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ABSTRACT

CRISPR-based typing was performed to subtype isolates of S. Typhimurium and its monophasic variant Salmonella 4,[5],12:
i- from humans and animals between 2009 and 2017 in China. CRISPR typing classified all isolates into two lineages and
four sub-lineages. All isolates from Lineage Il and Lineage IB-1 were Salmonella Typhimurium. All of Salmonella 4,[5],12:i: -
isolates were distributed in Lineage IA and Lineage IB-2, which all belonged to ST34 by MLST typing. Only Lineage IB-2
contained ST34 isolates from both Salmonella Typhimurium and Salmonella 4,[5],12:i:-. Among the isolates of ST34, TST4
was identified as the most common CRISPR type representing 86.5% of Salmonella 4,[5],12:i:- and 14.5 % of Salmonella
Typhimurium mainly from pigs and humans. This study demonstrated that TST4-ST34 isolates were predominant in
Salmonella 4,[5],12:i-, and pig was the main reservoir for Salmonella 4,[5],12::- in China, which might have the

potential to transmit to humans by pig production.
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Salmonella enterica serovar Typhimurium (Salmonella
Typhimurium) is one of the most important zoonotic
pathogens causing food-borne gastroenteritis across
the world [1,2] Human infections with Salmonella
Typhimurium are typically associated with contami-
nated food of animal origin [3]. Recently, a Salmonella
Typhimurium monophasic  variant  (Salmonella
4,[5],12:1:-) has been increasingly isolated from hus-
bandry animals, foods, and humans [4]. Among the
common serovars associated with human salmonellosis
cases in Europe, the monophasic Salmonella Typhi-
murium has ranked third after Salmonella Enteritidis
and Salmonella Typhimurium in 2017 [5]. In USA,
the Salmonella 4,[5],12:i:- was confirmed to be the
most increased serotype from 1972 to 2016, and stayed
as the top 5 serotype for human salmonellosis during
2011 and 2016 [6]. However, few reports described
the prevalence of Salmonella 4,[5],12:i:- in human sal-
monellosis in China. In 2015, 13 foodborne isolates of
Salmonella 4,[5],12:i:- were firstly reported in Guang-
dong province. A recent study pointed out that Salmo-
nella 4,[5],12:i:- had increased to be the second most
frequently encountered serotype in patients in Henan
province, China [7]. Comparative analysis of genome
sequences and biological properties has revealed that

deletion or mutation of the fljB gene causes loss of
phase 2 flagellin expression in the monophasic variant
[8]. And the MLST type was not an efficient tool to
differentiate them [9]. Therefore, new efforts are
needed to demonstrate the genetic and phenotypic
difference between Salmonella Typhimurium and its
monophasic variant with prevalence characteristics of
both serotypes. It is also important to understand the
phylogenetic relationship between the two serotypes
in order to develop new eradication strategies.

The Clustered Regularly Interspaced Short Palin-
dromic Repeats (CRISPR) typing has been used as a
high-resolution typing method of a broad range of bac-
teria. Thus far, CRISPR typing has been widely used to
subtype Salmonella isolates belonging to identical sero-
types including Salmonella Typhimurium, Salmonella
Enteritidis, and Salmonella Pullorum [10-14]. Such
studies have demonstrated that CRISPR typing is
efficient in discriminating isolates from different
sources and time periods. Further, the arrangement
and microevolution of CRISPR spacers allows typing
and subtyping to be performed in a single step. In
the present study, we used CRISPR typing to identify
genotypic relationships among 173 isolates of Salmo-
nella Typhimurium and Salmonella 4,[5],12:i:-
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obtained from different hosts during 2009-2017 in
China. Our findings demonstrate the presence of a pre-
dominant CRISPR type shared by these two serotypes
in both humans and pigs, and reveal the pig as a
main reservoir for Salmonella 4,[5],12:i:-, which can
also infect human.

We used CRISPR typing to genotype 173 isolates of
Salmonella Typhimurium (62) and its monophasic var-
iant Salmonella 4,[5],12:i:- (111) obtained from different
sources during 2009-2017 in China (Supplementary
Table S1). Animal-origin Salmonella Typhimurium and
Salmonella 4,[5],12:i:- isolates were collected from com-
mercial farms, slaughterhouse, and retail markets, while
human isolates were collected from diarrhea patients in
hospitals. Identification of Salmonella 4,[5],12:i:- was
performed by slide agglutination with somatic (O) and
flagellar (H) antiserum combined with multiplex-PCR
approach of fliB-fliA intergenic region and the fljB
gene, respectively [8]. CRISPR typing was performed as
previously described [15]. Among the 173 isolates, 67
unique spacers were detected in the two CRISPR loci,
with 31 in CRISPR1 and 36 in CRISPR2. Based on the
spacer arrangement, 30 different alleles were observed
in CRISPR1, and 16 different alleles in CRISPR2 (Figure
1(A)). With the combination of CRISPR1 and CRISPR2
arrays, a total of 34 different Typhimurium CRISPR
types were identified and named using a number suffix
to TST as previously indicated (Figure 1(A,B)). Cluster
analysis using UPGMA revealed that only seven out of
the 34 TSTs shared between isolates from different
host. TST4, a combination of CRISPR1 allele 7 and
CRISPR2 allele 6, was found to be the most frequent
CRISPR type shared by 55% (96/173) of the isolates
(Figure 1(B)). TST4 and TST17 were common among
isolates from pigs, humans and chicken, which showed
the potential transmission between animals and humans.
TST20, TST27, TST30, TST31, and TST33 were only
detected in isolates of poultry origin and were distant
from TSTs of other origins. Two isolates collected from
cattle belonged to TST9. This revealed that CRISPR
types also reflected the source of isolates [16]. TST4 iso-
lates were observed from six out of nine provinces
demonstrating its predominant prevalence in China
(Supplementary Table S1). The second most common
CRISPR type TST5 was detected in three provinces
with only 11 isolates. In Jiangsu province, 13 CRISPR
types were detected in 38 isolates from Yangzhou city,
but only 4 CRISPR types in 27 isolates from Huaian
city. These findings reflected that CRISPR types were clo-
sely related to different regions.

Compared with MLST type of the 173 isolates, the
CRISPR typing divided the 122 ST34 isolates into 14
TSTs (Figure 1(A,B)), which confirmed that CRISPR
typing has stronger discriminatory power than MLST
[17]. As shown in Figure 1(B), 95 out of 96 TST4 strains
shared the ST34 type, including isolates of both Salmo-
nella Typhimurium and Salmonella 4,[5],12:i:-, mostly

from pigs and humans. However, all of the eight
(12.9%, 8/62) TST4-ST34 Salmonella Typhimurium
strains were isolated from pigs, while the 88 (79.3%,
88/111) TST4-ST34 Salmonella 4,[5],12:i:- strains
included 68 pig isolates, 19 human isolates, and one
chicken isolate, suggesting that Salmonella 4,[5],12:i:-
has become more frequently transmitted to human
through contaminated food than Salmonella Typhimur-
ium. Whole genome sequencing analysis of Salmonella
Typhimurium and its monophasic variant from Den-
mark demonstrated that ST34 was the main MLST
type in the monophasic variant isolates, which was
also shared by Salmonella Typhimurium isolated from
humans, food, and veterinary samples [9]. In the present
study, we not only confirmed that ST34 is predominant
among Salmonella 4,[5],12:i:- isolates, but also demon-
strated that TST4 is the main CRISPR type shared by
both serotypes among these ST34 isolates, which were
mainly from swine or pork meat (Figure 1(B)). Apart
from TST4-ST34, which was shared by both serotypes,
TST5-ST34 and TST6-ST34 were also shared by the
two serotypes isolated from both pigs and humans
(Figure 1(B)).

According to data reported by the European Food
Safety Authority (EFSA) and the European Centre for
Disease Prevention and Control (ECDC), Salmonella
Typhimurium ranked second after Salmonella Enteriti-
dis and followed by its monophasic variant serovar
associated with human salmonellosis cases in Europe
during 2017 [5]. In addition, 39.4% of Salmonella Typhi-
murium isolates and 81.4% of its monophasic variant
isolates from human cases showed multi-drug resistance
(MDR), a much higher prevalence of resistance than
28.6% of all Salmonella isolates from human salmonello-
sis [5]. Thus, Salmonella Typhimurium and its mono-
phasic variant are considered as a serious epidemic
threat to public health with apparent worldwide distri-
bution. Thus far, although swine or pork has been con-
sidered as the main source of infection in many
countries, the genetic relationship between Salmonella
Typhimurium and Salmonella 4,[5],12:i:- is not well
understood. To identify the genetic relationship between
the two serotypes, a phylogenic tree was constructed
based on the 34 identified TSTs (Figure 1(C)) using Bio-
numericus 7.5. As shown in Figure 1(C), they are
divided into two main lineages and four sub-lineages.
Interestingly, Lineage IA was found to be composed of
TSTs specific to Salmonella 4,[5],12::- isolates, while
Lineage II and IB-1 was exclusively composed of TST's
specific to Salmonella Typhimurium strains mainly of
the ST19 type. Interestingly, only Lineage IB-2 con-
tained TSTs shared by both Salmonella Typhimurium
and Salmonella 4,[5],12:i:-. Although there was a low
number of isolates with TSTs specific to Salmonella
Typhimurium or Salmonella 4,[5],12:i:-, this diversity
reflected evolutionary divergence among the two sero-
types. Both Salmonella Typhimurium and Salmonella
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Figure 1. The CRISPR type and phylogenic relationship of 173 Salmonella Typhimurium and its monophasic variant isolates. (A) The
CRISPR type for each strain is represented by spacers arrangement in CRISPR1 (left) and CRISPR2 (right) locus. Each unique spacer is
represented by a unique combination of background colour with the colour and shape of the object in the foreground. Name of the
spacers are labelled on the top of each spacers. And the frequency of each allelic type is listed on the left side of the CRISPR allele.
The TSTs (Typhimurium sequence types) are derived from the combination of CRISPR 1 and CRISPR alleles. (B) The minimum span-
ning phylogenetic tree built from the CRISPR allelic profiles of 173 Salmonella Typhimurium and Salmonella 4,[5],12:i:- isolates. The
size of each circle is proportional to the number of isolates in this circle and isolates in the same circle share the same CRISPR type.
All TSTs are labelled and the origins of isolates are indicated with unique colours on the right side. The left side is composed of non-
ST34 Salmonella Typhimrium isolates, while the right side includes only ST34 isolates of Salmonella Typhimurium and Salmonella
4,[5],12:i:- isolated mainly from humans and pigs. (C) The maximum-parsimony approach was performed to reveal the genetic
relationship of 34 TSTs. Two lineages and four sub-lineages clearly showed that Lineage Il and IB-1 was only Salmonella Typhimur-
ium isolates, while Lineage IA was occupied by Salmonella 4,[5],12:i:-. Only Lineage 1B-2 was mixed by both serotypes.
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4,[5],12:i:- were observed in TST4, TST5 and TSTS,
which confirmed a close genetic relationship between
these two serotypes.

In addition, CRISPR typing showed higher discrimi-
natory power than PFGE and MLVA, and it could cor-
rectly identify all major lineages defined by whole
genome single nucleotide polymorphism typing
(WGST) of Salmonella Enteritidis isolates [18]. How-
ever, CRISPR typing could not efficiently delineate out-
break clusters, which could be resolved by WGST in
further study.

In conclusion, CRISPR typing has been widely used
as a high-resolution typing method based on the fact
that genetic diversity of CRISPR sequences can provide
valuable insights into microevolution and evolutionary
trajectories of bacterial isolates including Salmonella.
In the present study, we demonstrated that TST4-
ST34 strains were predominant in most Salmonella
4,[5],12:i:- isolates and shared by some Salmonella
Typhimurium isolates, obtained from humans, pigs,
and chicken. Furthermore, the pig was found to be
the main reservoir for these TST4-ST34 isolates,
suggesting that the monophasic variant might be pro-
duced via mutation of Salmonella Typhimurium in
pigs. The prevalence of the TST4-ST34 Salmonella 4,
[5],12:i:- strains in animals should be considered a mat-
ter of public health concern, and monitored by the gov-
ernment to prevent transmission to humans.
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