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Objectives: In this study, the specific threshold intensities and response

characteristics of galvanic vestibular stimulation (GVS) on vestibular

(conscious) and cutaneous (detrimental) perception as well as oculomotor

nystagmus (reflex) were determined.

Methods: The threshold intensities for vestibular and cutaneous perception

and oculomotor response induced by GVS were determined in 25

right-handed healthy subjects (32.6 ± 7.2 years of age; 56% female).

The subjects were seated upright, and eye movements were recorded while

a direct GVS current was applied with paradigms of cathode on the right

and anode on the left (CRAL) and also cathode on the left and anode on the

right (CLAR).

Results: Subjects experienced dizziness, sense of spinning, or fall tendency,

which was more frequently directed to the cathode (76%) than the anode

(24%, p < 0.001, chi-square one-variable test) at mean current greater

than 0.98 ± 0.29mA (mean vestibular threshold). The current also triggered

a more frequent mild tingling sensation at the cathode (56%) than the

anode (30%) or on both sides (14%; p = 0.001, chi-square one-variable

test) when above the mean cutaneous threshold of 0.9 ± 0.29mA. Above

the mean oculomotor threshold of 1.61 ± 0.35mA, combined horizontal

and torsional nystagmus was more frequent toward the cathode (86%) than

toward the anode (p < 0.001, chi-square one-variable test). The mean

oculomotor threshold was significantly higher than both the vestibular (p <

0.001, Mann–Whitney U-test) and cutaneous (p < 0.001, Mann–Whitney U-

test) thresholds, which were comparable (p = 0.317, Mann–Whitney U-test).

There was no significant disparity in these specific thresholds between

the two GVS paradigms. The vestibular threshold was significantly higher

in males than in females [1 (0.5–1.25) mA vs. 0.75 (0.625–1.125) mA,

Z = −2.241, p = 0.025, Mann–Whitney U-test]. However, the thresholds

of cutaneous perception and oculomotor response did not di�er by sex.
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Conclusion: The findings indicate that thresholds for vestibular and

somatosensory perception are lower than the oculomotor threshold.

Therefore, a strategy to reduce GVS current intensity to the level of vestibular

or somatosensory perception threshold could elicit beneficial vestibular e�ects

while avoiding undesirable e�ects such as oculomotor consequences.

KEYWORDS

galvanic vestibular stimulation (GVS), vestibular perception threshold, cutaneous

threshold, nystagmus, vertigo

Introduction

Vestibular afferents are sensitive to motion acceleration

when the head translates and rotates in space, creating rapid

and accurate reflexive responses to unpredictable and high

acceleration. This function is critical in maintaining balance

and visual stability (1, 2). The afferents provide continuous

data for exploring and comprehending a vast range of physical

motions encountered in daily life, acting as an inertial sensor

and significantly contributing to spatial navigation (1).

Notably, the vestibular system is multimodal and integrative

(1, 3, 4), involving the fusion of otolith- and canal-derived

signals at the level of vestibular nuclei and multisensory

integration and convergence (such as vestibular-visual,

vestibular-somatosensory, and vestibular-visual-somatosensory

interactions) at the vestibular nuclei, thalamus, and cerebral

cortices (1, 3, 4). The coherence integration of three systems

(i.e., vestibular, visual, and somatosensory) imparts the ability

to determine an internal representation of space and spatial

perception and navigation in three-dimensional coordinates,

using both egocentric and exocentric strategies (5, 6). The

interaction between body and environmental space via

navigation continuously occurs based on data from the

navigable space (optic flow and visual cues) and the perception

of self-motion (vestibular and somatosensory) (5, 6).

Over the past century, transcutaneous delivery of electric

currents to the vestibular afferents, commonly referred to as

galvanic vestibular stimulation (GVS), has been used to study

and understand the function of the vestibular system (7). GVS

is a technique that can stimulate the spike trigger zone of

primary vestibular afferents associated with both semicircular

canals (SCCs) and otolith organs (8, 9), allowing perception of

vestibular sensations with excellent temporal control (10, 11).

Firing rates of peripheral vestibular afferents are increased by

galvanic currents at the cathode and decreased at the anode (9,

12, 13). The adaptive capacity of two types of vestibular afferent

fibers to each GVS waveform is strikingly different that irregular

fibers are sensitive to small-amplitude, highly dynamic currents

(alternating current, AC), but fail to sustain tonic firing rates

with constant currents (direct current, DC), whereas regular

fibers are the opposite (14). GVS has also been used in functional

neuroimaging studies to investigate the vestibular system (15)

and in a variety of behavioral experiments on the effects of

vestibular stimulation on locomotion and cognitive processes

(16). In the framework of clinical therapeutic studies, favorable

advantages of GVS have been shown in the improvement of

postural stability (17–19), gait performance (20), functional

mobility (21, 22), sensory perception (23–25), and cognition

(26, 27).

Due to an increasing interest in GVS applications in

clinical neuropsychiatry and rehabilitation, it is important

to determine the stimulus parameters of waveforms (DC,

sinusoidal or noisy), intensity, frequency, polarity, duration, and

timing of stimulation, as well as electrode size and positioning

(14). When altering these parameters, different amounts of

electric current can be elicited, and diverse physiologic and

adverse effects induced (14). In addition to the assessment of

efficacy, electrical safety is crucial for the clinical application of

GVS and must be considered in the intervention. Frequently

reported detrimental effects of GVS include itching, tingling,

and burning at the stimulation site. In addition, high GVS

amplitude leads to significantly decreased performance in

short-term spatial memory or egocentric mental rotation,

supported by a significant decrease in cell proliferation in

the hippocampus (28), induced postural instability (29), and

decreased dynamic visual acuity (30). To achieve the optimal

effect and simultaneously reduce detrimental effects, it is

necessary to determine the GVS threshold defined by the

lowest level of stimulus required to evoke vestibular responses.

GVS currents also activate other sensory inputs including

those of the cutaneous, visual, and auditory systems as well

as the vestibular system, which encompasses somatosensory,

oculomotor, and vestibular responses during an intervention

(14). Therefore, investigating the thresholds for specific points

of each sensory perspective, cutaneous and vestibular perception

as well as oculomotor response, is necessary. Because precise

sensory feedback from the visual, vestibular, and cutaneous

systems is critical for maintaining balance and motor control,

determining the appropriate individualized GVS threshold will

maximize the therapeutic effects of GVS intervention while
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minimizing the associated unpleasant sensations. In particular,

due to increased clinical application of GVS, the threshold

should be determined prior to the experimental session (31–

33). Previous research has determined GVS threshold based

on mostly vestibular perception, occasionally cutaneous feeling,

and rarely oculomotor activity. To the best of our knowledge,

no study has previously assessed these specific GVS thresholds

concurrently. Thus, the most appropriate method to determine

GVS threshold remains unclear. In this study, specific threshold

intensities and response characteristics of GVS on vestibular

and cutaneous perception as well as oculomotor response

were determined.

Materials and methods

Participants

This study included 25 healthy subjects (32.6 ± 7.2 years;

range 23–53 years; 11 males, 14 females, Table 1) recruited at

Jeonbuk National University Hospital from July to September

2021. According to the Edinburgh Handedness Inventory (34),

all participants were right-handed. Participants did not have any

history of neurologic or neuro-otologic diseases and were not

taking any medication. The subjects underwent neurotological

evaluations including video oculography and head-impulse test

and vestibular-evoked myogenic potential tests to screen for

any vestibular impairment. They showed no abnormalities on

examinations. The subjects provided written informed consent

to participate in the study following an explanation of the

study protocol. All experiments were reviewed and approved by

the Institutional Review Board at Jeonbuk National University

Hospital (No. 2021-07-013-007).

Experimental design and GVS procedure

Data from each participant were collected in two randomly

ordered sessions of DC-GVS paradigms of cathode on the

right and anode on the left (CRAL) or cathode on the left

and anode on the right (CLAR; Tables 1, 2). The experimental

design using “CLAR and CRAL” in right-handed participants

is required in the context of handedness-dependent vestibular

lateralization, in which the vestibular input and signaling

pathways from the dominant side are more predominant than

those from the non-dominant side (35, 36). This allowed the

detection of any difference in the GVS threshold between

CLAR and CRAL models. At the beginning of the sessions,

participants received verbal and written instructions regarding

the tasks. A CE-certified battery-driven constant current

stimulator (neuroConn DC-Stimulator Plus; neuroConn,

Ilmenau, Germany) was used to deliver the DC to subjects

sitting upright in a chair via a pair of 35 cm2 (5 × 7 cm)

(37–39) rectangular conductive rubber electrodes (neuroConn)

coated with electrode gel and placed binaurally over both

mastoids. The maximum current density in this study was

estimated to be 57.14 µA/cm2 (corresponding to a charge

density of 1.71 Coloumb/cm2) at the skin surface, similar

to previous studies (37, 38), and well below the safety limit

for tissue damage (40–42). The electrodes were positioned

on the mastoid, supplemented with a conductive gel prior to

testing to reduce skin impedance, and secured in place by a

rubber head strap. Participants were seated in a comfortable

chair in front of a target bar of the three-dimensional video

oculography instrument (3D-VOG, SMI, the Netherlands,

sampling rate of 60Hz) and wore goggles that tracked

their ocular movements under the supervision of a senior

neurotologist (S.Y. Oh). Threshold testing started with a

low current (0.5mA), gradually increasing by 0.25mA for

a 3-s period over a 5-min inter-step interval. In the inter-

step interval, the subjects were asked to describe whether

they experienced any tingling/pain (cutaneous perception

threshold) or dizziness/unsteadiness (vestibular perception

threshold) during GVS application. The senior neurotologist

also monitored for the appearance of nystagmus when recording

with the VOG (oculomotor threshold). These iterations were

continued with a steady increase in current until the participant

concurrently expressed tingling/pain, dizziness/unsteadiness,

and nystagmus. To confirm the specific thresholds, the

stimulus intensity was gradually decreased by 0.25mA from

2mA to the level at which the tingling/pain (cutaneous

threshold), dizziness/unsteadiness (vestibular threshold),

and ocular responses (oculomotor threshold) disappeared

(Figure 1). The procedure was repeated two times to confirm

the cutaneous, vestibular, and oculomotor thresholds (43–45).

When thresholds differed between sessions, the mean value was

used for analysis.

Thresholds for vestibular and cutaneous
perception and oculomotor response

A verbal warning preceded each stimulus, and subjects

were instructed to say “yes” when perceiving tingling, pain,

or any other sensation at the electrodes. Subjects were asked

to describe the sensory feelings and indicate the location of

occurrence. Subjects were also instructed to focus on vestibular

perception and asked to report any sense of dizziness with

spinning or non-spinning and disequilibrium or any sense of

motion. Each report was followed by feedback confirming the

perceptions such as motion direction, and the current intensity

was increased in the next step. Eye position and movement

were binocularly recorded using the 3D-VOG during the entire

experiment. Digitized data were analyzed using the MATLAB

software (MathWorks, Natick, MA, USA). All data pertaining
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TABLE 1 Thresholds for somatosensory and vestibular perception and oculomotor response and their characteristics in response to GVS with the cathode on the right and the anode on the left (CRAL).

Pts./sex/age Handedness Cutaneous perception Vestibular perception Oculomotor response

Threshold (mA) Sensing site Threshold (mA) Description Threshold (mA) Degree (◦/s) Duration (s) Direction

1/F/48 Rt. 0.5 Cathode (Rt.) 0.5 Rt. tilting and CW rotation, vertigo 1 2.1 5 RBN

2/F/36 Rt. 1 Cathode (Rt.) 1 Rt. tilting and CW rotation, vertigo 0.5 2.1 4.9 LBN

3/M/34 Rt. 0.5 Both 1 Rt. tilting and CW rotation, 1 2.5 5.4 RBN

4/M/33 Rt. 1 Cathode (Rt.) 1.5 Rt. tilting and CW rotation, vertigo 1.5 2 4.1 RBN

5/F/32 Rt. 0.5 Cathode (Rt.) 0.5 Rt. tilting and CW rotation, vertigo 2 1.8 4.3 RBN

6/M/34 Rt. 1 Cathode (Rt.) 2 CCW rotation 1.5 1.7 3.4 LBN

7/F/29 Rt. 1.5 Cathode (Rt.) 0.5 Rt. tilting and CW rotation 2 1.6 3.9 RBN

8/M/29 Rt. 1 Cathode (Rt.) 1 Lt. tilting and CCW rotation, vertigo 2 2.4 4.4 CW

9/M31 Rt. 0.5 Cathode (Rt.) 1 CW rotation 1 1.7 5.1 RBN

10/F/30 Rt. 1.5 Cathode (Rt.) 1 Lt. tilting and CCW rotation, vertigo 0.5 1.9 5 RBN

11/F/23 Rt. 1 Anode (Lt.) 0.5 Rt. tilting and CW rotation, vertigo 1.75 1.9 4.4 RBN

12/F/26 Rt. 1.5 Cathode (Rt.) 0.5 Rt. tilting and CW rotation, vertigo 1 2.5 5 CCW

13/F/25 Rt. 0.5 Both 0.5 CCW rotation 0.5 2.4 5.2 RBN

14/F/38 Rt. 0.5 Anode (Lt.) 0.5 Lt. tilting and CCW rotation, vertigo 1.5 1.8 4.5 CCW

15/F/44 Rt. 0.5 Both 0.5 Rt. tilting and CW rotation, vertigo 2 2.5 4.9 RBN

16/M/53 Rt. 1.25 Anode (Lt.) 1.5 Lt. tilting feeling 2 1.8 6 RBN

17/M/35 Rt. 0.5 Anode (Lt.) 1 CW rotation and vertigo 2 2.1 3.8 RBN

18/F/31 Rt. 0.5 Anode (Lt.) 0.75 Rt. tilting and CW rotation 1 2.3 8.7 RBN

19/F/26 Rt. 0.5 Cathode (Rt.) 0.75 Rt. tilting and CW rotation 2 1.7 5 LBN

20/F/28 Rt. 2 Cathode (Rt.) 2 Rt. tilting and CW rotation 2 1.6 4.2 RBN

21/M/25 Rt. 1.5 Cathode (Rt.) 1.75 CCW rotation 2 1.9 6.3 RBN

22/M/36 Rt. 1.25 Anode (Lt.) 1.25 Rt. tilting and CW rotation 2 2.2 5.8 RBN

23/M/33 Rt. 2 Cathode (Rt.) 2 Rt. tilting and vertigo 2 1.8 3.7 RBN

24/F/29 Rt. 1.25 Anode (Lt.) 1.25 Rt. tilting and CW rotation 1.75 1.7 4.3 RBN

25/M/27 Rt. 0.5 Anode (Lt.) 1 Rt. tilting and CW rotation 1.5 2.7 8 RBN, UBN

GVS, galvanic vestibular stimulation; Pts, participants; M, male; F, female; Rt., right; Lt., left; CW, clockwise; CCW, counter-clockwise; RBN, right-beating nystagmus; LBN, left-beating nystagmus.
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TABLE 2 Thresholds for somatosensory and vestibular perception and oculomotor response and their characteristics in response to GVS with the cathode on the left and the anode on the right (CLAR).

Pts./sex/age Handedness Cutaneous perception Vestibular perception Oculomotor response

Threshold (mA) Sensing site Threshold (mA) Description Threshold (mA) Degree (◦/s) Duration (s) Direction

1/F/48 Rt. 0.5 Cathode (Lt.) 0.5 Lt. tilting and CCW rotation 1.5 2.2 5.1 LBN

2/F/36 Rt. 0.5 Cathode (Lt.) 0.75 Lt. tilting and CCW rotation 1 2.7 5.7 LBN

3/M/34 Rt. 0.5 Cathode (Lt.) 0.5 Lt. tilting and CCW rotation, vertigo 1.5 1.5 4.9 LBN

4/M/33 Rt. 1 Anode (Rt.) 0.75 Lt. tilting and CCW rotation, vertigo 1.75 1.9 4.6 LBN

5/F/32 Rt. 1.25 Cathode (Lt.) 1.25 Lt. tilting and CCW rotation 2 1.8 3.8 LBN

6/M/34 Rt. 1.5 Both 1.25 Rt. tilting and CW rotation 1.5 2.1 4.5 RBN

7/F/29 Rt. 0.5 Cathode (Lt.) 0.5 Lt. tilting and CCW rotation 1.5 2.3 5 LBN

8/M/29 Rt. 0.75 Cathode (Lt.) 0.75 Lt. tilting and CCW rotation 1.75 2.4 4 LBN

9/M31 Rt. 1 Anode (Rt.) 1.25 Lt. tilting and CCW rotation 2 1.4 6 LBN

10/F/30 Rt. 1 Anode (Rt.) 1 Rt. tilting and CW rotation 1.5 1.8 4.4 LBN

11/F/23 Rt. 0.5 Cathode (Lt.) 1 Lt. tilting and CCW rotation 1.5 2.2 5 LBN

12/F/26 Rt. 1.25 Cathode (Lt.) 1.5 Rt. tilting and CW rotation, vertigo 2 2.6 4.8 LBN

13/F/25 Rt. 1 Cathode (Lt.) 1 Lt. tilting and CCW rotation 1.5 2 5.9 LBN

14/F/38 Rt. 0.75 Cathode (Lt.) 0.75 Lt. tilting and CCW rotation 2 2.7 6 LBN

15/F/44 Rt. 1 Both 1 Lt. tilting and CCW rotation, vertigo 2 2 4.5 LBN, DBN, CCW

16/M/53 Rt. 0.75 Cathode (Lt.) 0.75 CCW rotation 1.5 1.1 4.7 LBN

17/M/35 Rt. 0.5 Anode (Rt.) 1 Lt. tilting and vertigo 2 1.8 3 LBN, DBN

18/F/31 Rt. 0.5 Cathode (Lt.) 0.75 Lt. tilting and CCW rotation 1.5 2.3 6 LBN

19/F/26 Rt. 1 Anode (Rt.) 1.25 Rt. tilting and CW rotation 1.5 1.8 5 LBN

20/F/28 Rt. 0.5 Both 0.5 Lt. tilting and CCW rotation, vertigo 2 1.7 4 LBN

21/M/25 Rt. 1 Cathode (Lt.) 1 Lt. tilting and CCW rotation 1.5 1.2 6.1 LBN

22/M/36 Rt. 1.75 Cathode (Lt.) 1.75 Lt. tilting and CCW rotation 2 2 6.2 LBN

23/M/33 Rt. 0.5 Both 0.75 Lt. tilting and CCW rotation 2 2.6 5.3 LBN

24/F/29 Rt. 1 Anode (Rt.) 1.25 Lt. tilting and CCW rotation 1.5 2.1 7.7 RBN

25/M/27 Rt. 0.75 Anode (Rt.) 0.5 Rt. tilting and CW rotation 2 1.8 4.5 LBN
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FIGURE 1

Experimental design flowchart. Representations of ocular movements during GVS application (in the boxes). The two-step approach to

determining GVS thresholds. GVS, galvanic vestibular stimulation; DC, direct current; L, left eye (blue); R, right eye (red).

to the results reported in this article (text and figures) will

be shared.

Statistical analysis

All data were analyzed using SPSS Statistics version

23.0 (IBM Corp., Armonk, NY, USA). For each parameter,

the normality of the distribution was assessed using the

Shapiro-Wilk test. The variables were presented as mean

± standard deviation. The non-parametric variables were

indicated as median (95% confidence interval), and the

significant difference was determined using the Kruskal-Wallis

test (between group comparison) and the Mann-WhitneyU-test

(pairwise comparisons). The chi-square one-variable test was

used to compare the difference between variables in multiple

categories. The Spearman’s correlation coefficient was used to

assess the correlations between age and the vestibular, cutaneous,

and oculomotor thresholds. Statistical significance was set at a

0.05 level.

Results

Although GVS is mildly unpleasant, no participant reported

particular discomfort or withdrew from the study. All

participants perceived cutaneous and vestibular sensations and

showed oculomotor responses confirmed by VOG recordings

(Figure 1).

Thresholds for cutaneous and vestibular
perceptions and oculomotor response

Subjects experienced mild cutaneous tingling or stinging

sensations above the mean stimulation intensity of 0.9 ±

0.29mA (cutaneous threshold, 0.85 ± 0.35mA on CLAR, and

0.97 ± 0.50mA on CRAL; Figure 2). These somatosensory

perceptions were more frequent on the cathode (56%) than

the anode (30%) or both sides (14%; p = 0.001, chi-square

one-variable test; Figure 3A). Subjects also experienced various

vestibular sensations evoked by GVS, as described in the

subject’s self-report. Some participants experienced dizziness

and vertigo, likely the manifestation of whole-body angular

rotation or a sense of rotation of the environment as if the objects

around them were spinning. Other participants described the

feeling of change in gravity. These sensations persisted for

several seconds even after cessation of the stimulation above

the mean stimulation intensity of 0.98 ± 0.29mA (vestibular

threshold, 0.93 ± 0.33mA on CLAR, and 1.03 ± 0.52mA

on CRAL; Figure 2). Rotating and falling sensations were

more frequently experienced toward the cathode (76%) than

the anode (24%, p < 0.001, chi-square one-variable test;
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FIGURE 2

Galvanic vestibular stimulation (GVS) thresholds are presented separately: cutaneous and vestibular perceptions and oculomotor response using

two stimulating paradigms of the cathode on the left and anode on the right (CLAR) (A) and the cathode on the right and anode on the left

(CRAL) (B). In the CLAR paradigm, the oculomotor threshold (1.7 ± 0.28mA) was significantly higher than the vestibular perception threshold

(0.93 ± 0.33 mA, p < 0.001, Bonferroni test) and cutaneous perception threshold (0.85 ± 0.35mA, p < 0.001, Bonferroni test) (A). In the CRAL

paradigm, the oculomotor threshold (1.52 ± 0.54mA) was also significantly higher than the vestibular perception threshold (1.03 ± 0.52mA, p <

0.001, Bonferroni test) and cutaneous perception threshold (0.97 ± 0.5mA, p < 0.001, Bonferroni test) (B). GVS threshold values are presented

as mean ± standard deviation (mA).

FIGURE 3

Characteristics of galvanic vestibular stimulation (GVS)-induced cutaneous and vestibular perception and oculomotor responses depending on

the stimulating paradigms; the cathode on the left and the anode on the right (CLAR, inside annulus) and the cathode on the right and the

anode on the left (CRAL, outside annulus). Cutaneous perceptions were more frequent on the cathode side (56%) than the anode (30%) or both

sides (14%; p = 0.001, chi-square one-variable test) (A). Rotating and falling sensations were more frequently experienced toward the cathode

(76%) than the anode (24%, p< 0.001, chi-square one-variable test) direction (B). Nystagmoid ocular movements were observed more frequently

with horizontal and torsional nystagmus toward the cathode (86%) than toward the anode (14%, p< 0.001, chi-square one-variable test) (C).

Values are presented as percentages.

Figure 3B). The vestibular threshold in males was significantly

higher than in females [1 (0.5–1.25) mA vs. 0.75 (0.625–

1.125) mA, Z = −2.241, p = 0.025, Mann–Whitney U-

test]. However, significant differences were not observed in

cutaneous perception and oculomotor response between the

sexes. Correlations were not found between age and vestibular,

cutaneous, and oculomotor thresholds.

Short-latency eye movements were also observed above the

mean stimulation intensity of 1.61 ± 0.35mA (oculomotor

threshold, 1.70 ± 0.28mA on CLAR, and 1.52 ± 0.54mA on

CRAL; Figure 2). Nystagmoid ocular movements were observed

more frequently with horizontal and torsional nystagmus

toward the cathode (86%) than toward the anode (14%,

p < 0.001, chi-square one-variable test; Figure 3C). The

mean amplitude and the mean duration of nystagmus were,

respectively, 2.03 ± 0.33◦/s and 5.01 ± 1.23 s for CRAL and

2 ± 0.43◦/s and 5.07 ± 0.98 s for CLAR (Table 3). Notably,

the oculomotor threshold [1.75 (1.5–1.75) mA] was significantly

higher than the vestibular perception threshold [1 (0.75–1.125)

mA, Z = −4.866, p < 0.001, Mann–Whitney U-test] and

the cutaneous perception threshold [0.875 (0.75–1.125) mA, Z

= −5.184, p < 0.001, Mann–Whitney U-test; χ
2
= 34.488,

p < 0.001, Kruskal-Wallis test, Figure 2]. A comparison of

the properties of cutaneous and vestibular perception and

oculomotor responses between the CRAL and CLAR paradigms

revealed no significant differences between them (Table 3).
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TABLE 3 Comparison of the properties of cutaneous and vestibular

perception and oculomotor response depending on the CRAL and

CLAR GVS paradigms.

Participants (n = 25) P-value

CRAL CLAR

Cutaneous perception

Threshold, median (IQR) (mA) 1 (0.5–1.38) 0.75 (0.5–1) 0.542

Intensity, median (IQR) (1–10) 1 (1–2) 1 (1–1.5) 0.176

Nature 1.000

Neutral sensation, n (%) 23 (92) 24 (96)

Painful sensation, n (%) 2 (8) 1 (4)

Site 0.901

Cathode side, n (%) 14 (56) 14 (56)

Anode side, n (%) 8 (32) 7 (28)

Both, n (%) 3 (12) 4 (16)

Vestibular perception

Threshold, median (IQR) (mA) 1 (0.5–1.38) 1 (0.75–1.25) 0.441

Intensity, median (IQR) (1–10) 1 (1–2) 1 (1–2) 0.371

Nature 0.742

Tilting and rotation toward the

cathode, n (%)

18 (72) 20 (80)

Tilting and rotation toward the

anode, n (%)

7 (28) 5 (20)

Oculomotor response

Threshold, median (IQR) (mA) 1.75 (1–2) 1.5 (1.5–2) 0.075

Degree, median (IQR) (◦/s, Rt.

eye)

1.9 (1.75–2.35) 2 (1.8–2.3) 0.794

Duration, median (IQR) (s) 4.9 (4.25–5.3) 5 (4.5–5.95) 0.567

Direction 0.417

Horizontal or torsional

nystagmus toward the cathode, n

(%)

20 (80) 23 (92)

Horizontal or torsional

nystagmus toward the anode, n (%)

5 (20) 2 (8)

CRAL, the cathode on the right and the anode on the left; CLAR, the cathode on the left

and the anode on the right; IQR, interquartile range.

Discussion

Vestibular and cutaneous perception and oculomotor

response thresholds were measured in 25 healthy young subjects

during DC GVS with both CRAL and CLAR paradigms, using

a two-step approach with gradual increase and decrease in

intensities. Vestibular and somatosensory perception thresholds

were lower than the oculomotor threshold, indicating the

use of the vestibular or somatosensory perception threshold

to determine the GVS thresholds in the majority of human

trials due to its sensitivity with minimal oculomotor responses.

Theoretically, the vestibular threshold might reflect the

vestibular function more directly and precisely than other

motor response thresholds such as the vestibulo-ocular reflex

(VOR) and the vestibulo-spinal reflex (VSR), which may be

involved in central adaptation (1, 2, 14, 46, 47). Furthermore,

the vestibular threshold could provide a comprehensive assay

of peripheral vestibular function including the SSCs or otoliths

(48, 49).

A previous study with a similar model reported a vestibular

perception threshold of DC of 1.0 ± 0.2mA, which is

very similar to the results of our study (45). Recently, the

vestibular threshold was shown to significantly increase after

the age of 40 years (49), which has been considered a central

gain enhancement for compensating the reduced peripheral

vestibular input due to age-related degeneration of vestibular

hair cells and afferents (50–52). In particular, prior studies have

demonstrated that the aging-related degeneration of vestibular

irregular afferent fibers, which are six times more sensitive to

GVS than regular fibers, was faster and more potent than those

in regular fibers (51, 53). Significant changes, however, have not

been observed in the GVS threshold dependent on temporal

effects, polarity effects, or body positions (10). Additionally, this

study confirmed that there were no significant differences in the

specific thresholds between the CRAL and CLAR configurations.

Notably, a substantial difference associated with sex was found

in vestibular perception but did not occur in cutaneous and

oculomotor response thresholds, consistent with a recent trial

(54). These sex-related threshold differences were most likely

because they have a substantially different size of vestibular

apparatus and numbers of vestibular afferent fibers (55, 56). In

particular, the total number of myelinated axons in vestibular

nuclei is significantly lower in females than in males (55).

Regarding the otolith organs, the surface areas of the utricular

and saccular maculae, the width of the utricular macula, and

the length of the saccular macula are significantly greater in

males than in females (56). In addition, diameters of the

three SCCs are larger in males than in females, and the

difference was statistically significant for the superior SCC (56).

These anatomical distinctions might cause vestibular-related

behavioral differences. For example, the GVS-induced ocular

vestibular-evoked myogenic potential (oVEMP) amplitude was

reported higher in males than in females (57). Males were shown

to normally perform better in vestibular function-related tasks,

in particular, visuospatial cognition such as 3D figures, spatial

orientation, and maze navigation (58, 59).

Cutaneous sensations underneath and around the stimulus

electrodes, such as burning, tingling, itching, and pain, mostly

depend on the stimulus amplitude (14, 33) and have commonly

been described as minor adverse effects of GVS intervention.

The use of large surface electrodes on the mastoid, covering with

electrode gel or topical anesthesia, or controlling the current

amplitude helps to minimize the risk of skin irritations, burns,

and patient discomfort (14, 60). The cutaneous threshold, also

known as the nociceptive threshold, was determined to help

manage these disruptions and enhance treatment compliance
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(17, 26, 61, 62). The cutaneous threshold was determined to be

0.9mA in this study, with tingling sensation occurring mostly

at the cathode side (Figure 3A). The findings were in agreement

with a previous study conducted on healthy volunteers utilizing

the staircase approach to assess the cutaneous threshold in

which a mean value of 0.8mA was reported (63). Although

several previous studies have revealed that a threshold of∼1mA

produced no significant difference in somatosensory sensations

between the anode and cathode sides (64–68), the sensory

ratings were consistently higher at the cathode than at the

anode for pain, tingling, piercing, electrifying, tugging, and

pinching senses in other recent studies (Figure 3A) (68, 69).

The tingling and itching sensations under the electrodes were

usually short lasting and disappeared after a few seconds, similar

to our findings. However, in some studies, the sensations were

reportedly prolonged (64, 65, 70).

Regarding the characteristics of the vestibular responses to

bipolar GVS, rotation and tilt were more frequently experienced

toward the cathode (76%) than toward the anode (Figure 3B).

Our present findings were in agreement with results from

previous studies showing that DC-form GVS induces a tilt

of subjective vertical toward the anode and simultaneously

induces some illusion of self-tilt or spin toward the cathodal

side (8, 71, 72). This dissociation between subjective vertical

and body orientation elicited by GVS is mainly determined

by central multisensory integration processes involved in the

estimation of sensory cue reliability (72). Interestingly, the

direction of tilt illusion was associated with posture only when

the duration of the GVS was longer than 5 s, and it was toward

the anode in freestanding posture, and toward the cathode

in an immobilized posture (71). GVS-induced perception of

motion is as context-dependent as oculomotor and postural

responses, which are specified by the anatomic orientation

of the SCC (SCC-driven signals) and the macular surfaces

in the otolith organs (otolith-driven signals) (8). Cathodal

GVS increases the firing rate of all responsive afferents, and

anodal GVS decreases the firing rate of all responsive afferents;

consequently, their effects at a canal are represented by a sum

of geometric rotational stimuli (9, 40, 73). After calculating

both the position of the canals in the plane of the head during

upright standing and the incomplete orthogonal of SCCs, the

summing vector representing the synergistic effects of SCC

afferent activation evoked by GVS from both sides will be

a signal roll with a yaw component, both directed toward

the cathode, and a perceived visual tilt toward the anode

(8, 11, 73). Furthermore, bilateral bipolar GVS produces a

utricular firing pattern consistent with a natural stimulus of

linear acceleration toward the cathodal side or visual tilt toward

the anodal side (8, 11). However, in some psychophysical

studies, the otolith contributions to GVS-induced postural

responses were negligible compared with the canal

input (74, 75).

As GVS can elicit ocular movement in the absence

of head movement, it is frequently used to characterize

potential pathologies in peripheral and central vestibular signal

transmission (14). GVS activates both afferent fibers, including

regular and irregular afferents, from all three SCCs to generate

a horizontal-torsional nystagmus as a summative effect (14,

76). Regarding the time-related eye movements evoked by the

application of a constant current application (DC-GVS) in this

study, horizontal nystagmus frequently appeared at the onset

of stimuli and immediately subsided, which was consistent

with rapid activation but prompt adaptation characterized by

thick, irregular fibers. However, non-adapting ocular torsion

prevailed for the duration of the stimulus, which was the result

of regular SCC fiber activation (14). Due to the oculomotor

response threshold as the only method for estimating the GVS

threshold in animal trials, it was often used as a control GVS

(16, 77). In humans, however, due to discomforts such as

oscillopsia and blurred vision caused by ocular movements,

measurement of oculomotor threshold is less widely used to

trigger vestibular stimulation with GVS. In previous studies

with vestibular dysfunction patients, the GVS-induced eye

movements were used to evaluate the reduction or absence

of oculomotor contribution from the vestibular end organs

(60, 78–80). Patients with bilateral vestibular nerve dissection or

other pathological disorders affecting both vestibular nerves did

not reveal GVS-induced oculomotor responses; therefore, these

GVS-induced eye movements are considered a strong predictor

of the residual function of the injured vestibular nerve (81–

83). In this study, the oculomotor threshold was significantly

higher than the vestibular and cutaneous perception thresholds

(1.61mA vs. 0.98mA and 0.9mA, Figure 2). Some previous

studies have investigated GVS-induced nystagmus in normal

subjects (80, 84), in which the oculomotor response appeared

with intensities above 1.5mA, similar to this study (80).

Because the entire populations of both SCCs and otolith

afferents are susceptible to GVS (76), GVS-induced oculomotor

responses are likely to be exceedingly diversified, including

the roll, yaw, and pitch components (76). In this study, the

most prevalent components were horizontal and torsional

nystagmus, primarily beating toward the cathode, compatible

with vectored activation of afferent fibers from all three SCCs

on one side (51, 76). Other studies have reported obvious

GVS-induced oculomotor response of mainly conjugate ocular

torsion with the upper pole of both eyes rotating toward

the side of the anode, slight skew deviation with hypertropia

of the eye ipsilateral to the cathode and hypotropia with

the eye of the anode, and small conjugate horizontal eye

movements toward the anode (80). Amplitudes of GVS-induced

eye movements apparently depend on the stimulating current

level or the group of vestibular afferents engaged with regular

or irregular firing rates (76, 80, 85). Furthermore, GVS-induced

nystagmus was suppressed by visual fixation in light (60,
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79, 85), and horizontal nystagmus was mainly observed at

the onset and offset of the current step, with ocular torsion

prevailing for the entire duration of the stimulus up to several

minutes (79).

The DC-GVS is useful for rescuing vestibular function in

unilateral vestibular disorders by rebalancing the vestibular

deafferentation effect proved in previous studies (77, 86).

Therefore, in this study, we investigated only the GVS

thresholds using DC. Based on the components of tonic

or phasic vestibular fibers that are likely to be recruited

for the GVS response, we surmise threshold differences

between DC and AC stimulation. Thus, further research

is needed to determine the GVS thresholds for the AC

(sinusoidal, noisy). Regarding the statistically non-significant

results in our study such as age-related GVS threshold,

it could be due to a type 2 error related to the small

sample size.

In conclusion, GVS is a safe stimulation method when

certain standard procedures are followed. Due to the

variables influencing GVS-induced cortical excitability,

the same quantity of current is likely to have non-

uniform effects in each subject with different conditions.

Individual factors are a source of heterogeneity in clinical

research, which is a significant obstacle for routine use in

clinical settings. Therefore, the patient-specific customized

threshold should be determined rather than population

thresholds. The results of this study show more sensitive

vestibular and somatosensory perception thresholds than

the oculomotor threshold, which allows the selection of the

appropriate current that induces the vestibular effect while

simultaneously preventing disturbing ocular movements during

the intervention.
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