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Background: Radioresistance is the major obstacle after cancer radiotherapy. The
dysregulation of long non-coding RNAs (lncRNAs) was closely related the
radioresistance response. This meta-analysis was aimed to interpret the relationship
between lncRNAs and radiotherapy responses in different cancers.

Method: The studies were selected from databases including PubMed, ISI Web of
Science, Embase, Google Scholar, PMC, and CNKI (China National Knowledge
Infrastructure). The publication time was limited to before March 20, 2021. The hazard
ratios (HRs) and 95% confidence interval were calculated with random-effects models.
Subgroup analyses, sensitivity analyses, and publication bias were also conducted.

Result: Twenty-seven lncRNAs in 14 cancer types were investigated, in which 23
lncRNAs were upregulated and four lncRNAs were downregulated. Dysregulation of
these lncRNAs were found to be related to radioresistance response. The pooled HR and
95% confidence interval for the combined up-regulated lncRNAs was 1.73 (95% CI=1.50-
2.00; P< 0.01) and down-regulated lncRNAs was 2.09 (95% CI= 1.60-2.72; P< 0.01). The
HR values of the subgroup analysis for glioma (HR= 2.22, 95% CI= 1.79-2.74; p< 0.01),
non-small cell lung cancer (HR=1.48, 95% CI=1.18-1.85; P<0.01), nasopharyngeal
carcinoma (HR=4.26; 95% CI= 1.58-11.46; P< 0.01), and breast cancer (HR=1.29;
95% CI= 1.08-1.54; P< 0.01) were obtained. Moreover, the expression of lncRNAs was
significantly related to overall survival of patients no matter if the sample size was >50 or
not. In addition, the HR values of the subgroup analysis for lncRNA H19 (HR=2.68; 95%
CI= 1.92-3.74; P <0.01), lncRNA FAM201A (HR=2.15; 95% CI= 1.15-3.99; P <0.01), and
lncRNA HOTAIR (HR=1.22; 95% CI= 0.98-1.54; P =0.08) were also obtained.

Conclusion: LncRNAs can induce cancer radioresistance by regulating cell death-related
signaling pathways. Results indicated that lncRNAs, especially lncRNA H19, FAM201A,
and HOTAIR, could be considered as a predictive theragnostic biomarker to evaluate
radiotherapy response.
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INTRODUCTION

Cancer is one of the dominant factors causing global death,
and deaths caused by cancer have far exceeded those caused by
infectious diseases such as human immunodeficiency virus
(HIV) and tuberculosis (TB) (1). GLOBOCAN estimated that
19.3 million new cases of cancer and almost 10.0 million
deaths from cancer occurred in 2020 (2). Worldwide, the
cancer burden is expected to be 28.4 million cases in 2040,
which is a 47% rise from 2020. Limited access to timely
diagnosis and effective treatment led to disparities in cancer
survival between different locations. Advances in surgery,
chemotherapy, radiotherapy, as well as other newer targeted
therapies, had significantly reduced morbidity and improved
the overall survival of cancer patients over the past decades
(3). Among these treatments, about one-half of cancer
patients with persistent or recurrent tumors receive
radiotherapy (RT) (4, 5). However, radioresistance, a major
hurdle for the clinical cancer treatment, widely induced
deterioration of cancer including invasion, metastasis, poor
prognosis, and overall survival of cancer patients (6, 7).
Radioresistance is involved in multiple biological changes,
for example, evasion of apoptosis, altered DNA damage
response, and enhanced DNA repair (8). As a result,
patients with radioresistant characteristics always require
higher doses of irradiation to obtain effective treatment, but
this treatment manner would lead to more serious side effects
(9). Therefore, it is essential to explore novel biological
markers that lead to radioresistance or radiosensitivity to
benefit the treatment of radioresistant cancer patients and
improve the outcome of radiotherapy.

Recently, it has been demonstrated that the dysregulation of
long non-coding RNAs (lncRNAs) after ionizing radiation (IR)
was different between radioresistant and radiosensitive patients
(10–14). LncRNAs, a series of transcripts of more than 200
nucleotides, are generally defined as no or limited protein-coding
potential (15). Numerous studies have indicated that lncRNAs
are involved in gene expression regulating, transcription
modulation, post-transcription modulation, as well as
epigenetic modification of biological process (16, 17).
Moreover, lncRNAs also play a vital role in multiple signal
transduction pathways in cancer progression and metastasis,
including miRNA silencing, DNA damage, cell cycle control,
and hormone-driven disease states (18). Currently, a series of
functional lncRNAs have been identified as key factors to induce
radioresistance response by regulating the expression of their
target genes at transcriptional or post-transcriptional levels (19–
21). For instance, lncRNACCAT2 and lncRNARpph1 as
strategic components augmenting the radiation therapy in
esophageal squamous cell carcinoma (22, 23). Besides,
lncRNA-p21 was indicated to promote the radiotherapy
sensitivity of gastric cancer (24). Moreover, many lncRNAs
such as lncRNATP73-AS1 (25), lncRNAFAM201A (26),
lncRNA01600 (27), lncRNANCK1-AS1 (28), lncRNAMAGI2-
AS3 (29), and lncRNAAGAP2-AS1 (30) have also been proven
to participate in radioresistance response during cancer
treatment. In addition, a recent study also identified that
Frontiers in Oncology | www.frontiersin.org 2
lncRNA FAM133B-2 showed radiosensitivity response in
nasopharyngeal cancer cells by targeting miR-34a-5p/CDK6
axis (31).

However, these previous studies only focused on one single
lncRNA based on small sample size or one study center. The
association between lncRNAs and cancer radioresistance is still
poorly understood. Therefore, more functional lncRNAs related
to the radioresistance or radiosensitivity response need to be
explored based on multiple centers and big sample size. Meta-
analysis pooled large amount of available data and provided
more precise estimates. Therefore, this study was performed to
provide novel insights into lncRNAs associated with
radioresistance and radiosensitivity of various cancers by a
systematic review and meta-analysis. Studies were selected
based on the inclusion and exclusion criteria. The extracted
HRs and the corresponding 95% CIs were calculated followed by
sensitivity analyses, publication bias assessment, as well as
subgroup analysis.
MATERIALS AND METHODS

The present meta-analysis was guided by the Preferred Reporting
Items for Systematic Reviews and Meta-analysis (PRISMA)
guidelines (32).

Search Strategy
The topic related literature was searched by two authors
independently through PubMed, PMC, ISI Web of Science,
Embase, Google Scholar, Cochrane Library, the Chinese
National Knowledge Infrastructure (CNKI), and Chinese
Biomedical Literature Database (CBM). The studies were
limited to English or Chinese language which published before
June 30, 2021. The terms “long non-coding RNA,” “lncRNAs,”
“radioresistance,” “radiosensitivity,” “cancer,” “tumors,”
“neoplasm,” and “overall survival” were used to search the
related studies. Articles in the references listed in the studies
were also searched to avoid missing the relevant studies.

Inclusion and Exclusion Criteria
Inclusion and exclusion criteria were chosen as the following.
Retrieved studies were included if they met the following
characteristics: 1) human individuals; 2) the diagnosis of
cancer disease was clinically confirmed according to the disease
guideline; 3) the expression of lncRNAs and its related overall
survival were evaluated; 4) lncRNAs were involved in
radioresistance or radiosensitivity in cancer therapy; 5) case
group size, control group size, HR value, and its related 95%
CIs were provided; 6) the publication language was limited to
Chinese or English.

Studies were excluded if they met the following
characteristics: 1) cell line or animal studies, case reports,
comments, abstract, or review articles; 2) not related to
radioresistance or radiosensitivity and cancer; 3) repeated
studies; 4) insufficient data to calculate the HR value; 5) studies
not related to the topics.
May 2022 | Volume 12 | Article 767750
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Data Extraction and Quality Assessment
Two authors retrieved the following data independently from the
included studies: first author, publication year, country, sample
characteristic, sample source, type of cancer, involved lncRNAs,
detection method, related therapy, the case and control size, and
the HR value and its 95CIs. If the included studies didn’t provide
detailed data, the HR value and its 95CIs would be calculated
based on the overall survival curves. If there was any
inconsistency, the third researcher checked and resolved.

For further assessment of the quality of the included studies,
two of the authors independently evaluated studies using the
Newcastle-Ottawa Scale (NOS) (33). Studies scoring less than 6
were excluded in the present meta-analysis. Disagreements were
resolved by discussion.

Statistical Analysis
The hazard ratios (HRs) with 95% confidence intervals (CIs) of
lncRNAs and patients in included studies were extracted, and
then the HRs and 95% CI as the effect magnitude were calculated
as the amount of the combined effect. Subgroup analysis was
conducted according to cancers difference, case sample size >50
or not, and the different expression trend of lncRNAs. The
heterogeneity across studies was assessed using the I2 statistic.
When I2 value was 25%, 50%, and 75%, it was low, moderate, and
high degrees of heterogeneity, respectively. The pooled effect was
conducted by the random-effects model when I2 value was
> 75%. Otherwise, a fixed-effects model was used. The Begg
and Egger’s tests were used to assess potential publication bias.
All statistical analyses were conducted by Stata software version
12.0 (Stata Corp LP, TX, USA). The statistical significance was
considered as a P-value< 0.05.
RESULTS

Characteristics and Quality of the Included
Studies and Individuals
Figure 1 shows the flowchart of study selection and exclusion.
Three hundred eleven studies were initially searched from
PubMed (n = 492), and other databases (n = 1234). After
removing duplicated studies, 634 articles were considered
relevant to the topic. After full-text screening according to
inclusion and exclusion criteria, some records were removed
because they were case report, review, or comments. Finally, a
total of 28 studies with lncRNAs expression involved in
radiosensitivity or radioresistance during cancer therapy were
included, which contained a total of 4986 cancer patients.

The characteristics of the studies and individuals included are
presented in Table 1. The results of NOS quality score of the
eligible studies ranged from 6 to 9, as also illustrated in Table 1.
And then, the eligible articles were further reviewed and data
extracted. The included studies in the current systematic review
and meta-analysis were published between 2015 and 2020 and
conducted in Canada and China. The sources of the malignant
tumor included glioma (35, 36, 38, 41, 43), neck squamous
carcinoma (HNSCC) (57), esophageal cancer (EC) (22), breast
Frontiers in Oncology | www.frontiersin.org 3
cancer (34, 42, 46, 47), colorectal cancer (39, 58), non-small cell
lung cancer (NSCLC) (40, 45, 50–52), ovarian cancer (OC) (48),
cardiac carcinoma (49), thyroid carcinoma (44), prostate cancer
(54), and nasopharyngeal carcinoma (NPC) (37, 56). Sample
sizes included in these studies varied from 31 to 955 between the
studies. The frozen or formalin-fixed tissue samples were used in
these eligible studies, and lncRNAs were detected by qPCR or
qRT-PCR assay.

Systematic Review
In total, 27 lncRNAs in 14 cancer types were studied in our
systematic review and meta-analysis. Twenty-three lncRNAs
were upregulated and four were downregulated compared with
healthy individuals. Higher expression of lncRNA01057 in
glioma, lncRNA00520 in HNSCC, lncRNA CCAT2 in EC,
lncRNA HOTAIR in breast cancer and colorectal cancer,
lncRNA Rpph1 in EC, lncRNA FAM201A in NSCLC, lncRNA
LINC02582 in breast cancer, lncRNA 00511 in breast cancer,
lncRNA FAM83H-AS1 in OC, lncRNA H19 in cardiac
carcinoma, lncRNA CYTOR in NSCLC, lncRNA 00483 in
NSCLC, lncRNA UCA1 in prostate cancer, lncRNA PVT1 in
NSCLC, lncRNA MALAT1 in NPC were associated with
radioresistance. While lower expression of lncRNA TPTEP1,
DRAIC in glioma, lncRNA NKILA in laryngeal cancer, and
lncRNA MEG3 in thyroid carcinoma were correlated
to radioresistance.

Then, we searched the target protein of these lncRNAs in
RDPDB database (http://rbpdb.ccbr.utoronto.ca/index.php), and
conducted the protein-protein interaction (PPI) network based
on the STRING database (https://string-db.org/), which covered
almost all functional interactions between the expressed proteins
(59). Shown as Figure 2A, the 24 target proteins were uploaded
into the STRING database for analysis. Eighteen nodes and 69
edges were contained in the network; in total, the average node
degree is 7.67. Nodes represented the core targets and the
extended targets, edges represented the connection between the
genes, and the degree value represented the association intensity.
The ELAVL1, SRSF1, PTBP1, and HNRNPA1 were the core
protein in this PPI network based on degree ranking which was
calculated by cytohubba (60). In addition, there was a co-
expression relationship between ELAVL1, PTBP1, HNRNPA1,
and SRSF proteins, shown as Figure 2B. These target genes
involved in RNA splicing, mRNA processing, negative regulation
of mRNA metabolic process, cellular response to fibroblast
growth factors stimulus, and so on, which is shown in
Figure 2C curved based on Metascape database (http://
metascape.org/). Our results indicate that these lncRNAs play
key roles in radioresistance during cancer therapy by involving
these pathways.

Meta-Analysis
Twenty-nine comparisons were included to evaluate the lncRNAs
level response to radioresistance during cancer therapy in cancer
patients; enrolling a total of 4986 subjects. Shown as Figure 3A, the
pooled HR and 95% CIs for the combined up-regulated lncRNAs
was 1.73 (95% CI=1.50-2.00; P< 0.01) under the random-effects
model, and the pooled HR and 95% CIs for the combined down-
May 2022 | Volume 12 | Article 767750
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regulated lncRNAs was 2.09 (95% CI =1.60-2.72; P<0.01). In
addition, subgroup meta-analyses that focused on lncRNAs and
the difference of cancers was performed, shown as Figure 3B. We
found that the dysregulation of lncRNAs was significantly related to
poor overall survival (OS) in glioma patients (HR= 2.22, 95%
CI =1.79-2.74; P<0.01). Four studies investigated the association
between lncRNAs expression and OS in patients with breast cancer,
and results indicated that the up-regulated expression of lncRNAs
could predict poor OS in patients with breast cancer (HR= 1.29,
95% CI =1.08-1.54; P<0.01). Five studies discussed the relationship
between lncRNAs expression with OS in patients with NSCLC,
which demonstrated that a higher expression of these five lncRNAs
was related to poor OS in NSCLC patients (HR= 1.48, 95%
CI =1.18-1.85; P<0.01). Two studies involved the relationship
between lncRNAs expression with OS in EC patients. However,
the results suggested that a higher expression of these two lncRNAs
was not related to OS in EC patients (HR= 1.57, 95% CI =0.90-2.75;
P=1.09) and colorectal cancer patients (HR= 1.30, 95% CI =0.49-
3.43; P=0.602). Furthermore, subgroup meta-analyses focusing on
the sample size was also performed. As shown in Figure 3C, the
Frontiers in Oncology | www.frontiersin.org 4
dysregulation of lncRNAs was significantly related to OS in cancer
patients no matter if the case sample size was >50 or not. Shown as
Figure 3D, two studies discussed the relationship between
lncRNAFAM201A and the OS in cancer patients (HR=2.15; 95%
CI= 1.15-3.99; P <0.01). Another two studies discussed the
relationship between lncRNAH19 and the OS in cancer patients
(HR=2.68; 95% CI= 1.92-3.74; P <0.01). However, there was no
significant relationship between lncRNA HOTAIR and the OS in
cancer patients (HR=1.22; 95% CI= 0.98-1.54; P =0.08).

In the present meta-analysis, sensitivity analysis and
publication bias were also performed. Egger’s test and Begg’s
showed that there was no risk of publication bias in this meta-
analysis, shown as Supplementary Figure S1.
DISCUSSION

There is a growing investigation to demonstrate that lncRNAs
play an important role in radioresistance or radiosensitivity.
However, previous individual studies couldn’t provide strong
FIGURE 1 | The diagram flowchart of studies for selecting process.
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evidence due to small sample size and different research
standards. Therefore, we performed this present meta-analysis
to evaluate the relationship between the expression level of
lncRNAs and radioresistance or radiosensitivity in cancer
patients. Here, we retrieved all publicly available lncRNAs and
Frontiers in Oncology | www.frontiersin.org 5
integrated data extracted from 19 related articles including 4986
cancer subjects. The results indicate that the upregulation or
downregulation of lncRNAs are significantly related to
radioresistance response in cancer patients. Down-regulation
of TPTEP1, MEG3, and UCA1 and up-regulation of
TABLE 1 | Basic characteristics of the included studies.

Authors year Country Type of cancer Clinical
Stages

lncRNA Therapy effect No. of samples
(radiosensitive/
radioresistant)

Types of
samples

lncRNA
dysregulation

NOS
score

Li et al. (34) 2021 China breast cancer I-II/35, III-
IV/15

FGD5-AS1 Radioresistance 25/25 tissue upregulated 8

Kuang and
Bing (35)

2021 China glioma NM H19 Radioresistance 202/202 tissue upregulated 9

Li et al. (36) 2021 China glioma NM DRAIC Radioresistance 68/69
154/154

tissue downregulated 6

Guo et al.
(37)

2021 China NPC NM LINC00312 Radioresistance 40/41 tissue upregulated 7

Lin et al. (38) 2020 China glioma II/52,III/115 AC106786.1
LINC02237
LINC01447

Radioresistance 124/43 tissue upregulated 5

Liu et al. (39) 2020 China colorectal
cancer

NM LINC00630 Radioresistance 25/25 tissue upregulated 6

Qin et al. (40) 2020 China NSCLC NM LINC00473 Radioresistance 38/34 tissue upregulated 6
Tang etal.
(41)

2021 China glioma NM LINC01057 Radioresistance 81/41 tissue upregulated 7

Li et al. (34) 2020 China HNSCC NM LINC00520 Radioresistance 130/389 tissue upregulated 9
Wang et al.
(23)

2020 China EC NM CCAT2 Radioresistance 34/26 tissue upregulated 6

Zhang et al.
(42)

2020 China breast cancer NM HOTAIR Radioresistance 428/427 tissue upregulated 9

Tang et al.
(43)

2020 China glioma I−II/105, III-
IV/72

TPTEP1 Radioresistance 96/81 tissue downregulated 7

Liu et al. (44) 2020 China colorectal
cancer

NM HOTAIR Radioresistance 35/36 tissue upregulated 6

Li et al. (22) 2020 China EC I-II/56, III-
IV/27

Rpph1 Radioresistance 41/42 tissue upregulated 6

Liu et al. (45) 2019 China NSCLC II/15, III/54 FAM201A Radioresistance 37/32 tissue upregulated 7
Wang et al.
(46)

2019 China breast cancer NM LINC02582 Radioresistance 71/65 tissue upregulated 7

Liu et al. (47) 2019 China breast cancer NM LINC00511 Radioresistance 49/49 tissue upregulated 7
Dou et al.
(48)

2019 China OC I-II/32, III-
IV/48

FAM83H-
AS1

Radioresistance 38/42 tissue upregulated 7

Jia et al. (49) 2019 China cardiac
carcinoma

I-II/185,III-
IV/99

H19 Radioresistance 191/93 tissue upregulated 8

Zhang et al.
(50)

2018 China NSCLC I-II/29,III/35 CYTOR radiosensitivity 32/32 tissue upregulated 6

Yang et al.
(51)

2019 China NSCLC II/53,III/35 LINC00483 Radioresistance 127/375 tissue upregulated 8

Yang et al.
(52)

2018 China laryngeal
cancer

I-II/29, III-
IV/36

NKILA Radioresistance 32/33 tissue downregulated 6

Liu et al. (44) 2018 China thyroid
carcinoma

NM MEG3 Radioresistance 24/24 tissue downregulated 6

Chen et al.
(26)

2018 China Squamous Cell
Cancer

II/2,III/14,
IV/25

FAM201A Radioresistance 12/22 tissue upregulated 6

Zhang et al.
(53)

2018 China LAD I–II/36, III/
30

CRNDE Radioresistance 36/30 tissue upregulated 7

Ghiam et al.
(54)

2017 Canada prostate
cancer

NM UCA1 Radioresistance 209 tissue upregulated 8

Wu et al. (55) 2017 China NSCLC NM PVT1 Radioresistance 15/16 tissue upregulated 6
Jin et al. (56) 2015 China NPC I-II/70, III-

IV/61
MALAT1 Radioresistance 26/18 tissue upregulated 6
May 2022 | Vo
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NSCLC, non-small cell lung cancer; NPC, nasopharyngeal carcinoma; HNSCC,neck squamous carcinoma; EC, esophageal cancer; OC, ovarian cancer; LAD, lung adenocarcinoma; NM,
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LINC01057, LINC00520, CCAT2, HOTAIR, Rpph1, FAM201A,
LINC02582, LINC00511, FAM83H-AS1, H19, CYTOR,
LINC00483, NKILA, PVT1, and MALAT1 are deeply involved
in the radiotherapy of cancer patients. These findings are novel
and provide insights into the potential biological markers in
targeting radiotherapy response.

Traditionally, there are four kinds of biomarkers in cancer
biology, including diagnostic biomarkers, prognostic biomarkers,
diagnostic companion biomarkers, and predictive theragnostic
biomarkers. The last biomarker had been used as an indicator of
normal biological processes, pathogenic processes, or responses to
an exposure or intervention (61). Consequently, exploring novel
uses of each type of biomarker, especially predictive theragnostic
biomarkers, is crucial to improving patient management and
treatment outcome. However, radioresistance is a major factor
that leads to poor prognosis for cancer patients. Radiotherapy
always induced DNA damage or excessive ROS by ionizing
radiation to activate apoptotic signaling pathways in cancer cells,
leading to cell death (62). In addition, crucial molecules at cell cycle
checkpoints could regulate and arrest cell cycle progression.
Therefore, cell cycle arrest was closely related to radioresistance or
radiosensitivity response. For example, down-regulation of
metastasis-associated lung adenocarcinoma transcript 1
(MALAT1) could negatively regulate miR-145 levels and increase
radiosensitivity, which may induce G2/M arrest and affect DNA
repair (56). However, MALAT1 could also induce the
radioresistance response during esophageal squamous cell
carcinoma (ESCC) treatment. The reason was that MALAT1
decreased the expression of CDC kinase subunit 1 (CKS1) and
increased the G2/M arrest response by inhibiting the expression of
p27 (63). Similarly, the hox transcript antisense intergenic lncRNA
(HOTAIR) increased radioresistance response by decreasing the
level of p21 and inducing cell cycle arrest at the S phase (64).
Frontiers in Oncology | www.frontiersin.org 6
Furthermore, our meta-analysis revealed that overexpression of
MALAT1 and HOTAIR contributes to increased radioresistance
in NPC, colorectal cancer, and breast cancer patients. Except for
DNA damage, apoptosis was the main mode of cancer cell death
induced by radiotherapy (65). For example, HOTAIR acted as a key
inhibitor to partly turn off theWnt/b-catenin pathway in pancreatic
ductal adenocarcinoma cells (66), and as a result, the radiosensitivity
response was reduced. Increasing the level of urothelial carcinoma
associated 1 (UCA1) induced the radioresistance response by
increasing Akt activation in prostate cancer cells (54), which was
consistent with the result from our meta-analysis. However,
lncRNAs modulated gene expression through multiple
mechanisms. For example, they could act as competing
endogenous RNAs (ceRNAs) to prevent miRNA from interacting
with shared mRNA, resulting a lncRNA-miRNA-mRNA regulatory
network to affect the expression of downstream target (43). For
example, lncRNA colon-cancer-associated transcript-1 (CCAT1)
negatively regulated miR-148b expression (23) and 201-member
A (FAM201A) (45) regulated ataxia telangiectasia mutation and
mammalian target of rapamycin (mTOR) expression via miR-101
(26)to mediate the radiosensitivity of breast cancer and ESCC. In
addition, the lncRNAs plasmacytoma variant translocation 1
(PVT1) acted as sponger of miR-195 to reduce radioresistance of
NSCLC (55). Therefore, combined with our meta-analysis, we could
draw a conclusion that all of these lncRNAs could act as potential
predictive markers for radioresistance response.

In the present meta-analysis, tissue samples were used to
assess lncRNAs expression in the included literature. However,
lncRNAs from ncRNAs from serum or plasma samples allow
for more collection, lower expense, and more convenient
analysis. Therefore, there are several limitations in this meta-
analysis. First, there were a small number of eligible studies,
and some of the sample sizes included in these studies were
A B C

FIGURE 2 | The interaction network of targets protein and gene function prediction of lncRNAs pathways involved in radiosensitivity. (A) The interaction network of
targets protein of lncRNAs from STRING database (https://www.string-db.org/). (B) Coexpression scores based on RNA expression patterns, and on protein co-
regulation provided by STRING. (C) Gene network of enriched terms by Metascape (https://metascape.org/), a subset of enriched terms has been selected and
rendered as a network plot, where terms with a similarity > 0.3 are connected by edges. We select the terms with the best p-values from each of the 20 clusters,
with the constraint that there are no more than 15 terms per cluster and no more than 250 terms in total, where each node represents an enriched term.
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< 50. Second, these eligible studies explored multiple kinds of
cancers or tumors, so there were not enough studies to
calculate the pooled HR value of one sole kind of cancer.
Third, most studies were conducted in China and only one
study was investigated in Caucasians. Therefore, the results
may not interpret well to populations all over the world.
Finally, most studies explored absolute differences in
lncRNAs and HR values were applied for the current meta-
analysis, which may lead to bias and decreased accuracy of the
Frontiers in Oncology | www.frontiersin.org 7
results. Further studies are necessary to be conducted with
larger samples, multiple centers, populations, as well as more
kinds of cancer.
CONCLUSION

In conclusion, this systematic review and meta-analysis explored
the assoc ia t ion between lncRNAs express ion and
A B

C D

FIGURE 3 | Forest plot for the association between the lncRNAs expression levels with OS. (A) Subgroup analysis of the association between lncRNAs expression
level and cancer patients according to the up-regulation and down-regelation of lncRNAs. (B) Subgroup analysis of the association between lncRNAs expression
level and cancer patients according to the difference of cancer types. (C) Subgroup analysis of the association between lncRNAs expression level and cancer
patients according to the difference of samples size. (D) Subgroup analysis of the association between different lncRNAs expression level and the OS of cancer
patients. OS, overall survival.
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radiotherapeutic response in various cancers. Furthermore, our
meta-analysis provided a series of potential lncRNAs which
could indicate patients at high risk of radresistance response;
allowing doctors to improve their therapeutic strategies to
overcome radresistance. Therefore, more work is needed
to explore how lncRNAs interact with signaling molecules to
induce radiosensitivity or radioresistance as well as to evaluate
the therapeutic diagnosis value of lncRNAs in radiotherapy.
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