic
patients, AIT-treated patients and even healthy individuals
depending on the research question (28, 37, 38).

Various methods were utilized to generate allergen-specific
genuine, i.e. native antibodies with the preservation of the natural
VH and VL pairing including hybridoma technology, Epstein-
Barr-Virus (EBV) transformation, single B cell sorting and cloning
and HumAb mice (transgenic mice that produce fully human
antibodies) (18, 39–49). In parallel, versatile approaches were
developed to generate non-genuine antibodies by random
September 2020 | Volume 11 | Article 576255
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combination of VH and VL chains, i.e., combinatorial Fab/ScFv
libraries or (semi-) synthetic libraries (37, 38, 50–60). Based on
PCR amplification as strong tool to depict large antibody
repertoires and phage display to screen these large repertoires,
many recombinant allergen-specific antibody fragments (Fabs or
ScFvs) were isolated (37, 38, 50–56, 58–64).

All mentioned technologies have definitely contributed to the
isolation and evaluation of monoclonal allergen-specific IgG, IgE
antibodies and fragments thereof and furthermore to assess their
feasibility for allergy treatment. Nevertheless, all mentioned
technologies are also reported to have some limitations.
While the hybridoma technology and EBV transformation are
generally unsuitable for a comprehensive screening of large
antibody repertoires because of their inefficient fusion and
transformation events, the single B cell sorting was long
hampered by inadequate staining technologies to clearly
identify allergen-specific antibody producing cells (32, 39). The
main drawback of combinatorial libraries is that they usually rely
on random combination and thus most likely unnatural VH and
VL antibody pairings. Additionally, it turned out independent of
the applied technology to be very difficult to isolate monoclonal
IgG and IgE antibodies with a broad epitope spectrum for each
allergen. It also revealed that besides several blocking antibodies
also many non-blocking or even enhancing antibodies were
isolated (44, 63–65). While all three types of monoclonal
antibodies were unambiguously supportive to study the
structural requirements for efficient effector cell activation and
hence contribute to elucidate the underlying mechanisms of type
I allergy, non-blocking and enhancing antibodies were fully
useless for the prospective application as protective antibodies.

These insights forced allergologists to look beyond the
conventional antibody horizon.
THE POWERFUL NANOBODY
TECHNOLOGY TO ISOLATE ALLERGEN-
SPECIFIC NANOBODIES—A WELCOME
ALTERNATIVE TO CONVENTIONAL
ANTIBODY GENERATION

About 30 years ago, a group of Belgian scientists made an
unexpected discovery, which was patented and later presented
to the scientific community in the form of the well-known
discovery publication in the journal Nature in 1993 (66). They
found that a significant amount of non-canonical types of
antibodies is naturally present in blood of Camelidae in
addition to conventional antibodies. This exceptional type of
antibody called Heavy Chain-only Antibody (HCAb) lacks light
chains and consists of a homodimer of shortened (without CH1
domain) heavy chains. The antigen-recognition region in HCAbs
is formed by only one variable domain (VHH) that is directly
linked via a hinge region to the Fc-domain (66). Later on, similar
non-canonical HCAbs were found in some cartilaginous fishes
such as sharks and ratfish (67–69). The antigen-binding variable
domain of these antibodies was named VNAR as opposed to
Frontiers in Immunology | www.frontiersin.org 3
VHH in camelids. A recombinant protein version of the VHH-or
VNAR-domain is usually called “single domain antibody” or
“nanobody”. The very popular term “nanobody” is the
commercial name given by the Belgian biopharmaceutical
company Ablynx, a pioneer in HCAb-based therapeutic
applications that was acquired by Sanofi in 2018.

The nanobody generation technology was proven to be a very
efficient machinery to generate nanobodies with required
properties and offered crucial advantages compared to
traditional techniques utilized to produce murine or human
conventional antibodies. After the typical initial immunization
(of camelids) step, the full repertoire of cDNA coding for
functional nanobodies can be efficiently cloned from peripheral
blood lymphocytes of immunized animals using PCR
amplification and then a panel of nanobodies of required
specificity can be easily selected using phage (or other type of)
display-based methods (66, 70–72). In addition, there are different
in vitro affinity maturation approaches to improve features of
initially selected nanobodies (71, 73, 74). In some cases, especially
if the antigen of interest is toxic, unstable, non-immunogenic or
not available in sufficient quantity, other types of libraries (naive,
semisynthetic or fully synthetic libraries) can be efficiently used
instead of immune libraries for generation of nanobodies (75–79).
Synthetic libraries can be made using special predesigned scaffolds
such as humanized scaffolds optimized for intracellular stability
(77) or optimized for bacterial expression (80). Non-immune
libraries are typically much larger than immune libraries and a
ribosome display was suggested for the initial selection round of
such large libraries to work with higher concentrations of
nanobody variants than in case of phage display (79, 80).
Synthetic libraries combined with different selection procedures
were successfully used to obtain conformationally selective
nanobodies against G protein-coupled receptors (78), sybodies
against very challenging targets such as the heterodimeric bacterial
ABC exporterTM287/288 (81) or the intracellular KDEL receptor
(82) to name a few examples from many others.

Nanobodies comprise unique features that distinguish them
from classical antibodies. Nanobodies are the smallest known
antibody fragments (4 × 2.5 x 3 nm, 12–15 kDa) of natural origin
that are able to specifically bind their cognate antigens. Due to
their often extended CDR3 loop they can form unusual
paratopes, i.e. finger-like extensions and thus recognize special
native antigenic epitopes (small cavities, concave surfaces,
conformational epitopes, active sites of enzymes) that are
hidden for conventional antibodies (Figure 1). Indeed,
nanobodies have proven to be useful tools for modulating the
activity of enzymes (26, 83, 84). It could be therefore speculated
that allergen-specific nanobodies that modulate or inhibit the
proteolytic activity of certain allergens (e.g., Phl p 1, Der p 1)
might reduce their penetration capacity through mucosal
surfaces. Furthermore, nanobodies are able to bind small
peptides with high affinity (85–89). Their high affinity,
solubility and stability over a wide range of temperatures and
pH, ease of producing in bacteria or other expression systems
make them convenient molecules for different applications, as
well as for all possible engineering modifications e.g.,
September 2020 | Volume 11 | Article 576255

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Flicker et al. Nanobodies for Allergy Treatment
development of complex constructs and conjugates. Nanobody-
based tools are therefore increasingly used for research,
molecular visualization, diagnostics and development of new
treatment options for various pathologies, including cancer and
other socially significant diseases (71, 72, 90–94).

So far, only one allergen-specific nanobody is described in the
literature. This nanobody is reported to be specific for the major
peanut allergen, Ara h 3 and was isolated from a synthetic library
of humanized nanobodies via phage display (95). The interaction
between Ara h 3 and the Ara h 3-specific nanobody resulted in
a dissociation constant of 400 nM representing medium
affinity binding and was further investigated by the structural
determination of formed co-crystals (95). The authors
acknowledged that additional work is needed to improve the
affinity of the isolated nanobody to make it an attractive tool for
the development of biosensors for peanut allergen detection.
This finding clarifies that the selection procedure is only one part
of the successful discovery of potent IgE-blocking nanobodies,
thus the evaluation of selected nanobodies is critical as well.

Nevertheless, we are confident that soon more allergen-
specific nanobodies will arise to be studied for their potential
to abrogate IgE-mediated allergic inflammation.
EVALUATION OF THE SUITABILITY OF
ALLERGEN-SPECIFIC NANOBODIES FOR
ALLERGY TREATMENT

Similar to the evaluation of conventional antibodies with the
focus to identify effective protective monoclones, generated
Frontiers in Immunology | www.frontiersin.org 4
nanobodies have to be assessed first for their allergen
specificity, epitope recognition, cross-reactivity to homologous
allergens present in related species, for their affinity to their
corresponding allergens and most importantly for their ability to
inhibit patients´ IgE binding to these allergens (Figures 2A–C).
After the allergen specificity of isolated nanobodies is confirmed,
the proof for cross-reactivity (Figure 2A) is of great importance
because IgE antibodies from allergic patients often displayed
cross-reactivity to allergens from other allergen sources (28, 96).
High affinity and slow dissociation of formed nanobody/allergen
complexes will be critical prerequisites for allergen-specific
nanobodies to be chosen as suitable candidate (Figure 2B).
However, the pivotal characteristics for an allergen-specific
nanobody to be attractive for further processing will be the
determination of its potential to block patients’ IgE binding and
hence IgE-mediated effector cell activation (Figure 2C).
Additionally, specific nanobodies have to be tested as well for
their cross-protectivity to homologous allergens. All these
properties are crucial requirements for allergen-specific
nanobodies to be selected for further essential investigations
concerning half-life, clearance and safety.

Nanobodies are considered as proteins of weak immunogenicity
due to the shared similarities with variable VH domains of
human immunoglobulins (IgG3 subclass), and they can be
further improved by a humanization approach (97) (Figure
2D). Consequently, no immune response against applied
nanobodies was raised in mice or humans that were injected
with nanobody-containing constructs (98–100). Safety of
nanobody-based drugs is confirmed by several completed
Phase 1 and Phase 2 clinical trials (101) and recent approval
by the US Food and Drug Administration (FDA) and the
A B

FIGURE 1 | Conventional antibodies such as IgG or IgE (A) and nanobodies (VHH) (B) can be generated against different epitopes of targeted antigens, a particular
allergen. Nanobodies overlapping with IgE binding sites on allergens prevent IgE-mediated allergic reactions.
September 2020 | Volume 11 | Article 576255
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European medicines agency (EMA) of the first therapeutic
nanobody, Caplacizumab, a bivalent nanobody designed for
the treatment of thrombotic thrombocytopenic purpura and
thrombosis (102).

Though advantageous for in vivo imaging, the small size of
nanobodies could be seen as a disadvantage for passive treatment
of allergy due to a quick renal clearance of nanobodies from
blood (approx. 30 min). Many different strategies to extend the in
vivo half-life of nanobody-based construct have been developed
(103). They include increasing the hydrodynamic radius of a
protein by attaching highly flexible and hydrophilic molecules
such as polyethylene glycol (PEG) and carbohydrates or by
genetic fusion with polypeptide chains mimicking the
biochemical properties of PEG, fusion of VHH to the Fc region
of IgG, fusion or non-covalent binding to albumin (104) (Figure
2D). Nanobodies can also be used as modules to engineer larger
molecules with several valencies and/or specificities, such as
multivalent (105–108), bispecific (105, 109), and other (110,
111) constructs that may acquire considerably higher
specificity, binding efficiency and biological activity (106, 107,
111). Nanobodies were also considered as possible ligands to
design new highly specific immunosorbents (112–114).

Different types of nanobody-based tools/approaches can be
envisaged to be potentially profitable for an allergy treatment: a)
bispecific nanobodies for topical application to capture allergens
before they penetrate epithelial mucosa in airways, b) very stable
nanobodies to capture food allergen in gastrointestinal tract, c)
anti-idiotypic nanobodies mimicking allergenic epitopes as a
Frontiers in Immunology | www.frontiersin.org 5
possible replacement for a complex natural allergen for a new
kind of AIT vaccine development, d) multivalent nanobody-based
constructs for systemical administration to efficiently block
allergen interaction with IgE on mast or basophil cells, e)
efficient immunosorbents to remove IgE from the blood by
immune apheresis. Correspondingly, different administration
approaches for nanobody-based constructs can be developed:
aerosol or topical applications, oral route or subcutaneous
administrations. Temporary blocking of allergen-IgE interaction
(i.e. by topical or systemic administration of specific nanobodies)
or a subtraction of IgE from the periphery blood (i.e. apheresis)
may give a short-term treatment effect. For a long-term treatment
effect we could hypothesize the use of anti-idiotypic nanobodies to
IgE. Such nanobodies may represent “internal images” of an
allergen and mimick hypoallergenic B cell epitopes. To efficiently
induce IgG response that targets IgE binding sites on allergens,
these nanobodies should be fused to a viral coat protein as it was
described for next-generation forms of AIT (15).
CONCLUSION AND PERSPECTIVE

The generation of allergen-specific nanobodies unambiguously
represents a reasonable progress in the field of allergy. With their
well-documented qualities including their ability to recognize
unusual “hidden” epitopes, high affinity binding, solubility,
extreme stability and low immunogenicity, nanobodies
attracted the interest of allergologists to study their suitability
FIGURE 2 | Overview of the evaluation process of the suitability of allergen-specific nanobodies for allergy treatment. (A) Evaluating cross-reactivity to related
allergens. (B) Measuring affinities of selected candidates to the allergen. (C) Investigating the potential to block allergen-specific IgE from binding to the allergen.
(D) Adjusting the half-life of a suitable nanobody by e.g.: a) linking to IgG Fc region; b) oligomerization to homomers or heteromers to facilitate linking to other
proteins like human serum albumin (HSA); c) PEGylation. Increasing safety by humanization of the framework and performing safety studies in vivo.
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for passive allergy treatment. The chance to find allergen-specific
nanobodies with this powerful technology that ideally comprise
high affinity and bind to epitopes partly or fully overlap with IgE
binding sites on allergens is tempting. However, so far no
allergen-specific nanobody fulfilling these criteria was reported
indicating that it might be rather difficult to raise allergen-
specific nanobodies of sufficient affinities. Whether the current
lack of such nanobodies is owed to some inherent structural or
functional properties of nanobodies and/or the camelid immune
system or the simple reason that the current research focus in the
allergy field is on AIT and its improvement has to be resolved. If
allergen-specific nanobodies are identified that competitively
block allergen binding to IgE and thus abrogate IgE-mediated
allergic inflammation, we assume that they will represent
appropriate tools for future allergy treatment. Their economic
properties, i.e. low production costs encouraged researchers to
elaborate antibody engineering of these single-domain antibodies
for diverse applications in biotechnology and medicine. This
gathered knowledge will facilitate the implementation of
modified allergen-specific nanobodies tailored to the needs of
allergy treatment. Nanobodies can be easily formatted for a
particular application e.g., modified as recognition modules
Frontiers in Immunology | www.frontiersin.org 6
in large constructs or as bi- or oligo-specific, bi- or oligo-
valent derivatives.

With the availability of allergen-specific nanobodies or
their derivatives with inhibitory potential, it should be possible
to examine engineered candidates in proof of concept testings
for efficacy and safety in experimental animal models to
identify promising nanobody-based drugs for clinically
relevant allergens.
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